用户名: 密码: 验证码:
工业汽轮机电液控制系统的研制与仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业技术的飞速发展,工业汽轮机被广泛应用于石化、电力、冶金、环保和能源等工业领域。工业汽轮机是指除中心公用电站用汽轮机和船舶用汽轮机以外的各类汽轮机,是大型工业装置中的关键动力设备。其控制系统承担着转速和负荷调节及工况控制的任务,直接影响着机组运行的安全性、可靠性、经济性以及自动化程度。传统的机械液压控制系统,其结构组成决定了自身具有难以克服的调节精度和自动化程度低、工作特性固定、调节功能少等缺点,而进口的电液控制系统成本过高,难于维护,因此开发出适合现代工业汽轮机的性能优良、性价比高的电液控制系统已势在必行。
     本文从工业汽轮机安全运行的实际要求出发,较为系统地设计和分析了基于PLC的工业汽轮机电液控制系统;首先,根据控制方案的总体设计要求,分别对电液伺服系统、控制系统的硬件和软件部分进行了设计,然后对工业汽轮机控制系统中的主汽阀和调速阀进行了计算和选择;接着在ADAMS中对转速控制系统机械部分进行虚拟样机建模,并进行了运动仿真;最后,利用ADAMS/Hydraulics模块,建立了液压系统的模型,通过机械和液压系统的联合仿真,对所设计的转速控制系统性能进行测试。
     结果表明,该控制系统具有很好的性能,调速系统能够根据用户需要对汽轮机转速进行调节,并且具有很好的动、静态特性;本控制系统具有自动化程度高,安装维护方便,系统工作稳定、运行可靠、调节精度高等良好的特性。
With the rapid development of industry technology, the industrial steam turbine is widely applied to the field of industry, such as petrifaction, electric power, architectural material, environment protection, energy sources, etc. The industrial steam turbine is the steam turbine except that used in the center electricity stations and ships, and it is the key power plant in the large-scale industrial unit. Its control system which undertake the task of modulating the rotate speed and burthen and the task of controlling the work condition directly influence the security, reliability, economy and the automation degree of the machine. The traditional control system is mechanical-hydraulic system, which has the intrinsic shortcomings of low governing precision and automatic degree, fixed work characteristic and few governing functions because of its structure. At the same time, the imported electro-hydraulic control system has high cost and is hard to maintain. So it is imperative to develop the electro-hydraulic control system with excellent performance and high performance-price ratio for the modern industrial steam turbine.
     This thesis based on the practical demand of industrial steam turbine operating safely, designed and analyzed electro-hydraulic control system of industrial steam turbine systematically. At first, according to the design requirements of the control program, the electro-hydraulic servo system and the hardware and software of control system are designed respectively, and the main steam valve and speed regulating valve in the control system are calculated and chosen. And then the virtual prototyping model of mechanical parts in the speed control system is set up in ADAMS, and the movement’s simulation is put up. At last, the hydraulic system model was built with the ADAMS/Hydraulics model, and the test to the speed control system designed through the consociation of machine and hydraulic simulation was tested.
     The results show that the control system has good characters. The speed control system can adjust the rotate speed of the industrial steam turbine according to the demand of the users and have well static and dynamic characteristics. The control system is facility to mount and maintain, reliable to operate, and precise to adjust and detect and it has well characteristic.
引文
[1]伍爱民.工业汽轮机市场需求结构与预测[J].工程建设与设计,2000, (2):8-10.
    [2] HAMANNUSER A.The control of medium-sized and industrial steam turbines [J]. Brown Bowery Review,1996,63(6):372-378.
    [3]张晓亮,魏守平,梁方,等.热电联供汽轮机数字电液控制系统[J].水电能源科学,1999,(2):31-33.
    [4]侯曼西.工业汽轮机[M].北京:机械工业出版社,1995:5-26.
    [5]黄保海,白玉,牛卫东.汽轮机原理与构造[M].北京:中国电力出版社,2002:1-10.
    [6] BARUA P C,RANGANATH S K, YADUNANDANAN V M. Control systems for steam turbines in a captive power plant[J] .BHEL Journal, 2000, 21(1):119-134.
    [7]王爽心,葛晓霞.汽轮机数字电液控制系统[M].北京:中国电力出版社,2004:15-46.
    [8]卢定兴.基于新型仿真平台的汽轮机数字电液控制系统的仿真研究[D].福州:福州大学硕士学位论文,2005: 4-5.
    [9] SHIBATA U S, INOUE H, TANAKA T.Development and operation of micro turbine-Combined package of steam generator with supplemental firing [J]. Kami Pa Gikyoshi/Japan Tappi Journal,2001,55(5):30-33.
    [10] KRATTIGER H, BONDONI C, KOBI H. Increase competitive level by replacing steam turbines with electric adjustable speed drive system [C]. Record of Conference Pappers - IEEE Industry Applications Society, 51st Annual Petroleum and Chemical Industry Conference, Guangzhou, 2004:17-23.
    [11]叶钟.用开拓创新精神推动百万吨乙烯、百万吨PTA装置设备国产化[J].通用机械,2005,(7):24-28.
    [12]陈向东.汽轮机数字电液控制系统技术的应用现状与发展[J].浙江电力,2001,(4):22-26.
    [13]葛晓霞,徐治皋.汽轮机数字电液控制系统中有关功能的探讨[J].汽轮机技术,2004,46(1):10-11.
    [14] KOPCZYNSKI, JERRY A . Benefits of steam turbine control systems upgrade[C].The 1999 International Joint Power Generation Conference and Exhibition and ICOPE, Shanghai,1999,34(2):239-243.
    [15] DROB, DMITRY.New all-digital electro-mechanical steam turbine control (DEMC) system[C].48th Annual Power Industry Symposium-15th Annual Joint ISA POWID/EPRI Controls and Instrumentation Conference,Beijing, 2005:649-661.
    [16]段宁.TC_AMT液压控制系统仿真研究[D].长春:吉林大学硕士学位论文,2006:34-35.
    [17]杨灿军,陈鹰,路雨祥.液压产品信息电子化[J].机床与液压,1997,14(3):35-37.
    [18]熊伟.气压传动系统计算机辅助设计与仿真研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2000:5-6.
    [19]王威.电站图形化建模系统GNET[D].北京:清华大学硕士学位论文,1996:6-7.
    [20]马永光.智能化建模/仿真环境研究与实践[D].保定:华北电力大学硕士学位论文,1997:10-11.
    [21]范益群.BGSP通用仿真软件及用例[J].机床与液压1995,(2):113- 117.
    [22]李培滋,陈元炎.流体传动与控制系统通用数字仿真语言EPS[J].液压与气动,1994,(1): 4-6.
    [23]张海平,钟廷修.能自动从图编程的液压系统仿真软件包HYCAD[J].机床与液压,1986,(6):4-9.
    [24]夏吉飞,陈鹰,徐立.DLYSIM仿真软件系统及改进改造[J].液压与气动,1994,(4): 13-15.
    [25]邓习树,李自光.当前液压仿真技术的发展现状及趋势[J].机床与液压,2003,(1):20-22.
    [26]李杨.工业汽轮机调速系统存在问题及改造[J].冶金动力,2002,(6):53-57.
    [27] ORSAGH ROLF, MEYER THEODORE, HESTER STEPHEN . Risk assessment of nuclear steam turbine destructive over speed[C].Proceedings of the 2003 International Joint Power Generation Conference,Beijing,2003:343-348.
    [28]郭慧东.汽轮发电机组轴系扭振分析及机电系统仿真[D].北京:华北电力大学硕士学位论文,2005:1-12.
    [29]蒋伟.模糊自适应PID控制算法在电液伺服系统中的应用[D].南京:南京理工大学硕士论文,2004:254-260.
    [30]王晓婷.电液伺服系统的非线性控制[D].西安:西北工业大学硕士论文,2002:1-5.
    [31]陈丽华.多目标电液伺服系统模糊控制与实现[D].哈尔滨:哈尔滨理工大学硕士学位论文,2006:1-3.
    [32]李洪人.液压控制系统[M].北京:国防工业出版社,1981:130-131.
    [33] WOODWARD GOVERNOR COMPANY. WOODWARD Installation and Operation Manual of TG-13 and TG-17 Governors[M] . Newyork :WOODWARD, 2002:1-3.
    [34]温占波.大型循环流化床燃烧气化热电气多联产试验台监控系统的开发与研究[D].杭州:浙江大学硕士论文,2002:16-17.
    [35]廖常初.PLC编程及应用[M].北京:机械工业出版社,2002:130-132
    [36] XUE, YALI.Optimized design of multivariable PID controllers for steam turbine[J]. Power Engineering,2005,25(5) :668-672.
    [37]相晓伟,毛靖儒,孙弼.汽轮机调节阀设计的新思路[J].热能动力工程,2006,21(3):235-237.
    [38]陆培文.调节阀实用技术[M].北京:机械工业出版社,2006:183-184.
    [39]相海军.工业过程控制调节阀的动态特性研究[D].西安:西安理工大学硕士学位论文,2006:6-8.
    [40]姜继海,宋锦春,高常识.液压与气压传动[M].北京:高等教育出版社,2002:113-115.
    [41]郑建荣.ADAMS—虚拟样机技术入门与提高[M].北京:机械工业出版社,2002:1-3.
    [42]王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践[M].西安:西北工业大学出版社,2002:3-4.
    [43] Anon.Design and test tool integration[J].Auto Technology,2004,4(6):54-55.
    [44]姬鹏.液压挖掘机反铲装置的运动学仿真及动力学分析[D].长春:吉林大学硕士学位论文,2005:35-37.
    [45]李相锋.挖掘装载机工作装置及其液压系统仿真[D].长春:吉林大学硕士学位论文,2006:5-7.
    [46]陈立平,张云清,任卫群等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005:80-82.
    [47]郑凯,胡仁喜,陈鹿民等.ADAMS2005机械设计高级应用实例[M].北京:机械工业出版社,2006:8-10.
    [48]朱新才,周秋沙.液压与气动技术[M].重庆:重庆大学出版社,2003:6-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700