用户名: 密码: 验证码:
小地老虎性信息素通讯的分子和细胞机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
取食、求爱及交配对昆虫来说是最基本和重要的生命活动,昆虫主要通过表达嗅觉蛋白的触角来检测环境中与生存和生殖相关的化学信号。性信息素分子和植物挥发物通过触角表皮上的极孔进入触角感器。一旦性信息素分子和植物挥发物进入到触角感器淋巴液,触角表达的结合蛋白(包括气味结合蛋白OBP和化学感受蛋白CSP)捕获外界的化学信号分子,然后将这些信号分子运输通过水溶性的触角感器淋巴液,最后将这些化学信号分子运送至嗅觉受体神经元ORN树突膜上与化学感受受体(包括ORs和IRs)结合,紧接着气味分子被气味降解酶迅速降解掉。昆虫对性信息素具有极高的敏感性和特异性,我们可以利用这个特点在害虫综合治理中利用性信息素来进行害虫种群的监测和大量诱捕。阐明昆虫嗅觉识别的机制可以帮助我们设计新的方法来进行害虫治理。小地老虎(鳞翅目:夜蛾科)是世界范围内多种作物上的重要害虫。研究表明小地老虎雄蛾对雌蛾释放的性信息素具有极高的趋性。但是雄蛾识别性信息素的分子和细胞机制目前还不清楚。小地老虎触角中嗅觉相关蛋白的鉴定以及功能分析将有利于我们阐明昆虫嗅觉识别的分子和细胞机制。更重要的是,可以为我们提供新的方法如通过干扰昆虫嗅觉识别,进而达到对靶标害虫进行有效防治的目的。在本论文中,通过二代转录组测序,我们从小地老虎的触角中鉴定了一系列嗅觉识别相关基因,在小地老虎雌蛾性腺中鉴定了数种参与小地老虎性信息素合成、运输和降解的基因。我们对小地老虎触角中的三类嗅觉蛋白进行了系统的功能研究,包括性信息素结合蛋白PBPs、性信息素受体PRs和感觉神经元膜蛋白SNMPs,最终在转录水平、蛋白水平和细胞水平证明小地老虎PBPs、PRs和SNMPs在小地老虎识别性信息素分子中的重要作用。主要研究结果如下:
     1.小地老虎触角嗅觉感器类型和超微结构
     扫描电镜和透射电镜结果显示:小地老虎的雌雄触角形态呈典型的性二态型:雄蛾触角呈双栉形,雌蛾触角呈丝状。雌雄触角平均长度为12mm。在小地老虎雌雄蛾触角上至少分布着6种不同类型的嗅觉感器,分别为:毛形感器、刺形感器、锥形感器、腔锥形感器、鳞形感器和B hm氏鬃毛。毛形感器的数量最多,并且每个感器有2-3个树突神经元;锥形感器细胞壁比较薄并且每个感器有12-25个树突神经元;腔锥形感器细胞壁有4-7个树突神经元;刺形感器没有神经元,细胞壁比较厚。
     2.小地老虎触角转录组测序及嗅觉基因鉴定
     采用Roche公司的454GS FLX测序平台,我们对小地老虎雌雄触角进行了转录组测序,通过生物信息学分析我们从小地老虎触角转录组中鉴别了一系列嗅觉识别相关基因,并用半定量RT-PCR和荧光定量qRT-PCR技术研究了这些嗅觉基因的组织表达图谱,主要结果如下:
     (1)气味结合蛋白OBP基因33个。其中30个OBP基因具有完整的开放阅读框,长度为402-759bp不等。半定量RT-PCR和荧光定量qRT-PCR结果显示其中包括三个PBP在内的22个OBP基因(PBP1, PBP2, PBP3, GOBP1, GOBP2, OBP1, OBP2, OBP4, OBP5, OBP9, OBP11, OBP12,OBP13, OBP15, OBP16, OBP17, OBP19, OBP20, OBP21, OBP22, OBP24和OBP26)特异性或主要在雌雄触角中表达。表明在触角中特异性表达或高表达的OBP基因在小地老虎识别性信息素、定位寄主植物和寻找合适产卵位点过程中起重要作用。OBP6基因不在雌雄触角中表达,反而在性腺pheromone gland (PG)中特异性表达,与典型的触角表达的OBP基因不同,这个性腺高表达的OBP基因在识别性信息素和普通气味过程中可能起着完全不同的作用。
     (2)化学感受蛋白CSP基因12个。半定量RT-PCR和荧光定量qRT-PCR结果显示3个CSP基因(CSP8, CSP9和CSP10)在雌雄触角中表达量最高,说明这三个触角高表达的CSP基因在小地老虎嗅觉识别过程中发挥关键作用。值得注意的是,一个CSP基因(CSP2)不在雌雄触角中表达,反而在性腺PG中特异性表达,暗示性腺中表达的CSP同样能够参与性信息素的结合与运输,并且昆虫能够利用性腺特异性或高表达的CSP蛋白检测并监测雌蛾自己释放的性信息素。
     (3)气味受体OR基因42个,其中包括1个非典型嗅觉受体Orco,41个典型的嗅觉受体ORs。半定量RT-PCR和荧光定量qRT-PCR结果显示35个ORs基因特异性或主要在雌雄蛾触角中表达,其中4个ORs基因(OR1, OR3, OR4和OR14)特异性地在雄蛾触角中表达,表明这4个ORs极有可能为识别性信息素的受体PRs,在小地老虎识别性信息素过程中起关键作用。4个ORs基因(OR6, OR7, OR8和OR23)主要在雌蛾触角中表达,表明这几个基因在小地老虎雌蛾定位寄主植物和寻找产卵位点过程中发挥重要作用。
     (4)离子型受体IR基因24个,其中包括两个保守的Coreceptors IR8a和IR25a.半定量RT-PCR和荧光定量qRT-PCR结果显示14个IR基因(IR8a, IR25a, IR21a, IR41a, IR75q.1, IR75q.2, IR76b,IR87a, IR1, IR3, IR4, IR8, IR12和IR13)主要在触角中表达,其中IR12基因特异性地在雄蛾触角中表达,表明IR12可能为识别性信息素受体。
     3.小地老虎性信息结合蛋白的免疫定位及与性信息素的识别反应
     通过同源克隆结合RACE PCR技术克隆了小地老虎性信息素结合蛋白PBP1-3基因。并对其功能进行了系统的研究,主要结果如下:
     (1)三个小地老虎PBP1-3蛋白之间的序列相似性为40%。与法国小地老虎种群PBP1和PBP2序列相比,中国种群PBP1在其N端多了8个氨基酸序列,分别为MAPHPSVT.中国种群PBP2蛋白在其N端多了23个氨基酸序列,分别为MAASRWCIACLVCVLFAARSVMT.与此同时,法国种群和中国种群PBP1和PBP2蛋白在其他部位部分氨基酸也发生了变异,可能代表PBP1和PBP2蛋白在法国和中国种群小地老虎中的序列多态性。
     (2)采用荧光定量qRT-PCR对三个小地老虎PBP基因在不同组织中的表达谱进行了分析,结果显示小地老虎AipsPBP1-3基因在触角中的表达量明显高于在其他组织中的表达量。同时AipsPBP1-3在味觉器官喙和下唇须中也有少量的表达。AipsPBP1-3在其他部位如头,胸,腹,足和翅中的表达量非常低。AipsPBP1-3在雄蛾触角中的表达量明显高于在雌蛾触角中的表达量,分别为雌蛾触角中表达量的2.2±0.3倍,4.5±0.4倍和2.6±0.3倍(p<0.01)。
     (3)利用制备的AipsPBP1-3多克隆抗体,采用免疫组织化学技术系统研究了小地老虎AipsPBP1-3蛋白在不同触角感器中的表达分布情况,结果显示,在雄蛾触角中,胶体金颗粒主要标记在对性信息素敏感的毛形感受器的淋巴液中,有时也标记在对普通气味敏感的锥形感受器的淋巴液中。值得注意的是,有些毛形感器淋巴液并没有被胶体金颗粒标记上。在雌蛾触角中,仅有少数的毛形感器和锥形感器被标记上,说明AipsPBP1-3蛋白在雌蛾触角中的表达量极低。其余感器如刺形感器、腔锥形感器、鳞形感器和B hm氏鬃毛没有被标记上,说明AipsPBP1-3蛋白不在这些感受器中表达。
     (4)荧光竞争结合实验结果表明小地老虎PBP1-3与荧光探针1-NPN的结合常数分别为:4.4±0.3μM,3.2±0.2μM和2.1±0.2μM. AipsPBP1蛋白同小地老虎的两种主要性信息素组分Z7-12:Ac和Z9-14:Ac有着很强的结合能力,IC50值分别为0.46±0.03μM和0.84±0.08μM. AipsPBP1同其余三种信息素Z11-16:Ac, Z5-10:Ac和Z8-12:Ac的结合能力较弱。AipsPBP2蛋白也同两种主要性信息素成分Z7-12:Ac和Z9-14:Ac有着很强的结合能力,IC50值分别为0.56±0.06μM和0.45±0.03μM,与此同时AipsPBP2同微量组分Z11-16:Ac也有着很强的结合能力,IC50值为0.79±0.05μM.值得注意的是, AipsPBP3只特异性的和微量组分Z11-16:Ac有很强的结合能力,IC50值为0.62±0.04μM。
     (5)双相结合实验(two phase binding assays)得到的结果和荧光竞争结合实验的结果基本吻合。AipsPBP1蛋白结合主要性信息素成分Z7-12:Ac和Z9-14:Ac能力要明显高于其余三种微量组分Z11-16:Ac, Z5-10:Ac和Z8-12:Ac.每微克AipsPBP1能够结合Z7-12:Ac和Z9-14:Ac的量分别为2.2±0.5ng和2.0±0.5ng. AipsPBP2能够同时很好的结合两种主要性信息素组分Z7-12:Ac, Z9-14:Ac,同时也能够很好的结合微量性信息素组分Z11-16:Ac,每微克AipsPBP2蛋白能够结合这三种性信息素的量分别为1.9±0.4ng,2.1±0.5ng和2.0±0.4ng. AipsPBP3结合性信息素组分Z11-16:Ac的能力明显高于其余四种性信息素,每微克AipsPBP3能够结合Z11-16:Ac1.9±0.4ng.3个PBP蛋白中没有任何一个PBP蛋白特异性结合单一性信息素成分。
     4.小地老虎性信息素受体的分子克隆及功能分析
     通过同源克隆结合RACE PCR技术克隆了小地老虎非典型嗅觉受体Orco和性信息素受体PR基因3个,并利用非洲爪蟾卵母细胞表达系统结合双电极电压钳技术对其在识别性信息素过程中作用深入的研究。主要研究结论如下:
     (1)荧光定量qRT-PCR结果显示非典型嗅觉受体AipsOrco和三个性信息素受体AipsOR1, AipsOR3和AipsOR4主要在触角中表达。AipsOrco在雌雄触角中的表达量相当(p>0.01)。AipsOrco同时在味觉器官喙和下唇须中也有少量的表达,在足和翅中也有微量的表达,在头、胸、腹中不表达。三个性信息素受体AipsOR1, AipsOR3和AipsOR4主要在雄蛾触角中表达,其在雄触角中的表达量是在雌触角中表达量的20倍以上(p<0.01)。三个性信息素受体同时在味觉器官喙和下唇须中也有少量表达。
     (2)表达小地老虎性信息素受体的爪蟾卵母细胞对小地老虎5种性信息素呈现不同的反应图谱,性信息素受体OR3特异性识别小地老虎主要的性信息素组分Z7-12:Ac,在Z7-12:Ac浓度为10-4Mol/L的刺激下,表达OR3的卵母细胞的电流平均值能达到5100nA,性信息素受体OR1特异性识别小地老虎主要的第二主要性信息素组分Z9-14:Ac,在Z9-14:Ac浓度为10-4Mol/L的刺激下,表达OR1的卵母细胞的电流平均值为1335nA。性信息素受体OR4特异性识别小地老虎次要性信息素组分Z5-10:Ac,在Z59-10:Ac浓度为10-4Mol/L的刺激下,表达OR4的卵母细胞的电流平均值为362nA.
     5.小地老虎感觉神经元膜蛋白的表达和免疫定位分析
     通过同源克隆结合RACE PCR技术克隆了小地老虎感觉神经元膜蛋白基因SNMP1和SNMP2,利用荧光定量qRT-PCR研究了小地老虎SNMP在成虫不同组织部位、不同发育阶段的触角以及交配前后在触角中的表达情况;利用免疫组织化学方法系统研究小地老虎SNMP在不同类型触角感受器中的表达情况。同时讨论了AipsSNMPs蛋白在昆虫嗅觉识别中的功能,主要研究结论如下:
     (1)荧光定量qRT-PCR结果显示AipsSNMP1和AipsSNMP2基因在雌雄蛾触角中的表达量要显著高于其在其他组织中的表达量,是在腹部表达量的100倍以上(p<0.05)。另外,AipsSNMP1和AipsSNMP2在雄蛾触角中的表达量分别是在雌蛾触角中表达量的1.5倍和2.3倍(p<0.05)。AipsSNMP1和AipsSNMP2在喙、下唇须、头、足和翅中的表达量显著低于在触角中的表达量,但是却显著高于在胸、腹部、雄性附腺和雌雄性腺中的表达量。AipsSNMP1和AipsSNMP2在雌雄蛾触角的不同发育阶段呈现相似的表达模式:在羽化之前3天的雌雄蛹中开始表达;然后从羽化前一天表达量开始急剧上升,在羽化当天表达量为羽化前一天表达量的2倍;在羽化后1到4天在雌雄蛾触角中一直保持如此高的的表达水平;在羽化4天之后,AipsSNMP1和AipsSNMP2在雌雄触角中的表达量开始下降,羽化后5到7天的表达水平降至与羽化1天后相当的表达水平。AipsSNMP1和AipsSNMP2基因在4day-old交配前后雌雄蛾触角中的表达水平无显著的变化(p>0.05)。
     (2)免疫组织化学结果显示AipsSNMP1和AipsSNMP2都在对性信息素敏感的毛形感受器中表达,但是表达模式却完全不同,AipsSNMP1在毛形感器嗅觉神经元ORNs膜上表达,而AipsSNMP2蛋白却在毛形感器中的淋巴液中表达。同时发现AipsSNMP1也在腔锥形感器神经元ORNs上表达。另外,AipsSNMP2也在锥形感器和腔锥形感器的淋巴液中表达。AipsSNMP1和AipsSNMP2在雄蛾触角标记的感器数量要显著高于在雌蛾触角中标记的感器数量。
     6.小地老虎性腺转录组分析及性信息素合成、运输和降解基因的鉴定
     利用二代测序技术,对小地老虎的性腺转录组进行了测序,利用生物信息学方法从中筛选鉴定了一系列参与小地老虎性信息素合成、运输、识别和降解的基因,并利用半定量RT-PCR和荧光定量qRT-PCR技术研究了这些基因在性腺和body中的表达情况。主要研究结果如下:
     (1)信息素合成激活神经肽(pheromone biosynthesis activating neuropeptide, PBAN)受体基因。小地老虎性腺转录本Unigene_3821编码一个PBAN受体B亚型蛋白。但是其在性腺中的表达量非常的低,RPKM值只有31。
     (2)乙酰辅酶A羧化酶。在小地老虎性腺转录组中我们鉴定了2个转录本(Unigene_2338和Unigene_6244)编码不同的乙酰辅酶A羧化酶基因。半定量RT-PCR和荧光定量qRT-PCR结果显示Unigene_2338和Unigene_6244在性腺中的表达量要明显高于其在body中的表达量。但是RPKM值分析显示这两个基因在小地老虎性腺中表达量很低,RPKM值分别为81和21.
     (3)脂肪酸合成酶基因。从小地老虎性腺中鉴定了1个FAS基因(Unigene_18120)。开放阅读框ORF为7176bp.半定量RT-PCR和荧光定量qRT-PCR结果显示Unigene_18120主要在性腺中表达,其在性腺中的表达量为在body中表达量的40倍左右。RPKM值分析发现Unigene_18120在小地老虎性腺中的表达量也很高,RPKM值为343.
     (4)去饱和酶基因。在小地老虎性腺转录组中我们鉴定了5个转录本编码去饱和酶基因。Unigene_65编码去饱和酶acyl-CoA9-desaturase,Unigene_741编码去饱和酶acyl-CoA11desaturase,这两个编码去饱和酶的转录本极有可能参与小地老虎性信息素合成过程。半定量RT-PCR和荧光定量qRT-PCR结果显示Unigene_741和Unigene_780在性腺中的表达量要显著高于在body中的表达量,分别是body中表达量的85和63倍。RPKM分析显示Unigene_780在性腺转录组中的表达量也很高, RPKM值为1206,推测Unigene_780在小地老虎性信息素生物合成中起关键作用。其余三个Unigene_65、Unigene_10494和Unigene_15401在性腺和body中的表达量相当。
     (5)脂肪酰辅酶A还原酶基因。在小地老虎性腺转录组中我们一共鉴定了13个编码脂肪酰辅酶A还原酶的转录本。半定量RT-PCR和荧光定量qRT-PCR结果显示三个转录本(Unigene_163, Unigene_4302和Unigene_7344)主要在性腺中表达。其余10个转录本在性腺和body中的表达量相差不大或在主要在body中表达。RPKM分析显示两个转录本(Unigene_163和Unigene_2537)在性腺转录中的表达量相对较高,其余11个转录本在性腺转录组中的表达量很低,RPKM值在16到81之间。
     (6)醛还原酶基因。在小地老虎性腺转录组中我们鉴定了11个转录本编码醛-酮还原酶aldo-ketoreductase。半定量RT-PCR和荧光定量qRT-PCR结果显示Unigene_3134和Unigene_4806主要在性腺中表达,其余9个编码醛还原酶的转录本在性腺和body中的表达量相差不大或主要在body中表达。RPKM分析显示鉴定的11个醛还原酶基因在小地老虎性腺转录组中的表达量非常低,RPKM值在10到67之间。
     (7)乙酰基转移酶基因。在小地老虎性腺转录组中我们一共鉴定了5个编码乙酰基转移酶的转录本,半定量RT-PCR和荧光定量qRT-PCR结果显示三个转录本Unigene_407,Unigene_2015和Unigene_173在性腺中的表达量要显著高于在body中的表达量,RPKM分析显示这三个转录本在小地老虎性腺转录组中的相对表达量也比较高,RPKM值分别为195,155和71.
     (8)性信息素降解酶基因。在小地老虎性腺转录组我们一共鉴定了17个酯酶基因。荧光定量qRT-PCR结果显示AipsCXE3, AipsCXE7, AipsCXE8, AipsCXE9, AipsCXE11, AipsCXE14和AipsCXE207个酯酶基因在触角中表达量非常高,三个酯酶基因AipsCXE5, AipsCXE10和AipsCXE15同时在触角和性腺中高量表达,剩余的7个酯酶基因AipsCXE1, AipsCXE2,AipsCXE4, AipsCXE6, AipsCXE12, AipsCXE13和AipsCXE16在触角、body、性腺中的表达量差异不显著,说明这7个酯酶基因不是性信息素特异的。
     (9)气味结合蛋白OBP和化学感受蛋白CSP基因。我们从小地老虎性腺转录组中鉴定了7个OBP基因和8个CSP基因。荧光定量qRT-PCR结果显示在7个OBP基因中,Unigene_15711编码的OBP基因主要在性腺中表达。三个OBP基因Unigene_520, Unigene_2120和Unigene_8860主要在触角中表达。在8个CSP基因中,Unigene_1704编码的CSP基因特异性地在性腺中表达,其表达量是触角和body中表达量的100倍以上。RPKM分析显示Unigene_1704在小地老虎性腺转录组中的表达量也非常高。另外一个编码CSP基因的Unigene_721也主要在性腺中表达,RPKM分析显示Unigene_721在小地老虎性腺转录组中的表达量非常高,RPKM值为1364.上述在性腺中特异性表达或者高表达的OBP和CSP基因可能参与性信息素的运输与释放过程。
Feeding, courtship and mating are fundamental for insects, and most insects rely on their sensitiveantennae that express specific olfactory proteins to detect survival-and reproductive-related chemicalcues from the environment. Pheromones and plant volatiles diffuse into the sensilla via the multiporesthat penetrate the cuticular surface. When pheromones and plant volatiles enter the sensillum lymph, theantennae-enriched binding proteins (odorant binding proteins (OBPs) and chemosensory proteins(CSPs)) capture these semiochemicals and transport them across the aqueous lumen to themembrane-bound chemosensory receptors (odorant receptors (ORs) and ionotropic receptors (IRs)).Subsequently, the odorant molecules are rapidly degraded by odorant-degrading enzymes (ODEs). Thehigh specificity and sensitivity of insect to sex pheromones make them as effective biological controlagents for population monitoring and mass trapping of noxious insects in integrated pest management(IPM) programs. Elucidating the mechanism of insect olfactory perception can further facilitate thedesign and implementation of novel intervention strategies against these pests. The black cutworm mothAgrotis ipsilon (Hufnagel)(Lepidoptera: Noctuidae) is a destructive pest affecting many cropsworldwide and the male A. ipsilon moth is high attracted by the sex pheromones released by the femalemoth. However, the molecular and cellular mechanisms of how sex pheromones are perceived by maleA. ipsilon moths are still rudimentary. The identification and functional characterization of antennalolfactory proteins in A. ipsilon will enhance our knowledge of the molecular and cellular basis of insectchemoreception. More importantly, can provide us new methods to control this pest through interringtheir olfaction perception. In this study, several kinds of olfactory genes putatively involved in theolfactory reception in A. ipsilon antennae, and several kinds of genes putatively involved in pheromoneproduction, transport and degradation in the A. ipsilon female moth pheromone gland were identifiedthrough next-generation transcriptome sequencing. We have taken systematic functional studies of threekind of key olfactory proteins in the A. ipsilon antennae, including pheromone binding proteins (PBPs),pheromone receptors (PRs) and sensory neuron membrane proteins (SNMPs), we have provideddetailed evidences of PBPs, PRs and SNMPs in A. ipsilon sex pheromone reception at transcriptionallevel, proteins level and cellular level. The main results are as follows:
     1. Types and ultrastructures of olfactory sensilla in A. ipsilon antennae
     The scanning and transmission electron microscopic examinations revealed that the grossmorphology between male and female A. ipsilon moth antennae was sexually dimorphic: bipectinate inmale antennae, threadlike in female antennae. The mean length of antennae was about12mm andsimilar between male and female moths. There were at least six types of olfactory sensilla in eachantenna: trichodea sensilla (str), chaetica sensilla (sch), basiconica sensilla (sba), coeloconica sensilla(sco), squamiformia sensilla (ssq) and B hm bristles (bbr). Trichoid sensilla (str) were most numerous on the antennae with2–3dendritic profiles in each sensillum. Basiconica sensilla (sba) have a thincuticular wall and12–25dendritic profiles. The coeloconica sensilla (sco) have4–7neurons in eachsensillum. The chaetica sensilla (sch) had no neurons but a thick cuticular wall.
     2. Global transcriptional analysis and chemosensory genes in A. ipsilonantennae
     Using Roche454GS-FLX sequencing platform and particular bioinformatics analysis, we haveidentified several olfactory gene families in A. ipsilon antennal transcriptome, the differential expressionprofiles of these olfactory genes are evaluated by RT-PCR and qRT-PCR. The main results aresummarized as follows:
     (1) A total of33OBP genes were annotated from the A. ipsilon antennal transcriptome. Among them30have intact ORF with the length from402bp to759bp. The RT-PCR results indicated that22OBPgenes (PBP1, PBP2, PBP3, GOBP1, GOBP2, OBP1, OBP2, OBP4, OBP5, OBP9, OBP11, OBP12,OBP13, OBP15, OBP16, OBP17, OBP19, OBP20, OBP21, OBP22, OBP24and OBP26) areuniquely or mostly expressed in the male and female antennae, this suggested antennae-specific or-enriched expressed OBPs play important roles in sex pheromone detection, suitable host plantsearching and oviposition site location. Interestingly, one OBP (OBP6) was mostly expressed in thepheromone gland (PG), unlike the common antennae-enriched OBPs, this PG-expressed OBP mayplay completely different role in the odorant and pheromone detection and transportation.
     (2)12novel CSP genes were identified in the A. ipsilon antennae. The RT-PCR and qRT-PCR resultsindicated that3CSP genes (CSP8, CSP9and CSP10) are highly expressed in the male and femaleantennae, suggesting these three antennae-enriched CSPs may play essential role in the chemicalcommunication process in A. ipsilon. Interestingly, one CSP gene (CSP2) was not expressed in theantennae but specially expressed in the female pheromone gland (PG), suggesting a possibleinvolvement of these proteins in carrying and releasing sex pheromones as demonstrated for theantennal OBPs and CSPs. The insect may use these female PG-enriched CSPs to auto-detect andmonitor the sex pheromones released by themselves.
     (3)42OR genes (41typical ORs and the atypical coreceptor) from the A. ipsilon antennaltranscriptome were identified. The RT-PCR and qRT-PCR results indicated that35ORs exclusivelyor mainly expressed in the antennae, among them4ORs (OR1, OR3, OR4and OR14) are maleantennae-specific expression, suggesting they may play essential role in the detection of sexpheromones as pheromone receptors.4ORs (OR6, OR7, OR8and OR23) are femaleantennae-enriched expression, suggesting they may play important roles in the detection of generalodorants such as host plant volatiles.
     (4)24IRs including two highly conserved coreceptors IR8a and IR25a were identified from the A.ipsilon antennal transcriptome. RT-PCR and qRT-PCR results indicated that14A. ipsilon IRs (IR8a, IR25a, IR21a, IR41a, IR75q.1, IR75q.2, IR76b, IR87a, IR1, IR3, IR4, IR8, IR12and IR13) arehighly expressed in the antennae, particularly, IR12was specially expressed in the male antennae,suggesting it may be a novel pheromone receptor gene and devoted to response to the female sexpheromone.
     3. Sex pheromone recognition and immunolocalization of threepheromone binding proteins in A. ipsilon
     The full-length of three pheromone binding protein (PBP) genes were obtained using homologouscloning combined with RACE PCR strategy. We have undertaken systematic studies of the A. ipsilonPBP proteins, the main results are summarized as follows:
     (1) The amino acid identity among AipsPBP1–3was about40%. The AipsPBP1and AipsPBP2full-length sequences described here added the missing N-terminal sequences of those reportedpreviously with additional8(MAPHPSVT) and23amino acids(MAASRWCIACLVCVLFAARSVMT), respectively. There are also several amino acid differencescompared to previously reported sequences, which likely represent sequence diversity between theChinese and French strains of A. ipsilon moth.
     (2) The expression patterns of AipsPBP1–3transcripts measured by qRT-PCR indicated thatAipsPBP1–3transcripts were highly expressed in antennae than in other tissues but not specific toantennae, low expressions were also detected in the taste organs proboscis and labial palp.AipsPBP1–3expression levels were very low in the heads, thoraxes, abdomens, legs and wings.Furthermore, the transcripts of AipsPBP1–3were about2.2±0.3,4.5±0.4and2.6±0.3times higherin the male antennae than in the female antennae (p<0.01), respectively.
     (3) Polyclonal antisera made from each purified AipsPBPs were used for the cellular localization ofAipsPBPs in A. ipsilon antennal sensilla. Our immunocytochemistry results indicated that in maleantennae the trichoid sensilla were strongly labeled by all three anti-PBP antisera, sometimes thegeneral odorant-sensitive basiconic sensilla were also slightly labeled. It was interesting to note thatsome trichoid sensilla were not labeled by any of three anti-PBP antisera. In the female antennae,only a few trichoid and basiconic sensilla were strongly labeled. Other sensilla such as chaetica,coeloconica, squamiformia and B hm bristles were not labeled in both sexes.
     (4) Fluorescence competitive binding assay results indicated that the dissociation constants of theAipsPBPs/1-NPN complex were4.4±0.3μM,3.2±0.2μM and2.1±0.2μM for AipsPBP1,AipsPBP2and AipsPBP3, respectively. AipsPBP1had high binding affinities with the two majorsex pheromone components Z7-12:Ac and Z9-14:Ac with the IC50values of0.46±0.03μM and0.84±0.08μM, respectively, but showed a weak binding abilities to the remaining sex pheromoneconponents Z11-16:Ac, Z5-10:Ac and Z8-12:Ac. AipsPBP2had high binding affinities withZ7-12:Ac, Z9-14:Ac as well as Z11-16:Ac with the IC50values of0.56±0.06μM,0.45±0.03μM and0.79±0.05μM, respectively. Interestingly, AipsPBP3only had a high binding affinity toZ11-16:Ac with the IC50values of0.62±0.04μM.
     (5) The results obtained by the two phase binding assays were similar to those of the fluorescencecompetitive binding assay. AipsPBP1bound significantly more with Z7-12:Ac and Z9-14:Ac thanother pheromone components. The amount of Z7-12:Ac and Z9-14:Ac bound with each μgAipsPBP1were2.2±0.5ng and2.0±0.5ng, respectively. AipsPBP2bound equally well withZ7-12:Ac, Z9-14:Ac and Z11-16:Ac, with the amount as1.9±0.4ng,2.1±0.5ng and2.0±0.4ng perμg protein, respectively. AipsPBP3bound significantly more Z11-16:Ac with the amount as1.9±0.4ng per μg AipsPBP3protein than any other pheromone components. However, none of AipsPBPswere specific to any one of the pheromone components.
     4. Molecular cloning and functional characterization of pheromonereceptors in A. ipsilon
     The full-length of atypical olfactory coreceptor Orco and three pheromone receptor PR genes wereobtained using homologous cloning combined with RACE PCR strategy. The differential responses ofpheromone receptors AipsOR1, AipsOR3and AipsOR4to A. ipsilon sex pheromone molecules arecharacterized using heterologous expression system in Xenopus oocytes in vitro and two-electrode,voltage-clamp physiological recordings. The main results are summarized as follows:
     (1) The qRT-PCR results indicated that the atypical olfactory coreceptor AipsOrco and three pheromonereceptor gene AipsOR1, AipsOR3and AipsOR4were mainly expressed in the antennae. AipsOrcoshowed similar expression level between male and female antennae (p>0.01) and also showed lowexpression levels in the taste organs proboscis and Labial palp, and also can be detected in thewings and legs. The pheromone receptor gene AipsOR1, AipsOR3and AipsOR4mainly expressedin male antennae, with more than20times higher expressed in the male antennae than in the femaleantennae(p<0.01). The three pheromone receptor genes also showed low expression levels in thetaste organs proboscis and labial palp.
     (2) The Xenopus oocytes which expressed different pheromone receptors showed completely differentresponse profiles to A. ipsilon five sex pheromone components. The AipsOR3/Orco specificallytuned to the major pheromone component Z7-12:Ac, the mean inward current responses of Xenopusoocytes with co-expresed AipsOR3/Orco in response to10-4Mol/L was5100nA. The Xenopusoocytes expressing AipsOR3/Orco responsed robustly to the second main sex pheromone comnentZ9-14:Ac, with a mean amplitude as1335nA when response to Z9-14:Ac at the concentration of10-4Mol/L. The Xenopus oocytes expressing AipsOR4/Orco specifically responsed the minor sexpheromone comnent Z5-10:Ac, with a mean amplitude as362nA when response to Z5-10:Ac at theconcentration of10-4Mol/L.
     5. Differential expression and immunolocalization of sensory neuronmembrane proteins in the antennae of A. ipsilon moth
     Two full-length SNMP transcripts in the A. ipsilon, AipsSNMP1and AipsSNMP2, were obtainedusing homologous cloning combined with RACE PCR strategy. We performed extensive expressionprofiling of AipsSNMP1and AipsSNMP2transcripts among different tissues of both sexes, in theantennae at different developmental stages and in the antennae of both sexes before and after mating byquantitative real-time PCR at the transcript level. The specific subcellular distribution of AipsSNMP1and AipsSNMP2proteins in the various olfactory sensilla was also investigated usingimmunocytochemistry techniques. The possible functions of the SNMPs in moth odorant detection arediscussed. The main results are summarized as follows:
     (1) The qRT-PCR results revealed that both AipsSNMP1and AipsSNMP2genes were expressedsignificantly highly in the male and female antennae than in other tissues (more than100-foldhigher than in the abdomen, p<0.05) with insignificant differences between sexes and between twotranscripts in each tissue type. The relative expression levels of AipsSNMP1and AipsSNMP2transcripts in the male antennae were approximately1.5-fold and2.3-fold higher than in the femaleantennae, respectively (p<0.05). The expression levels in the proboscis, and labial palp, head, legsand wings were lower than in the antennae but higher than in the thorax, abdomen and accessoryglands, where no transcripts could be detected. Both AipsSNMP1and AipsSNMP2genes began inthe pupae stage about3days before adult emergence, increased dramatically from one day beforethe emergence, doubled at the day of the emergence and maintained at the high level for4daysduring adult life. On the4th day after the emergence, the expression levels began to decrease to alow level similar to that of one day before the emergence and remained at this low level from day5to day7after the emergence. There were no significant differences in the AipsSNMP1andAipsSNMP2transcript expression levels before and after mating in the4-day-old male or femaleantennae (p>0.05).
     (2) The immunocytochemistry results at protein level demonstrated that both AipsSNMP1andAipsSNMP2were expressed in pheromone-sensitive sensilla trichodea but with a completelydifferent expression profile. AipsSNMP1is more uniformed and highly expressed along themembrane of the ORN dendrites, whereas AipsSNMP2is widely distributed at the bottom of thesensilla trichodea and highly localized in the sensillum lymph. Furthermore, the AipsSNMP2protein was also expressed in the general odorant-sensitive sensilla basiconica and sensillacoeloconica. The visual observations showed that a higher number of each type of olfactory sensillawas labeled with the SNMP antisera in male antennae compared with female antennae.
     6. Transcriptome analysis of A. ipsilon pheromone gland revealedcandidate genes with putative functions in pheromone production,transport and degradation
     Here we report next-generation sequencing of the A. ipsilon pheromone gland transcriptome,identification and expression profiling of genes putatively involved in pheromone production, transportand degradation. The main results are summarized as follows:
     (1) Pheromone biosynthesis activating neuropeptide (PBAN) receptor gene. One transcriptUnigene_3821encoding protein highly homologous to PBAN receptor isoform B was identified. Ithad very low abundance in the A. ipsilon transcriptome with the RPKM value as31.
     (2) Acetyl-CoA carboxylase (ACC). Two transcripts (Unigene_2338and Unigene_6244) encodingACCs were identified. The RT-PCR and qRT-PCR revealed that both Unigene_2338andUnigene_6244are highly expressed in the pheromone gland as compared to the body. However,they have very low abundance (81and21RPKM) in the transcriptome.
     (3) Fatty acid synthase (FAS). We have identified one putative FAS transcript (Unigene_18120) in the A.ipsilon pheromone gland, containing an ORF of7176bp. The RT-PCR and qRT-PCR revealed thatUnigene_18120is highly expressed in the pheromone gland (40-fold higher than in bodies) and alsohas a high abundance (343RPKM) in the PG transcriptome.
     (4) Desaturases (DES). In the A. ipsilon pheromone gland transctiptome5transcripts have highhomology to genes encoding desaturases. Unigene_65is encoding an acyl-CoA9-desaturase andUnigene_741encodes an acyl-CoA11desaturase, these two genes possibly involves in the A.ipsilon sex pheromone biosynthesis. RT-PCR and qRT-PCR results indicated that Unigene_741andUnigene_780are highly expressed in the A. ipsilon pheromone gland compared with the body (85and63fold higher, respectively). One of the transcripts (Unigene_780) is also highly abundant(1206RPKM) in the pheromone gland transcriptome, suggesting a possible role in A. ipsilon sexpheromone biosynthesis. The remaining three transcripts Unigene_65, Unigene_10494andUnigene_15401showed similar expressed intensity between the PG and the body part.
     (5) Fatty acyl-CoA reductase (FAR). In the A. ipsilon pheromone gland transcriptome there are13transcripts homologous to putative FAR genes. RT-PCR and qRT-PCR results indicated that threetranscripts (Unigene_163, Unigene_4302and Unigene_7344) are highly expressed in thepheromone gland. The other ten transcripts seem equally expressed in the pheromone gland and thebody or highly expressed in the body. All FAR transcripts except two (Unigene_163andUnigene_2537) have low abundance (from81and16RPKM) in the pheromone glandtranscriptome.
     (6) Aldehyde reductase (AR). In the A. ipsilon pheromone gland we identified11transcripts encodingaldo-ketoreductase. The RT-PCR and qRT-PCR results indicated that Unigene_3134andUnigene_4806are mainly expressed in the pheromone gland, while the other9putative aldehyde reductase transcripts have equal expression levels between the pheromone gland and the body or ahigher expression level in the body. All aldehyde reductase transcripts are present at low abundance(from67to10RPKM) in the pheromone gland transcriptome.
     (7) Acetyltransferase (ATF). In the A. ipsilon pheromone gland transcriptome5acetyltransferasehomologous transcripts were identified. RT-PCR and qRT-PCR revealed that three transcripts(Unigene_407, Unigene_2015and Unigene_173) are mainly expressed in the pheromone gland andhave a relative high abundance of195,155and71RPKM, respectively in the pheromone glandtranscriptome.
     (8) Pheromone degrading enzymes (PDEs). We have identified17transcripts predicted to encodeesterases in the A. ipsilon pheromone gland. Our qRT-PCR results revealed that7of the transcripts(AipsCXE3, AipsCXE7, AipsCXE8, AipsCXE9, AipsCXE11, AipsCXE14and AipsCXE20) areantennal-enriched, three (AipsCXE5, AipsCXE10and AipsCXE15) are both antennal-andpheromone gland-enriched and the remaining7(AipsCXE1, AipsCXE2, AipsCXE4, AipsCXE6,AipsCXE12, AipsCXE13and AipsCXE16) have similar expression levels in antennae, body andpheromone gland, suggesting they are not pheromone specific.
     (9) OBPs and CSPs. We have identified transcripts of7OBPs and8CSPs from the A. ipsilonpheromone gland. There is one OBP transcript (Unigene_15711) which is highly expressed in thepheromone gland, and3OBPs (Unigene_520, Unigene_2120and Unigene_8860) are highlyexpressed in the antennae. One CSP transcript Unigene_1704seems to be gland-specific and has anextremely high expression level (>100folds) in the pheromone glands compared with the antennaeand bodies and a relative high abundance in the pheromone gland transcriptome. Another CSPtranscript Unigene_721shows a higher expression level in the pheromone gland (10-fold higherthan in bodies) and is extremely abundant with1364RPKM in the pheromone gland transcriptome.The high expression levels of OBPs and CSPs in the pheromone gland is interesting because itsuggests a possible involvement in carrying and releasing sex pheromones.
引文
1.杜永均,严福顺,唐觉.大豆蚜虫触角感器结构及其功能.昆虫学报,1989,38:1–7.
    2.郭予元主编.棉铃虫的研究.中国农业出版社.1998年.
    3.谷少华.苜蓿盲蝽嗅觉相关基因的发掘及功能分析[硕士学位论文].北京:中国农业科学院.2010年.
    4.胡松年主编.基因表达序列标签(EST)数据分析手册.浙江大学出版社.2005年
    5.金鑫,张善干,张龙.东亚飞蝗四种类型的触角感受器超微结构(昆虫纲:直翅目).农业生物技术学报,2004,12:300–305.
    6.马瑞燕,杜家纬.昆虫的触角感器.昆虫知识.2000,37:179–182.
    7.钦俊德主编,昆虫与植物的关系.科学出版社.1987年.
    8.王桂荣,郭予元,吴孔明.一个棉铃虫触角特异表达基因cDNA片段的克隆.农业生物技术学报.2003,11:49–54.
    9.吴才宏.棉铃虫雌雄蛾触角的毛形感受器对其性外激素组分及类似物的反应.昆虫学报,1993,36:385–389.
    10.向玉勇,杨茂发.小地老虎在我国的发生危害及防治技术研究.安徽农业科学.2008,36:14636–14639.
    11.向玉勇.小地老虎性信息素的提取、鉴定及相关生物学研究[博士学位论文].贵州大学.2007年
    12.张东霞,吴旭洲.2008年山西小地老虎爆发原因分析及防治技术探讨.山西农业科学.2008,36:106–108.
    13.张志春,王满囷,张国安.小菜蛾化学感受蛋白基因PxylCSP1的克隆和表达.昆虫学报,2009,52(2):140–146.
    14. Abraham D, L fstedt C, Picimbon JF. Molecular characterization and evolution of pheromonebinding protein genes in Agrotis moths. Insect Biochemistry and Molecular Biology.2005,35:1100–1111.
    15. Allen JE, Wanner KW. Asian corn borer pheromone binding protein3, a candidate for evolvingspecificity to the12-tetradecenyl acetate sex pheromone. Insect Biochemistry and MolecularBiology.2011,41:141–149.
    16. Almaas TJ. Mustaparta H. Heliothis virescens: Response characteristics of receptor neurons insensilla trichodea Type1and Type2. Journal of Chemical Ecology.1991,17:953–972.
    17. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ. Gapped BLASTand PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research.1997,25:3389–3402.
    18. Anderson I, Brass A. Searching DNA databases for similarities to DNA sequences: when is amatch significant? Bioinformatics.1998,14:349–356.
    19. Ando T, Inomata S, Yamamoto M. Lepidopteran sex pheromones. Topics in Current Chemistry.2004,239:51–96.
    20. Angeli S, Ceron F, Scaloni A, Monti M, Monteforti G, Minnocci A, Petacchi R, Pelosi P.Purification, structural characterization, cloning and immunocytochemical localization ofchemoreception proteins from Schistocerca gregaria. European Journal of Biochemistry.1999,262:745–754.
    21. Anton S, Dufour MC, Gadenne C. Plasticity of olfactory-guided behaviour and its neurobiologicalbasis: lessons from moths and locusts. Entomologia Experimentalis et Applicata.2007,123:1–11.
    22. Arn H, Tóth M, Priessner E. List of sex pheromones of Lepidoptera and related attractants,2ndEdition. International Organization for Biological Control, West Palearctic Regional Section,Wadenswil.1992.
    23. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, DwightSS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, RichardsonJE, Ringwald M, Rubin GM, Sherlock G. Gene ontology: tool for the unification of biology. TheGene Ontology Consortium. Nature Genetics.2000,25:25–29.
    24. Ban LP, Zhang L, Yan YH, Pelosi P. Binding properties of a locust’s chemosensory protein.Biochemical and Biophysical Research Communications.2002,293:50–54.
    25. Ban L, Scaloni A, D'ambrosio C, Zhang L, Yan Y, Pelosi, P. Biochemical characterization andbacterial expression of an odorant-binding protein from Locusta migratoria. Cellular andMolecular Life Science.2003a,60:390–400.
    26. Ban L, Scaloni A, Brandazza A, Angeli S, Zhang L, Yan Y, Pelosi P. Chemosensory proteins ofLocusta migratoria. Insect Molecular Biology.2003b,12:125–134.
    27. Barrozo RB, Gadenne C, Anton S. Switching attraction to inhibition: mating-induced reversed roleof sex pheromone in an insect. The Journal of Experimental Biology.2010a,213:2933–2939.
    28. Barrozo RB, Jarriault D, Simeone X, Gaertner C, Gadenne C, Anton S. Mating-induced transientinhibition of responses to sex pheromone in a male moth is not mediated by octopamine orserotonin. The Journal of Experimental Biology.2010b,213:1100–1106.
    29. Barrozo RB, Jarriault D, Deisig N, Gemeno C, Monsempes C, Lucas P, Gadenne C, Anton S.Mating-induced differential coding of plant odour and sex pheromone in a male moth. EuropeanJournal of Neuroscience.2011,33:1841–1850.
    30. Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP3.0. Journal of Molecular Biology.2004,340:783–795.
    31. Bengtsson JM, Trona F, Montagné N, Anfora G, Ignell R, Witzgall P, Jacquin-Joly E. Putativechemosensory receptors of the codling moth, Cydia pomonella, identified by antennaltranscriptome analysis. PLoS ONE.2012,7(2):e31620.
    32. Benton R. On the origin of smell: odorant receptors in insect. Cellular and Molecular Life Science.2006,63:1579–1585.
    33. Benton R, Sachse S, Michnick SW, Vosshall, LB. Atypical membrane topology and heteromericfunction of Drosophila odorant receptors in vivo. PLoS Biology.2006,4(2):e20.
    34. Benton R, Vannice KS, Vosshall LB. An essential role for a CD36-related receptor in pheromonedetection in Drosophila. Nature.2007,450:289–293.
    35. Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB. Variant ionotropic glutamate receptors aschemosensory receptors in Drosophila. Cell.2009,136:149–162.
    36. Biessmann H, Walter MF, Dimitratos S, Woods D. Isolation of cDNA clones encoding putativeodourant binding proteins from the antennae of the malaria-transmitting mosquito, Anophelesgambiae. Insect Molecular Biology.2002,11:123–132.
    37. Bjostad LB, Roelofs WL. Sex pheromone biosynthesis from radiolabeled fatty acids in theredbanded leafroller moth. The Journal of Biological Chemistry.1981,256:7936–7940.
    38. Bjostad LB, Roelofs WL. Sex pheromone biosynthesis in Trichoplusia ni: key steps involvedelta-11desaturation and chain-shortening. Science.1983,220:1387–1389.
    39. Bjostad LB, Roelofs WL. Biosynthesis of sex pheromone components and glycerolipid precursorsfrom sodium [1-14C] acetate in redbanded leafroller moth. Journal of Chemical Ecology.1984,10:681–691.
    40. Bleeker MAK, Smid HM, van Aelst AC, van Loon JJA, Vet LEM. Antennal sensilla of twoparasitoid wasps: a comparative scanning electron microscopy study. Microscopy Research andTechnique.2004,63:266–273.
    41. Bober R, Rafaeli A. Gene-silencing reveals the functional significance of pheromone biosynthesisactivating neuropeptide receptor (PBAN-R) in a male moth. Proceedings of the National Academyof Sciences of the United States of America.2010,107:16858–16862.
    42. Boeckh J, Kaissling KE, Schneider D. Insect olfactory receptors. Cold Spring Harbor Symposia onQuantitative Biology.1965,30:263–280.
    43. Bohbot J, Pitts RJ, Kwon HW, Rützler M, Robertson HM, Zwiebel LJ. Molecular characterizationof the Aedes aegypti odorant receptor gene family. Insect Molecular Biology.2007,16:525–537.
    44. Bradford MM. A rapid and sensitive for the quantitation of microgram quantitites of proteinutilizing the principle of protein-dye binding. Analytical Biochemistry.1976,72:248–254.
    45. Breer H, Raming K, Krieger J. Signal recognition and transduction in olfactory neurons.Biochimica et Biophysica Acta.1994,1224:277–287.
    46. Breer H. Molecular mechanisms of pheromone reception in insect antennae. In: Carde′, R.T.,Minks, A.K.(Eds.), Insect Pheromone Research New Directions. Chapman and Hall, New York,pp.1997,115–130.
    47. Briand L, Swasdipan N, Nespoulous C, Bezirard V, Blon F, Huet JC, Ebert P, Pernollet JC.Characterization of a chemosensory protein (ASP3c) from honeybee (Apis mellifera L.) as a broodpheromone carrier. European Journal of Biochemistry.2002,269:4586–4596.
    48. Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis forodor recognition. Cell.1991.65:175–187.
    49. Butenandt A, Beckmann R, Stamm D, Hecker E. über den Sexual-Lockstoffdes Seidenspinners Bombyx mori. Reindarstellung und Konstitution. Z. Naturforsch.1959,14,283–284.
    50. Campanacci V, Krieger J, Bette S, Sturgis JN, Lartigue A, Cambillau C, Breer H, Tegoni M.Revisiting the specificity of Mamestra brassicae and Antheraea polyphemus pheromone-bindingproteins with a fluorescence binding assay. The Journal of Biological Chemistry.2001,276:20078–20084.
    51. Calvello M, Guerra N, Brandazza A, D’Ambrosio C, Scaloni A, Dani FR,Turillazzi S, Pelosi P.Soluble proteins of chemical communication in the social wasp Polistes dominulus. Cellular andMolecular Life Science.2003,60:1933–1943.
    52. Calvello M, Brandazza A, Navarrini A, Dani FR, Turillazzi S, Felicioli A, Pelosi P. Expression ofodorant-binding proteins and chemosensory proteins in some Hymenoptera. Insect Biochemistryand Molecular Biology.2005,35:297–307.
    53. Chen YA, Lin CC, Wang CD, Wu HB, Hwang PI. An optimized procedure greatly improves ESTvector contamination removal. BMC Genomics.2007,8:416.
    54. Chess A, Simon L, Cedar H, Axel R. Allelic inactivation regulates olfactory receptor geneexpression. Cell.1994,78:823–834.
    55. Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Muller, WEG, Wetter T, Suhai S. Using themiraEST assembler for reliable and automated mRNA transcript assembly and SNP detection insequenced ESTs. Genome Research.2004,14:1147–1159.
    56. Chou HH, Holmes MH. DNA sequence quality trimming and vector removal. Bioinformatics.2001,17:1093–1104.
    57. Clement SL, Show ED, Way MO. Black cutworm pheromone trapping in strawberries. CaliforniaAgriculture.1982.36:20–21.
    58. Clyne PJ, Warr GG, Freeman MR, Lessing D, Kim J, Carison JR. A novel family of divergentseven transmembrane proteins: Candidate odorant receptors in Drosophila. Neuron.1999,22:327–
    338.
    59. Conesa A, G tz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool forannotation, visualization and analysis in functional genomics research. Bioinformatics.2005,21:3674–3676.
    60. C nsoli FL, Kitajima EW, Parra JRP. Sensilla on the antenna and ovipositor of the parasitic waspsTrichogramma galloi Zucchi and T. pretiosum Riley (Hym., Trichogrammatidae). MicroscopyResearch and Technique.1999,45:313–324.
    61. Corl BA, Baumgard LH, Dwyer DA, Griinari JM, Phillips BS, Bauman DE. The role ofDelta(9)-desaturase in the production of cis-9, trans-11CLA. The Journal of NutritionalBiochemistry.2001,12:622–630.
    62. Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: A sequence logo generator. GenomeResearch.2004,14:1188–1190.
    63. Croset V, Rytz R, Cummins SF, Budd A, Brawand D, Kaessmann, Gibson TJ, Benton R. Ancientprotostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect tasteand olfaction. PLOS Genetics.2010,6: e1001064.
    64. Damberger F, Nikonova L, Horst R, Peng G, Leal WS, Wüthrich K. NMR characterization of a pHdependent equilibrium between two folded solution conformations of the pheromone-bindingprotein from Bombyx mori. Protein Science.2000,9:1038–1041.
    65. Damberger FF, Ishida Y, Leal WS, Wuthrich K. Structural basis of ligand binding and release ininsect pheromone-binding proteins: NMR structure of Antheraea polyphemus PBP1at pH4.5.Journal of Molecular Biology.2007,373:811–819.
    66. Dani FR, Michelucci E, Francese S, Mastrobuoni G, Cappellozza S, La Marca G, Niccolini A,Felicioli A, Moneti G, Pelosi P. Odorant-binding proteins and chemosensory proteins in pheromonedetection and release in the silkmoth Bombyx mori. Chemical Senses.2011,36:335–344.
    67. Danscher G. Localization of gold in biological tissue. A photochemical method for light andelectronmicroscopy. Histochemistry.1981,71:81–88.
    68. de Bruyne M, Baker TC. Odor detection in insects: volatile codes. Journal of Chemical Ecology.2008,34:882–897.
    69. Deng S, Yin J, Zhong T, Cao Y, Li K. Function and immunocytochemical localization of two novelodorant-binding proteins in olfactory sensilla of the scarab beetle Holotrichia oblita Faldermann(Coleoptera: Scarabaeidae). Chemical Senses.2012,37:141–50.
    70. de Sousa Abreu R, Penalva LO, Marcotte EM, Vogel C. Global signatures of protein and mRNAexpression levels. Molecular BioSystems.2009,5:1512–1526.
    71. di Luccio E, Ishida Y, Leal WS, Wilson DK. Crystallographic observation of pH-inducedconformational changes in the Amyelois transitella pheromone-binding protein AtraPBP1. PLoSONE.2013,8: e53840.
    72. Dickens JC, Callahan FE, Wergin, WP, Erbe EF. Olfaction in a hemimetabolous insect:Antennal-specific protein in adult Lygus lineolaris (Heteroptera: Miridae). Journal of InsectPhysiology.1995,41:857–867.
    73. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J. CASTp: computed atlas of surfacetopography of proteins with structural and topographical mapping of functionally annotatedresidues. Nucleic Acids Research.2006,34:W116-W118.
    74. Duportets L, Dufour MC, Couillaud F, Gadenne C. Biosynthetic activity of corpora allata, growthof sex accessory glands and mating of the male moth Agrotis ipsilon (Hufnagel). Journal ofExperimental Biology.1998,201:2425–2432.
    75. Durand N, Carot-Sans G, Chertemps T, Montagné N, Jacquin-Joly E, Debernard S,Ma bèche-Coisne M. A diversity of putative carboxylesterases are expressed in the antennae of thenoctuid moth Spodoptera littoralis. Insect Molecular Biology.2010a,19:87–97.
    76. Durand N, Carot-Sans G, Chertemps T, Bozzolan F, Party V, Renou M, Debernard S, Rosell G,Ma bèche-Coisne M. Characterization of an antennal carboxylesterase from the pest mothSpodoptera littoralis degrading a host plant odorant. PLoS ONE.2010b,5(11):e15026.
    77. Dyanov HM, Dzitoeva SG. Method for attachment of microscopic preparations on glass for in situhybridization, PRINS and in situ PCR studies. Biotechniques.1995,18:822–826.
    78. Engelmann F. Insect vitellogenin: Identification, biosynthesis, and role in vitellogenesis. Advancesin Insect Physiology.1979,14:49–108.
    79. Febbraio M, Silverstein RL. CD36: implications in cardiovascular disease. The InternationalJournal of Biochemistry&Cell Biology.2007,39:2012–2030.
    80. Field LM, Pickett JA, Wadhams LJ. Molecular studies in insect olfaction. Insect MolecularBiology.2000,9:545-551.
    81. Foster SP, Roelofs WL. Sex pheromone biosynthesis in the leafroller moth Planotortix excessanaby Δ10desaturation. Archives of Insect Biochemistry and Physiology.1988,8:1-9.
    82. Foster SP, Roelofs WL. Sex pheromone biosynthesis in the tortricid moth, Ctenopseustis herana(Felder&Rogenhofer). Archives of Insect Biochemistry and Physiology.1996,33:135-147.
    83. Forstner M, Gohl T, Breer H, Krieger J. Candidate pheromone binding proteins of the silkmothBombyx mori. Invertebrate Neuroscience.2006,6:177–187.
    84. Forstner M, Gohl T, Gondesen I, Raming K, Breer H, Krieger J. Differential expression ofSNMP-1and SNMP-2proteins in pheromone-sensitive hairs of moths. Chemical Senses.2008,33:291–299.
    85. Forstner M, Breer H, Krieger J. A receptor and binding protein interplay in the detection of adistinct pheromone component in the silkmoth Antheraea polyphemus. International Journal ofBiological Sciences.2009,5:745–757.
    86. Fox AN, Pitts RJ, Robertson HM, Carlson JR, Zwiebel LJ. Candidate odorant receptors from themalaria vector mosquito Anopheles gambiae and evidence of down-regulation in response to bloodfeeding. Proceedings of the National Academy of Sciences of the United States of America.2001,98:14693-7.
    87. Fox AN, Pitts RJ, Zwiebel LJ. A cluster of candidate odorant receptors from the malaria vectormosquito, Anopheles gambiae. Chemical Senses.2002,27:453-9.
    88. Freitag J, Ludwig G, Andreini I, Roessler P, Breer H. Olfactory receptors in aquatic and terrestrialvertebrates. Journal of Comparative Physiology A.1998,183:635–650.
    89. Gadenne C, Renou M, Sreng L. Hormonal control of sex pheromone responsiveness in the maleblack cutworm Agrotis ipsilon. Experientia.1993,49:721–724.
    90. Gadenne C, Dufour MC, Anton S. Transient post-mating inhibition of behavioural and centralnervous responses to sex pheromone in an insect. Proceedings of the Royal Society B.2001,268:1631–1635.
    91. Gao Q, Chess A. Identification of candidate Drosophila olfactory receptors from genomic DNAsequence. Genomics.1999,60:31–39.
    92. Gemeno C, Haynes KF. Chemical and behavioral evidence for a third pheromone component in aNorth American population of the black cutworm moth, Agrotis ipsilon. Journal of ChemicalEcology.1998,24:999–1011.
    93. Gemeno C, Lutfallah AF, Haynes KF. Pheromone blend variation and cross-attraction amongpopulations of the black cutworm moth (Lepidoptera: Noctuidae). Annals of the EntomologicalSociety of America.2000,93:1322–1328.
    94. Gemeno C, Haynes KF. Periodical and age-related variation in chemical communication system ofblack cutworm moth, Agrotis ipsilon. Journal of Chemical Ecology.2000,26:329–342.
    95. Getahun MN,Wicher D, Hansson B, Olsson SB. Temporal response dynamics of Drosophilaolfactory sensory neurons depends on receptor type and response polarity. Frontiers in CellularNeuroscience.2012,6:54.
    96. Getchell TV, Margolis FL, Getchell ML. Perireceptor and receptor events in vertebrate olfaction.Progress in Neurobiology.1984,23:317-345.
    97. Gether U, Kobilka BK. G protein-coupled receptors II. Mechanism of agonist activation. TheJournal of Biological Chemistry.1998,273:17979–17982.
    98. Glusman G, Yanai I, Rubin I, Lancet D. The complete human olfactory subgenome. GenomeResearch.2001,11:685–702.
    99. Gong DP, Zhang HJ, Zhao P, Lin Y, Xia QY, Xiang ZH. Identification and expression pattern of thechemosensory protein gene family in the silkworm, Bombyx mori. Insect Biochemistry andMolecular Biology.2007,37:266–277.
    100. Gong ZJ, Zhou WW, Yu HZ, Mao CG, Zhang CX, Cheng JA, Zhu ZR. Cloning, expression andfunctional analysis of a general odorant-binding protein2gene of the rice striped stem borer, Chilosuppressalis (Walker)(Lepidoptera: Pyralidae). Insect Molecular Biology.2009,18:405–417.
    101. Gouet P, Courcelle E, Stuart DI, Metoz F. ESPript: analysis of multiple sequence alignments inPostScript. Bioinformatics.1999,15:305–308.
    102. Graham LA, Brewer D, Lajoie G, Davies PL. Characterization of a subfamily of beetleodorant-binding proteins found in hemolymph. Molecular&Cellular Proteomics.2003,2:541–549.
    103. Groβe-Wilde E, Svatos A, Krieger J. A pheromone-binding protein mediates thebombykol-Induced activation of a pheromone receptor In vitro. Chemical Senses.2006,31:547–555.
    104. Groβe-Wilde E, Gohl T, Bouché E, Breer H, Krieger J. Candidate pheromone receptors provide thebasis for the response of distinct antennal neurons to pheromonal compounds. European Journal ofNeuroscience.2007,25:2364–2373.
    105. Grosse-Wilde E, Kuebler LS, Bucks S, Vogel H, Wicher D, Hansson BS. Antennal transcriptomeof Manduca sexta. Proceedings of the National Academy of Sciences of the United States ofAmerica.2011,108:7449–54.
    106. Gruarin P, Thorne RF, Dorahy DJ, Burns GF, Sitia R, Alessio M. CD36is a ditopic glycoproteinwith the N-terminal domain implicated in intracellular transport. Biochemical and BiophysicalResearch Communications.2000,275:446–454.
    107. Gu SH, Sun Y, Ren LY, Zhang XY, Zhang YJ, Wu KM, Guo YY. Cloning, expression andbinding specificity analysis of odorant binding protein3of the Lucerne plant bug, Adelphocorislineolatus (Goeze). Chinese Science Bulletin.2010,55:3911-3921.
    108. Gu SH, Wang WX, Wang GR, Zhang XY, Guo YY, Zhang ZD, Zhou JJ, Zhang YY. Functionalcharacterization and immunolocalization of odorant binding protein1in the lucerne plant bug,Adelphocoris lineolatus (Goeze). Archives of Insect Biochemistry and Physiology.2011a,77:81–98.
    109. Gu SH, Wang SP, Zhang XY, Wu K.M, Guo YY, Zhou JJ, Zhang YJ. Identification and tissuedistribution of odorant binding protein genes in the lucerne plant bug Adelphocoris lineolatus(Goeze). Insect Biochemistry and Molecular Biology.2011b,41:254–263.
    110. Gu SH, Wang SY, Zhang XY, Ji P, Liu JT, Wang GR, Wu KM, Guo YY, Zhou JJ, Zhang YJ.Functional characterizations of chemosensory proteins of the alfalfa plant bug Adelphocorislineolatus indicate their involvement in host recognition. PLoS ONE.2012,7(8): e42871.
    111. Gu SH, Zhou JJ, Wang GR, Zhang YJ, Guo YY. Sex pheromone recognition andimmunolocalization of three pheromone binding proteins in the black cutworm moth Agrotisipsilon. Insect Biochemistry and Molecular Biology.2013a,43:237–251.
    112. Gu SH, Yang RN, Guo MB, Wang GR, Wu KM, Guo YY, Zhou JJ, Zhang YJ. Molecularidentification and differential expression of sensory neuron membrane proteins in the antennae ofthe black cutworm moth Agrotis ipsilon. Journal of Insect Physiology.2013b,59:430-443.
    113. Guo H, Huang LQ, Pelosi P, Wang CZ. Three pheromone-binding proteins help segregationbetween two Helicoverpa species utilizing the same pheromone components. Insect Biochemistryand Molecular Biology.2012,42:708–16.
    114. Guo W, Wang X, Ma Z, Xue L, Han J, Yu D, Kang L. CSP and takeout genes modulate the switchbetween attraction and repulsion during behavioral phase change in the migratory locust. PLOSGenetics.2011,7: e1001291.
    115. Ha TS, Smith DP. Odorant and pheromone receptors in insects. Frontiers in Cellular Neuroscience.2009,3:10.
    116. Han ZJ. Toxicological responses and resistances of the black cutworm, Agrotis ypsilon(Rottemberg), to several groups of insecticides. Acta Phytophylacica Sinica1986,13:125–130.
    117. Hagen-Larsen H, Laerdahl JK, Panitz F, Adzhubei A, H yheim B. An EST-based approach foridentifying genes expressed in the intestine and gills of pre-smolt Atlantic salmon (Salmo salar).BMC Genomics.2005,6:171.
    118. Harini K, Sowdhamini R. Molecular modelling of oligomeric states of DmOR83b, an olfactoryreceptor in D. Melanogaster. Bioinformatics and Biology Insights.2012;6:33-47.
    119. He XL, Tzotzos G, Woodcock C, Pickett JA, Hooper T, Field LM, Zhou JJ. Binding of the generalodorant binding protein of Bombyx mori BmorGOBP2to the moth sex pheromone components.Journal of Chemical Ecology.2010,36:1293–1305.
    120. Hekmat-Scafe DS, Scafe, CR, McKinney, AJ, Tanouye MA. Genome-wide analysis of theodorant-binding protein gene family in Drosophila melanogaster. Genome Research.2002,12:1357–1369.
    121. Hildebrand JG. Olfactory control of behaviour in moths: central processing of odor informationand the functional significance of olfactory glomeruli. Journal of Comparative Physiology A.1996,178:5–19.
    122. Hill CA, Fox AN, Pitts RJ, Kent LB, Tan PL, Crystal MA, Ravchik A, Collins FH, Robertson HM,Zwiebel LJ. G protein-coupled receptors in Anopheles gambiae. Science.2002,298:176–178.
    123. Howse PE, Stevens LDR, Jones OT. Insect pheromones and their use in pest management.Chapman and Hall.1998.
    124. Hua JF, Zhang S, Cui JJ, Wang DJ, Wang CY, Luo JY, Lv LM. Identification and bindingcharacterization of three odorant binding proteins and one chemosensory protein from Apolyguslucorum (Meyer-Dur). Journal of Chemical Ecology.2012,38:1163–70.
    125. Huang X, Madan A. CAP3: A DNA sequence assembly program. Genome Research.1999,9:868–877.
    126. Hull JJ, Ohnishi A, Moto K, Kawasaki Y, Kurata R, Suzuki MG, Matsumoto S. Cloning andcharacterization of the pheromone biosynthesis activating neuropeptide receptor from the silkmoth,Bombyx mori. Significance of the carboxyl terminus in receptor internalization. The Journal ofBiological Chemistry.2004,279:51500–51507.
    127. Iovinella I, Dani FR, Niccolini A, Sagona S, Michelucci E, Gazzano A, Turillazzi S, Felicioli A,Pelosi P. Differential expression of odorant-binding proteins in the mandibular glands of the honeybee according to caste and age. Journal of Proteome Research.2011,10:3439–49.
    128. Ishida Y, Cornel AJ, Leal WS. Identification and cloning of a female antenna-specificodorant-binding protein in the mosquito Culex quinquefasciatus. Journal of Chemical Ecology.2002,28:867–871.
    129. Ishida Y, Leal WS. Rapid inactivation of a moth pheromone. Proceedings of the National Academyof Sciences of the United States of America.2005,102:14075–14079.
    130. Jacquin-Joly E, Vogt RG, Fran ois MC, Nagnan-Le Meillour P. Functional and expression patternanalysis of chemosensory proteins expressed in antennae and pheromonal gland of Mamestrabrassicae. Chemical Senses.2001,26:833–844.
    131. Jacquin-Joly E, Merlin C. Insect olfactory receptors: Contributions of molecular biology tochemical ecology. Journal of Chemical Ecology.2004,30:2359–97.
    132. Jacquin-Joly E, Legeai F, Montagné N, Monsempes C, Fran ois MC, Poulain J, Gavory F, WalkerWB III, Hansson BS, Larsson MC. Candidate chemosensory genes in female antennae of thenoctuid moth Spodoptera littoralis. International Journal of Biological Sciences.2012,8:1036–50.
    133. Jiang QY, Wang WX, Zhang ZD, Zhang L. Binding specificity of locust odorant binding proteinand its key binding site for initial recognition of alcohols. Insect Biochemistry and MolecularBiology.2009,39:440–447.
    134. Jin X, Brandazza A, Navarrini A, Ban L, Zhang S, Steinbrecht RA, Zhang L, Pelosi P. Expressionand immunolocalisation of odorant-binding and chemosensory proteins in locusts. Cellular andMolecular Life Science.2005,62:1156–1166.
    135. Jin X, Ha TS, Smith DP. SNMP is a signaling component required for pheromone sensitivity inDrosophila. Proceedings of the National Academy of Sciences of the United States of America.2008,105:10996–11001.
    136. Jones WD, Nguyen TA, Kloss B, Lee KJ, Vosshall LB. Functional conservation of an insectodorant receptor gene across250million years of evolution. Current Biology.2005,15: R119–R121.
    137. Ju Q, Wang Y, Jiang XJ, Li X, Dong SL, Han ZJ. Molecular and biochemical characterization oftwo odorant-binding proteins from dark black chafer, Holotrichia parallela. Genome.2012,55:537–546.
    138. Jurenka RA, Jacquin E, Roelofs WL. Control of the pheromone biosynthetic pathway inHelicoverpa zea by the pheromone biosynthesis activating neuropeptide. Archives of InsectBiochemistry and Physiology.1991,17:81–91.
    139. Jurenka R. Insect pheromone biosynthesis. Topics in Current Chemistry.2004,239:97–132.
    140. Kaissling KE. Insect olfaction. In Handbook of Sensory Physiology, ed. L.M. Beidler, Berlin:Spring-Verlag1971,4:351–431.
    141. Kaissling KE, Kasang G. A new pheromone of the silkworm moth Bombyx mori.Naturewissenschaften.1978,65:382–384.
    142. Kaissling KE. Chemo-electrical transduction in insect olfaction receptors. Annual Review ofNeuroscience.1986,9:121–145.
    143. Kaissling KE. R.H. Wright lectures on insect olfaction. Colbow, K.(ed.), Simon Fraser University,Burnaby1987, pp1–190.
    144. Kaissling KE. Olfactory perireceptor and receptor events in moths: a kinetic model revised. Journalof Comparative Physiology A.2009,195:895–922.
    145. Kaissling KE. Kinetics of olfactory responses might largely depend on the odorant-receptorinteraction and the odorant deactivation postulated for flux detectors. Journal of ComparativePhysiology A.2013. DOI10.1007/s00359-013-0812-z. In press.
    146. Karlson P, Butenandt A. Pheromones (Ectohormones) in insects. The Annual Review ofEntomology.1959,4:39–58.
    147. Kim YJ, Nachman RJ, Aimanova K, Gill S, Adams ME. The pheromone biosynthesis activatingneuropeptide (PBAN) receptor of Heliothis virescens: identification, functional expression, andstructure-activity relationships of ligand analogs. Peptides.2008,29:268-275.
    148. Kitabayashi AN, Arai T, Kubo T, Natori S. Molecular cloning of cDNA for p10, a novel proteinthat increases in the regenerating legs of Periplaneta americana (American cockroach). InsectBiochemistry and Molecular Biology.1998,28:785–790.
    149. Klein U. Sensillum-lymph proteins from antennal olfactory hairs of the moth Antheraeapolyphemus (Saturniidae). Insect Biochemistry.1987,17:1193–1204.
    150. Koontz MA, Schneider D. Sexual dimorphism in neuronal projections from the antennae of silkmoths (Bombyx mori, Antheraea polyphemus) and the gypsy moth (Lymantria dispar). Cell andTissue Research.1987,249:39–50.
    151. Krieger J, von Nickisch-Rosenegk E, Mameli M, Pelosi P, Breer H. Binding proteins from theantennae of Bombyx mori. Insect Biochemistry and Molecular Biology.1996,26:297–307.
    152. Krieger J, Breer H. Olfactory reception in invertebrates. Science.1999,286:720–728.
    153. Krieger MJ, Ross KG. Identification of a major gene regulating complex social behavior. Science.2002,295:328–332.
    154. Krieger J, Grosse-Wilde E, Gohl T, Dewer YME, Raming K, Breer H. Genes encoding candidatepheromone receptors in a moth (Heliothis virescens). Proceedings of the National Academy ofSciences of the United States of America.2004,101:11845–11850.
    155. Krieger J, Grosse-Wilde E, Gohl T, Breer H. Candidate pheromone receptors of the silkmothBombyx mori. European Journal of Neuroscience.2005,21:2167–2176.
    156. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topologywith a hidden Markov model: application to complete genomes. Journal of Molecular Biology.2001,305:567–580.
    157. Kruse S W, Zhao R, Smith DP, Jones DNM. Structure of a specific alcohol-binding site defined bythe odorant binding protein LUSH from Drosophila melanogaster. Nature Structural&MolecularBiology.2003,10:694–700.
    158. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein.Journal of Molecular Biology.1982,157:105–132.
    159. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature.1970,227:680–685.
    160. Lagarde A, Spinelli S, Tegoni M, He X, Field L, Zhou JJ, Cambillau C. The crystal structure ofodorant binding protein7from Anopheles gambiae exhibits an outstanding adaptability of itsbinding site. Journal of Molecular Biology.2011a,414:401–12.
    161. Lagarde A, Spinelli S, Qiao H, Tegoni M, Pelosi P, Cambillau C. Crystal structure of a novel typeof odorant-binding protein from Anopheles gambiae, belonging to the C-plus class. BiochemicalJournal.2011b,437:423–30.
    162. Larsson MC, Domingos AI, Jone WD, Chiappe ME, Amrein H, vosshall LB. Or83b encodes abroadly expressed odorant receptor essential for Drosophila olfaction. Neuron.2004,43:703–714.
    163. Lartigue A, Gruez A, Spinelli S, Rivière S, Brossut R, Tegoni M, Cambillau C. The crystalstructure of a cockroach pheromone-binding protein suggests a new ligand binding and releasemechnism. The Journal of Biological Chemistry.2003,278:30213–30218.
    164. Lartigue A, Gruez A, Briand L, Blon F, Bézirard V, Walsh M, Pernollet JC, Tegoni M, CambillauC. Sulfur single-wavelength anomalous diffraction crystal structure of a pheromone-bindingprotein from the honeybee Apis mellifera L. The Journal of Biological Chemistry.2004,279:4459–64.
    165. Lassmann T, Hayashizaki Y, Daub CO. TagDust--a program to eliminate artifacts from nextgeneration sequencing data. Bioinformatics.2009,25:2839–2840.
    166. Laue M, Steinbrecht RA. Topochemistry of moth olfactory sensilla. International Journal of InsectMorphology and Embryology.1997,26:217–228.
    167. Laughlin JD, Ha TS, Jones DNM, Smith DP. Activation of pheromone-sensitive neurons ismediated by conformational activation of pheromone-binding protein. Cell.2008,133:1255–1265.
    168. Lautenschlager C, Leal WS, Clardy J. Bombyx mori pheromone-binding protein bindingnonpheromone ligands: implications for pheromone recognition. Structure.2007,15:1148–1154.
    169. Leal WS, Nikonova L, Peng G. Disulphide structure of the pheromone binding protein from thesilkworm moth, Bombyx mori. FEBS Letters.1999,464:85–90.
    170. Leal WS. Pheromone reception. Topics in Current Chemistry.2005,240:1–36.
    171. Leal WS, Chen AM, Ishida Y, Chiang VP, Erickson ML, Morgan TI, Tsuruda, JM. Kinetics andmolecular properties of pheromone binding and release. Proceedings of the National Academy ofSciences of the United States of America.2005,102:5386–5391.
    172. Leal WS. Odorant reception in insects: Roles of receptors, binding proteins, and degradingenzymes. The Annual Review of Entomology.2013,58:373–391.
    173. Legeai F, Malpel S, Montagné N, Monsempes C, Cousserans F, Merlin C, Fran ois MC,Ma bèche-Coisné M, Gavory F, Poulain J, Jacquin-Joly E. An expressed sequence tag collectionfrom the male antennae of the noctuid moth Spodoptera littoralis: a resource for olfactory andpheromone detection research. BMC Genomics.2011,12:86.
    174. Lescop E, Briand L. Pernollet JC, Guittet E. Structural basis of the broad specificity of a generalodorant-binding protein from the honeybee. Biochemistry.2009,48:2431–2441.
    175. Levy E, Spahis S, Sinnett D, Peretti N, Maupas-Schwalm F, Delvin E, Lambert M, Lavoie MA.Intestinal cholesterol transport proteins: an update and beyond. Current Opinion in Lipidology.2007,18:310–318.
    176. Li F, Prestwieh GD. Expression and characterization of a Lepidopteran general odorant-bindingprotein. Insect Biochemistry and Molecular Biology.1997,27:405–412.
    177. Li ZX, Pickett JA, Field LM, Zhou JJ. Identification and expression profiling of odorant-bindingproteins of the malaria-carrying mosquitoes Anopheles gambiae and Anophele arabiensis.Archives of Insect Biochemistry and Physiology.2005,58:175–189.
    178. Li S, Picimbon JF, Ji S, Kan Y, Qiao C, Zhou JJ, Pelosi P. Multiple functions of anodorant-binding protein in the mosquito Aedes aegypti. Biochemical and Biophysical ResearchCommunications.2008,372:464–468.
    179. Li PY, Qin YC. Molecular cloning and characterization of sensory neuron membrane protein andexpression pattern analysis in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae).Applied Entomology and Zoology.2011,46:497–504.
    180. Liu X, Luo Q, Zhong G, Rizwan-ul-Haq, M, Hu M. Molecular characterization and expressionpattern of four chemosensory proteins from diamondback moth, Plutella xylostella (Lepidoptera:Plutellidae). The Journal of Biochemistry.2010,148:189–200.
    181. Liu Y, Gu S, Zhang Y, Guo Y, Wang G. Candidate olfaction genes identified within theHelicoverpa armigera antennal transcriptome. PLoS ONE.2012a,7: e48260.
    182. Liu R, He X, Lehane S, Lehane M, Hertz-Fowler C, Berriman M, Field LM, Zhou JJ. Expressionof chemosensory proteins in the tsetse fly Glossina morsitans morsitans is related to femalehost-seeking behavior. Insect Molecular Biology.2012b,21:41–48.
    183. Liu SJ, Liu NY, He P, Li ZQ, Dong SL, Mu LF. Molecular characterization, expression patterns,and ligand-binding properties of two odorant-binding protein genes from Orthaga achatina (Butler)(Lepidoptera: Pyralidae). Archives of Insect Biochemistry and Physiology.2012c,80:123–39.
    184. Liu NY, He P, Dong SL. Binding properties of pheromone-binding protein1from the commoncutworm Spodoptera litura. Comparative Biochemistry and Physiology Part B: Biochemistry andMolecular Biology.2012d,161:295–302.
    185. Liu S, Zhang YR, Zhou WW, Liang QM, Yuan X, Cheng J, Zhu ZR. Identification andcharacterization of two sensory neuron membrane proteins from Cnaphalocrocis medinalis(Lepidoptera: Pyralidae). Archives of Insect Biochemistry and Physiology.2013,1:29–42.
    186. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitativePCR and the2-ΔΔCt method. Methods.2001,25:402–408.
    187. L fstedt C, Bengtsson M. Sex pheromone biosynthesis of (E, E)-8,10-dodecadienol in codlingmoth Cydia pomonella involves E9desaturation. Journal of Chemical Ecology.1988,14:903-915.
    188. Lu D, Li X, Liu X, Zhang Q. Identification and molecular cloning of putative odorant-bindingproteins and chemosensory protein from the bethylid wasp, Scleroderma guani Xiao et Wu.Journal of Chemical Ecology.2007,33:1359–1375.
    189. Luthy R, Bowie JU, Eisenberg D. Assessment of protein models with three-dimensional profiles.Nature.1992,356:83–85.
    190. Ma bèche-Coisne M, Nikonov AA, Ishida Y, Jacquin-Joly E, Leal WS. Pheromone anosmia in ascarab beetle induced by in vivo inhibition of a pheromone-degrading enzyme. Proceedings of theNational Academy of Sciences of the United States of America.2004,101:11459–11464.
    191. Ma bèche-Coisne M, Merlin C, Fran ois MC, Porcheron P, Jacquin-Joly E. P450and P450reductase cDNAs from the moth Mamestra brassicae: cloning and expression patterns in maleantennae. Gene.2005,346:195–203.
    192. Maida R, Steinbrecht A, Ziegelberger G, Pelosi P. The pheromone binding protein of Bombyx mori:purification, characterization and immunocytochemical localization. Insect Biochemistry andMolecular Biology.1993,23:243–253.
    193. Maida R, Krieger J, Gebauer T, Lange U, Ziegelberger G. Three pheromone-binding proteins inolfactory sensilla of the two silkmoth species Antheraea polyphemus and Antheraea pernyi.European Journal of Biochemistry.2000,267:2899–2908.
    194. Maida R, Ziegelberger G&Kaissling KE. Ligand binding to six recombinant pheromone bindingproteins of Antheraea polyphemus and Antheraea pernyi. Journal of Comparative Physiology B.2003,173:565–573.
    195. Nagnan-Le Meillour P, Huet JC, Maibeche M, Pernollet JC, Descoins C. Pheromone bindingproteins of the moth Mamestra brassicae: specificity of ligand binding. Insect Biochemistry andMolecular Biology.1997,27:213–221.
    196. Maleszka R, Stange G. Molecular cloning, by a novel approach, of a cDNA encoding a putativeolfactory protein in the labial palps of the moth Cactoblastis cactorum. Gene.1997,202:39–43.
    197. Martinez T, Fabriás G, Camps F: Sex pheromone biosynthetic pathway in Spodoptera littoralis andits activation by a neurohormone. The Journal of Biological Chemistry.1990,265:1381–1387.
    198. Matsuo T, Sugaya S, Yasukawa J, Aigaki T, Fuyama Y. Odorant-binding proteins OBP57d andOBP57e affect taste perception and host–plant preference in Drosophila sechellia. PLoS Biology.2007,5: e118.
    199. May RM. How many species are there on earth? Science.1988,241:1441–1449.
    200. McKenna MP, Hekmat-Scafe DS, Gaines P, Carlson JR. Putative Drosophila pheromone-bindingproteins expressed in a subregion of the olfactory system. The Journal of Biological Chemistry.1994,269:16340–16347.
    201. McNeil JN. Behavioral ecology of pheromone-mediated communication in moth and itsimportance in the use of pheromone traps. The Annual Review of Entomology.1991,36:407–430.
    202. Mechaber WL, Capaldo CT, Hildebrand JG. Behavioral responses of adult female tobaccohornworms, Manduca sexta, to hostplant volatiles change with age and mating status. Journal ofInsect Science.2002,2:1–8.
    203. Meillour PN, Francois MC, Jacquin-joly E. Identification and molecular cloning of putativeodorant binding proteins from the American palm weevil, Rhynchophorus palmarum L. Journal ofChemical Ecology.2004,30:1213–1223.
    204. Melo ACA, Rutzler M, Pitts RJ, Zwieble LJ. Identification of a chemosensory receptor from theyellow fever mosquito, Aedes aegypti, that is highly conserved and expressed in olfactory andgustatory organs. Chemical Senses.2004,29:403–410.
    205. Merlin C, Fran ois MC, Bozzolan F, Pelletier J, Jacquin-Joly E, Ma bèche-Coisne M. A newaldehyde oxidase selectively expressed in chemosensory organs of insects. Biochemical andBiophysical Research Communications.2005,332:4–10.
    206. Merlin C, Rosell G, Carot-Sans G, Fran ois MC, Bozzolan F, Pelletier J, Jacquin-Joly E, GuerreroA, Ma bèche-Coisne M. Antennal esterase cDNAs from two pest moths, Spodoptera littoralis andSesamia nonagrioides, potentially involved in odourant degradation. Insect Molecular Biology.2007,16:73–81.
    207. Meyer E, Aglyamova GV, Wang S, Buchanan-Carter J, Abrego D, Colbourne JK, Willis BL, MatzMV. Sequencing and de novo analysis of a coral larval transcriptome using454GSFlx. BMCGenomics.2009,10:219.
    208. Mohanty S, Zubkov S, Gronenborn M. The solution NMR structure of Antheraea polyphemus PBPprovides new insight into pheromone recognition by pheromone-binding proteins. Journal ofMolecular Biology.2004,337:443–451.
    209. Mombaerts P. Molecular biology of odorant receptors in vertebrates. Annual Review ofNeuroscience.1999,22:487–509.
    210. Monteforti G, Angeli S, Petacchi R, Minnocci A. Ultrastructural characterization of antennalsensilla and immunocytochemical localization of a chemosensory protein in Carausius morosusBruenner (Phasmida: Phasmatidae). Arthropod Structure and Development.2002,30:195–205.
    211. Morse D, Meighen EA. Pheromone biosynthesis: enzymatic studies in lepidoptera. In PheromoneBiochemistry, eds G D Prestwich and G J Bloriiquist, Academic Press, Orlando, FL1987, p121–p158.
    212. Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B. Mapping and quantifying mammaliantranscriptomes by RNA-Seq. Nature Methods.2008,5:621–628.
    213. Montell C. A taste of the Drosophila gustatory receptors. Current Opinion in Neurobiology.2009,19:345-353.
    214. Moto K, Yoshiga T, Yamamoto M, Takahashi S, Okano K, Ando T, Nakata T, Matsumoto S.Pheromone gland-specific fatty-acyl reductase of the silkmoth, Bombyx mori. Proceedings of theNational Academy of Sciences of the United States of America.2003,100:9156–9161.
    215. Moto K, Suzuki MG, Hull JJ, Kurata R, Takahashi S, Yamamoto M, Okano K, Imai K, Ando T,Matsumoto S. Involvement of a bifunctional fatty-acyl desaturase in the biosynthesis of thesilkmoth, Bombyx mori, sex pheromone. Proceedings of the National Academy of Sciences of theUnited States of America.2004,101:8631–8636.
    216. Nagnan-Le Meillour P, Cain AH, Jacquin-Joly E, Fran ois MC, Ramachandran S, Maida R,Steinbrecht RA. Chemosensory proteins from the proboscis of Mamestra brassicae. ChemicalSenses.2000,25:541–553.
    217. Nakagawa T, Sakurai T, Nishioka T, Touhara K. Insect sex-pheromone signals mediated by specificcombinations of olfactory receptors. Science.2005,307:1638–1642.
    218. Nakagawa T, Vosshall LB. Controversy and consensus: noncanonical signaling mechanisms in theinsect olfactory system. Current Opinion in Neurobiology.2009,19:284–292.
    219. Nardi JB, Miller LA, Walden KK, Rovelstad S, Wang L, Frye JC, Ramsdell K, Deem LS,Robertson HM. Expression patterns of odorant-binding proteins in antennae of the moth Manducasexta. Cell and Tissue Research.2003,313:321–333.
    220. Neuhaus EM, Gisselmann G, Zhang W, Dooley R, Stortkuhl K, Hatt H. Odorant receptorheterodimerization in the olfactory system of Drosophila melangaster. Nature Neuroscience.2005,8:15–17.
    221. Ngai J, Dowling MM, Buck L, Axel R, Chess A. The family of genes encoding odorant receptorsin the channel catfish. Cell.1993,12:657–666.
    222. Nichols Z, Vogt RG. The SNMP/CD36gene family in Diptera, Hymenoptera and Coleoptera:Drosophila melanogaster, D. pseudoobscura, Anopheles gambiae, Aedes aegypti, Apis mellifera,and Tribolium castaneum. Insect Biochemistry and Molecular Biology.2008,38:398–415.
    223. Nomura A, Kawasaki K, Kubo T, Natori S. Purification and localization of p10, a novel proteinthat increases in nymphal regenerating legs of Periplaneta americana (American cockroach). TheInternational Journal of Developmental Biology.1992,36:391–398.
    224. Ochieng SA, Park KC, Zhu JW, Baker TC. Functional morphology of antennal chemoreceptors ofthe parasitoid Microplitis croceipes (Hymenoptera: Braconidae). Arthropod Structure&Development.2000,29:231–240.
    225. Ohnishi A, Hull JJ, Matsumoto S. Targeted disruption of genes in the Bombyx mori sex pheromonebiosynthetic pathway. Proceedings of the National Academy of Sciences of the United States ofAmerica.2006,103:4398-4403.
    226. Olivier V, Monsempes C, Fran ois MC, Poivet E and Jacquin-Joly E. Candidate chemosensoryionotropic receptors in a Lepidoptera. Insect Molecular Biology.2011,20:189–199.
    227. Ozaki M, Wada-Katsumata A, Fujikawa K, Iwasaki M, Yokohari F, Satoji Y, Nisimura T, YamaokaR. Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. Science.2005,309:311–314.
    228. Pace U, Hanski E, Salomon Y, Lancet D. Odorant-sensitive adenylate cyclase may mediateolfactory reception. Nature.1985,316:255–258.
    229. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC,Okada T, Stenkamp RE, Yamamoto M, Miyano M. Crystal structure of Rhodopsin: A Gprotein-coupled receptor. Science.2000,289:739–745.
    230. Pape ME, Lopez-Casillas F, Kim KH. Physiological regulation of acetyl-CoA carboxylase geneexpression: Effects of diet, diabetes, and lactation on acetyl-CoA carboxylase mRNA. Archives ofBiochemistry and Biophysics.1988,267:104–109.
    231. Pelletier J, Bozzolan F, Solvar M, Fran ois MC, Jacquin-Joly E, Ma bèche-Coisne M.Identification of candidate aldehyde oxidases from the silkworm Bombyx mori potentially involvedin antennal pheromone degradation. Gene.2007,404:31–40.
    232. Pelosi, P. Odorant-binding proteins. Critical Reviews in Biochemistry and Molecular Biology.1994,29,199–228.
    233. Pelosi P, Maida R. Odorant-binding proteins in insects. Comparative Biochemistry and Physiology.1995,111:503–514.
    234. Pelosi P, Maida R. Odorant-binding proteins in vertebrates and insects: similarities and possiblecommon function. Chemical Senses.1990,15:205–215.
    235. Pelosi P. Odorant-binding proteins. Critical Reviews in Biochemistry and Molecular Biology.1994,29:199–228.
    236. Pelosi P. Perireceptor events in olfaction. Journal of Neurobiology.1996,30:3–19.
    237. Pelosi, P. Odorant-binding proteins: structural aspects. Annals of the New York Academy ofSciences.1998,855:281–293.
    238. Pelosi P, Zhou JJ, Ban LP, Calvello M. Soluble proteins in insect chemical communication.Cellular and Molecular Life Science.2006,63:1658–1676.
    239. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. NucleicAcids Research.2001,29:2002–2007.
    240. Picimbon JF, Gadenne C, Bécard JM, Clément JL, Sreng L. Sex pheromone of the French blackcutworm moth, Agrotis ipsilon (Lepidoptera: Noctuidae): identification and regulation of amulticomponent blend. Journal of Chemical Ecology.1997,23:221–230.
    241. Picimbon JF, Dietrich K, Breer H, Krieger J. Chemosensory proteins of Locusta migratoria(Orthoptera: Acrididae). Insect Biochemistry and Molecular Biology.2000,30:233–241.
    242. Picimbon JF, Gadenne C. Evolution of noctuid pheromone binding proteins: identification of PBPin the black cutworm moth, Agrotis ipsilon. Insect Biochemistry and Molecular Biology.2002,32:839–846.
    243. Pickett JA, Griffith DC. Composition of aphid alarm pheromones. Journal of Chemical Ecology.1980,6:349–360.
    244. Pickett JA, Wadhams LJ, Woodcock CM. The chemical ecology of aphids. The Annual Review ofEntomology.1992,37:67–90.
    245. Pierce KL, Premont RT, Lefkowitz RJ. Seven-transmembrane receptors. Nature ReviewsMolecular Cell Biology.2002,3:639–650.
    246. Pikielny CW, Hasan G, Rouyer F, Rosbach M. Members of a family of Drosophila putativeodorant-binding proteins are expressed in different subsets of olfactory hairs. Neuron1994,12:35–49.
    247. Pimm SL, Russell GJ, Gittleman JL, Brooks TM. The future of biodiversity. Science.1995,269:347–350.
    248. Pitts RJ, Fox AN, Zwiebel LJ. A highly conserved candidate chemoreceptor expressed in botholfactory and gustatory tissues in the malaria vector Anopheles gambiae. Proceedings of theNational Academy of Sciences of the United States of America.2004,101:5058–5063.
    249. Plettner E. Insect pheromone olfaction: new targets for the design of species-selective pest controlagents. Current Medicinal Chemistry.2002,9:1075–1085.
    250. Prestwich GD. Chemistry of pheromone and hormone metabolism in insects. Science.1987,237:999–1006.
    251. Prestwich GD, Graham SM, Handley M, Latli B, Streinz L, Tassayco ML. Enzymatic processingof pheromones and pheromone analogs. Experientia.1989,45:263–270.
    252. Prestwich GD. Bacterial expression and photoaffinity labeling of a pheromone binding protein.Protein Science.1993,2:420–428.
    253. Prestwich GD, Du G, LaForest S. How is pheromone specificity encoded in proteins? ChemicalSenses.1995,20:461–469.
    254. Prestwich GD. Proteins that smell: pheromone recognition and signal transduction. Bioorganic&Medicinal Chemistry.1996,4:505–513.
    255. Qiao HL, Tuccori E, He XL, Gazzano A, Field L, Zhou JJ, Pelosi P. Discrimination of alarmpheromone (E)-β-farnesene by aphid odorant-binding proteins. Insect Biochemistry and MolecularBiology.2009,39:414–419.
    256. Qiao H, He X, Schymura D, Ban L, Field L, Dani FR, Michelucci E, Caputo B, della Torre A,Iatrou K, Zhou JJ, Krieger J, Pelosi P. Cooperative interactions between odorant-binding proteinsof Anopheles gambiae. Cellular and Molecular Life Science.2011,68:1799–1813.
    257. Rafaeli A, Bober R, Becker L, Choi MY, Fuerst EJ, Jurenka R. Spatial distribution and differentialexpression of the PBAN receptor in tissues of adult Helicoverpa spp.(Lepidoptera: Noctuidae).Insect Molecular Biology.2007,16:287–293.
    258. Ramakers C, Ruijter JM, Deprez RHL, Moorman AFM. Assumption-free analysis of quantitativereal-time polymerase chain reaction (PCR) data. Neuroscience Letters.2003,339:62–66.
    259. Raming K, Krieger J, Strotmann J, Boekhoff I, Kubick S, Baumstark C, Breer H. Cloning andexpression of odorant receptors. Nature.1993,361:353–356.
    260. Rasmussen JT, Berglund L, Rasmussen MS, Petersen TE. Assignment of disulfide bridges inbovine CD36. European Journal of Biochemistry.1998,257:488–494.
    261. Renou M, Gadenne C, Tauban D. Electrophysiological investigations of pheromone-sensitivesensilla in the hybrids between two moth species. Journal of Insect Physiology.1996,42:267–277.
    262. Rings RW, Arnold FJ, Keaster AJ, Musick GJ. A worldwide annotated bibliography of the blackcutworm, Agrotis ipsilon (Hufnagel). Ohio Agricultural Research and Development Center.1974,198:1–106.
    263. Rings RW, Arnold FJ, Johnson BQ. Host range of the black cutworm on vegetables: Abibliography. Bulletin of the Entomological Society of America.1975,21:229–234.
    264. Roelofs WL and Wolf WA. Pheromone biosynthesis in Lepidoptera. Journal of Chemical Ecology.1998,14:2019-2031.
    265. Robertson HM, Martos R, Sears CR, Todres EZ, Walden KK, Nardi JB. Diversity of odourantbinding proteins revealed by an expressed sequence tag project on male Manduca sexta mothantennae. Insect Molecular Biology.1999,8:501–518.
    266. Robertson HM. The large srh family of chemoreceptor genes in Caenorhabditis nematodes revealsprocesses of genome evolution involving large duplications and deletions and intron gains andlosses. Genome Research.2000,10:192–203.
    267. Robertson HM, Warr CG, Carlson JR. Molecular evolution of the insect chemoreceptor genesuperfamily in Drosophila melanogaster. Proceedings of the National Academy of Sciences of theUnited States of America.2003,100:14537–14542.
    268. Robertson HM, Wanner KW. The chemoreceptor superfamily in the honey bee, Apis mellifera:expansion of the odorant, but not gustatory, receptor family. Genome Research.2006,16:1395–1403.
    269. Rogers ME, Sun M, Lerner MR, Vogt RG. Snmp-1, a novel membrane protein of olfactoryneurons of the silk moth Antheraea polyphemus with homology to the CD36family of membraneproteins. The Journal of Biological Chemistry.1997,272:14792–14799.
    270. Rogers ME, Jani MK, Vogt RG. An olfactory-specific glutathione-S-transferase in the sphinx mothManduca sexta. The Journal of Experimental Biology.1999,202:1625–1637.
    271. Rogers ME, Krieger J, Vogt RG. Antennal SNMPs (sensory neuron membrane proteins) ofLepidoptera define a unique family of invertebrate CD36-like proteins. Journal of Neurobiology.2001a,49:47–61.
    272. Rogers ME, Steinbrecht RA, Vogt RG. Expression of SNMP-1in olfactory neurons and sensilla ofmale and female antennae of the silkmoth Antheraea polyphemus. Cell and Tissue Research.2001b,303:433–446.
    273. Ronderos DS, Smith DP. Diverse signaling mechanisms mediate volatile odorant detection inDrosophila. Fly (Austin).2009,3:290–297.
    274. Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure andfunction prediction. Nature protocols.2010,5:725–738.
    275. Rybczynski R, Reagan J, Lerner MR. A pheromone-degrading aldehyde oxidase in the antennae ofthe moth Manduca sexta. Journal of Neurobiology.1989,9:1341–1353.
    276. Rybczynski R, Vogt RG, Lerner MR. Antennal-specific pheromone-degrading aldehyde oxidasesfrom the moths Antheraea polyphemus and Bombyx mori. The Journal of Biological Chemistry.1990,265:19712–19715.
    277. Sachse S, Krieger J. Olfaction in insects. The primary processes of odor recognition and coding.e-Neuroforum.2011,2:49–60.
    278. Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetictrees. Molecular Biology and Evolution.1987,4:406–425.
    279. Sakurai T, Nakagawa T, Mitsuno H, Mori H, Endo Y, Tanoue S, Yasukochi Y, Touhara K, NishiokaT. Identification and functional characterization of a sex pheromone receptor in the silkmothBombyx mori. Proceedings of the National Academy of Sciences of the United States of America.2004,101:16653–16658.
    280. Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. Journal ofMolecular Biology.1993,234:779–815.
    281. Sambrook KJ, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual2nd ed, ColdSpring Harbor: Cold Spring Harbor Laboratory Press.1989.
    282. Sandler BH, Nikonova L, Leal WS, Clardy J. Sexual attraction in the silkworm moth: structure ofthe pheromone-binding-protein-bombykol complex. Chemical Biology.2000,7:143–151.
    283. Sanes JR, Hildebrand JG. Structure and development of the antennae in a moth, Manduca sexta.Developmental Biology.1976,51:282–299.
    284. Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall LB, Touhara K. Insect olfactoryreceptors are heteromeric ligand-gated ion channels. Nature.2008,452:1002–1006.
    285. Scaloni A, Monti M, Angeli S, Pelosi P. Structural analysis and disulfide-bridge pairing of twoodorant-binding proteins from Bombyx mori. Biochemical and Biophysical ResearchCommunications.1999,266:386–391.
    286. Schneider D. Insect antennae. The Annual Review of Entomology.1964,9:103–122.
    287. Schneider D.100years of pheromone research–an essay on Lepidoptera. Naturwissenschaften.1992,79:241–250.
    288. Schneider D, Schulz S, Priesner E, Ziesmann J, Francke W. Autodetection and chemistry of femaleand male pheromone in both sexes of the tiger moth Panaxia quadripunctaria. Journal ofComparative Physiology A.1998,182:153–161.
    289. Shorey HH. Behavioral responses to insect pheromones. The Annual Review of Entomology.1973,18:349–380.
    290. Silbering AF, Bell R, Galizia CG, Benton R. Calcium imaging of odorevoked responses in theDrosophila antennal lobe. Journal of Visualized Experiments.2012,(61). doi:pii:2976.10.3791/2976.
    291. Slifer E H. The fine structure of insect sense organs. International Review of Cytology.1962,11:125–159.
    292. Smadja C, Shi P, Butlin RK, Robertson HM. Large gene family expansions and adaptive evolutionfor odorant and gustatory receptors in the pea aphid, Acyrthosiphon pisum. Molecular Biology andEvolution.2009,26:2073–86.
    293. Soques S, Vásquez GM, Grozinger CM, Gould F. Age and mating status do not affect transcriptlevels of odorant receptor genes in male antennae of Heliothis virescens and Heliothis subflexa.Journal of Chemical Ecology.2010,36:1226–1233.
    294. Spinelli S, Lagarde A, Iovinella I, Legrand P, Tegoni M, Pelosi P, Cambillau C. Crystal structure ofApis mellifera OBP14, a C-minus odorant-binding protein, and its complexes with odorantmolecules. Insect Biochemistry and Molecular Biology.2012,42:41–50.
    295. Steinbrecht RA, Ozaki M, Ziegelberger G. Immunocytochemical localization ofpheromone-binding protein in moth antennae. Cell and Tissue Research.1992,270:287–302.
    296. Steinbrecht RA, Laue M, Ziegelberger G. Immunolocalization of pheromone-binding protein andgeneral odorant-binding protein in olfactory sensilla of the silk moths Antheraea and Bombyx. Celland Tissue Research.1995,282:203–217.
    297. Steinbrecht RA, Laue M, Maida R, Ziegelberger G. Odorant-binding proteins and their role in thedetection of plant odours. Entomologia Experimentalis et Applicata.1996,80:15–18.
    298. Steinbrecht RA. Pore structures in insect olfactory sensilla: a review of data and concepts.International Journal of Insect Morphology and Embryology.1997,26:229–245.
    299. Steinbrecht RA. Odorant-binding proteins: Expression and function. Annals of the New YorkAcademy of Sciences.1998,855:323–332.
    300. Steinbrecht RA, stankiewicz BA. Molecular composition of the wall of insect olfactory sensilla-thechitin question. Journal of Insect Physiology.1999,45(8):785–790.
    301. Strader CD, Fong TM, Tota MR, Underwood D. Structure and function of G protein-coupledreceptors. Annual Review of Biochemistry.1994,63:101–132.
    302. Strandh M, Johansson T, Ahren D, Lofstedt C. Transcriptional analysis of the pheromone gland ofthe turnip moth, Agrotis segetum (Noctuidae), reveals candidate genes involved in pheromoneproduction. Insect Molecular Biology.2008,17:73–85.
    303. Sun YF, Qiao HL, Ling Y, Yang SX, Rui CH, Pelosi P, Yang XL. New analogues of(E)-β-farnesene with insecticidal activity and binding affinity to aphid odorant-binding proteins.Journal of Agricultural and Food Chemistry.2011,59:2456–2461.
    304. Sun YL, Huang LQ, Pelosi P, Wang CZ. Expression in antennae and reproductive organs suggestsa dual role of an odorant-binding protein in two sibling Helicoverpa species. PLoS ONE.2012,7:e30040
    305. Sun YL, Huang LQ, Pelosi P, Wang CZ. A lysine at the C-terminus of an odorant-binding proteinis involved in binding aldehyde pheromone components in two Helicoverpa Species. PLoS ONE.2013a,8: e55132.
    306. Sun M, Liu Y, Wang G. Expression patterns and binding properties of three pheromone bindingproteins in the diamondback both, Plutella xyllotella. Journal of Insect Physiology.2013b,59:46–55.
    307. Swier SR, Rings RW, Musick GJ. Reproductive behavior of the black cutworm, Agrotis ipsilon.Annals of the Entomological Society of America.1976,69:546–550.
    308. Swier SR, Rings RW, Musick GJ. Age-related calling behavior of the black cutworm, Agrotisipsilon. Annals of the Entomological Society of America.1977,70:919–924.
    309. Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular evolutionary genetics analysis (MEGA)software version4.0. Molecular Biology and Evolution.2007,24:1596–1599.
    310. Tang JD, Charlton RE, Jurenka RA, Wolf WA, Phelan PL, Sreng L, Roelofs WL. Regulation ofpheromone biosynthesis by a brain hormone in two moth species. Proceedings of the NationalAcademy of Sciences of the United States of America.1989,86:1806–1810.
    311. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windowsinterface: flexible strategies for multiple sequence alignment aided by quality analysis tools.Nucleic Acids Research.1997,25:4876–4882.
    312. Tillman JA, Seybold SJ, Jurenka RA, Blomquist GJ. Insect pheromones—an overview ofbiosynthesis and endocrine regulation. Insect Biochemistry and Molecular Biology.1999,29:481–514.
    313. Tumlinson JH, Teal PEA.in Pheromone Biochemistry, eds. Prestwich GD&BlomquistGJ.(Academic,Orlando, FL).1987, pp.3-26.
    314. Vaidehi N, Floriano WB, Trabanino R, Hall SE, Freddolino P, Choi EJ, Zamanakos G, GoddardWA3rd. Prediction of structure and function of G protein-coupled receptors. Proceedings of theNational Academy of Sciences of the United States of America.2002,99:12622–12627.
    315. Van den Berg MJ, Ziegelberger G. On the function of the pheromone binding protein in theolfactory hairs of Antheraea polyphernus. Journal of Insect Physiology.1991,37,79-85.
    316. Vandermoten S, Mescher M, Francis F, Haubruge E, Verheggen FJ. Aphid alarm pheromone: Anoverview of current knowledge on biosynthesis and functions. Insect Biochemistry and MolecularBiology.2012,42:155–163.
    317. van der Goes van Naters W, Carlson JR. Receptors and neurons for fly odors in Drosophila.Current Biology.2007,17:606-612.
    318. Visser JH. Host odor perception in phytophagous insects. The Annual Review of Entomology.1986,31:121–144.
    319. Vogel H, Heidel AJ, Heckel DG, Groot AT. Transcriptome analysis of the sex pheromone gland ofthe noctuid moth Heliothis virescens. BMC Genomics.2010,11:29.
    320. Vogt RG, Riddiford LM. Pheromone binding and inactivation by moth antennae. Nature.1981,293:161–163.
    321. Vogt RG, Riddiford LM, Prestwich GD. Kinetic properties of a sex pheromone-degrading enzyme:the sensillar esterase of Antheraea polyphemus. Proceedings of the National Academy of Sciencesof the United States of America.1985,82:8827–8831.
    322. Vogt RG, Riddiford LM. Scale esterase a pheromone degrading enzyme from the wing scales ofthe silk moth Antheraea polyphemus. Journal of Chemical Ecology.1986,12:469–482.
    323. Vogt RG. The molecular basis of pheromone reception: its influence on behavior. In PheromoneBiochemistry,(eds. Prestwich GD, Blomquist GJ) Academic Press, New York pp:1987,385–431.
    324. Vogt RG, Prestwich GD, Riddiford LM. Sex-pheromone receptor proteins: Visualization using aradiolabeled photoaffinity analog. The Journal of Biological Chemistry1988,263:3952–3959.
    325. Vogt RG, Kohne AC, Dubnau JT, Prestwich GD. Expression of pheromone binding proteins duringantennal development in the gypsy moth Lymantria dispar. Journal of Neurobiology.1989,9:3332–3346.
    326. Vogt RG, Prestwich GD, Lerner MR. Odorant-binding-protein subfamilies associate with distinctclasses of olfactory receptors neurons in insect. Journal of Neurobiology.1991a,22:74–84.
    327. Vogt RG, Rybczynski R, Lerner MR. Molecular cloning and sequencing of general-odorantbinding proteins GOBP1and GOBP2from the tobacco hawk moth Manduca sexta: Comparisonswith other insect OBPs and their signal peptides. The Journal of Neuroscience.1991b,11:2972–2984.
    328. Vogt RG, Rybczynski R, Cruz M, Lerner MR. Ecdysteroid regulation of olfactory proteinexpression in the developing antenna of the tobacco hawk moth, Manduca sexta. Journal ofNeurobiology.1993,24:581–597.
    329. Vogt RG, Rogers ME, Franco MD, Sun M. A comparative study of odorant binding protein genes:differential expression of the PBP1-GOBP2gene cluster in Manduca sexta (Lepidoptera) and theorganization of OBP genes in Drosophila melanogaster (Diptera). The Journal of ExperimentalBiology.2002,205:719–744.
    330. Vogt R G. Bioehdnieal diversity of odor detection:OBPs,ODEs,SNMPs.In:Insect PheromoneBiochemistry and Molecular Biotogy. Edited by Vogt RG Elsevier Academic Press.2003,392–445.
    331. Vogt RG, Miller NE, Litvack R, Fandino RA, Sparks J, Staples J, Friedman R, Dickens JC. Theinsect SNMP gene family. Insect Biochemistry and Molecular Biology.2009,39:448–456.
    332. Volpe JJ, Vagelos PR. Saturated fatty acid biosynthesis and its regulation. Annual Review ofBiochemistry.1973,42:21–60.
    333. Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, Axel R. A spatial map of olfactory receptorexpression in the Drosophila antenna. Cell.1999,96:725–736.
    334. Vosshall LB, Wong AM, Axel R. An olfactory sensory map in the brain. Cell.2000,102:147–159.
    335. Vosshall LB, Stocker RF. Molecular architecture of smell and taste in Drosophila. Annual Reviewof Neuroscience.2007,30:505-533.
    336. Vosshall LB, Hansson BS. A unified nomenclature system for the insect olfactory coreceptor.Chemical Senses.2011,36:497–498.
    337. Wakamura S, Struble DL, Matsuura H, Sato M, Kegasawa K. Sex pheromone of the blackcutworm moth, Agrotis ipsilon Hufnagel (Lepidoptera: Noctuidae): attractant synergist andimproved formulation. Applied Entomology and Zoology.1986,21:299–304.
    338. Wang GR, Wu KM, Guo YY. Cloning, expression and immunocytochemical localization of ageneral odorant binding protein gene from Helicoverpa armigera (Hubner). Insect Biochemistryand Molecular Biology.2003,33:115–124.
    339. Wang GR, Wu KM, Guo YY. Molecular cloning and bacterial expression of pheromone bindingprotein in the antennae of Helicoverpa armigera (Hübner). Archives of Insect Biochemistry andPhysiology.2004,57:15–27.
    340. Wang GR, Carey AF, Carlson JR, Zwiebel LJ. Molecular basis of odor coding in the malaria vectormosquito Anopheles gambiae. Proceedings of the National Academy of Sciences of the UnitedStates of America.2010,107:4418–4423.
    341. Wang G, Vásquez GM, Schal C, Zwiebel LJ, Gould F. Functional characterization of pheromonereceptors in the tobacco budworm Heliothis virescens. Insect Molecular Biology.2011,20:125–133.
    342. Wanner KW, Willis LG, Theilmann DA, Isman MB, Feng Q, Plettner E.(2004). Analysis of theinsect os-d-like gene family. Journal of Chemical Ecology.2004,30:889–911.
    343. Wanner KW, Nichols AS, Walden KK, Brockmann A, Luetje CW, Robertson HM. A honey beeodorant receptor for the queen substance9-oxo-2-decenoic acid. Proceedings of the NationalAcademy of Sciences of the United States of America.2007,104:14383–14388.
    344. Wetzel CH, Behrendt HJ, Gisselmann G, St rtkuhl KF, Hovemann B, Hatt H. Functionalexpression and characterization of a Drosophila odorant receptor in a heterologous cell system.Proceedings of the National Academy of Sciences of the United States of America.2001,98:9377–9380.
    345. Whalley P, Jarzembowski EA. A new assessment of Rhymella, the earliest known insect, from theDevonian of Rhynie, Scotland. Nature.1981,291–317.
    346. Wicher D, Sch fer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, Hansson BS.Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels.Nature.2008,452:1007–1011.
    347. Widmayer P, Heifetz Y, Breer H. Expression of a pheromone receptor in ovipositor sensilla of thefemale moth (Heliothis virescens). Insect Molecular Biology.2009,18:541–547.
    348. Witzgall P, Stelinski L, Gut L, Thomson D. Codling moth management and chemical ecology. TheAnnual Review of Entomology.2008,53:503–522.
    349. Witzgall P, Kirsch P, Cork A. Sex pheromones and their impact on pest management. Journal ofChemical Ecology.2010,36:80–100.
    350. Wogulis M, Morgan T, Ishida Y, Leal WS&Wilson DK. The crystal structure of an odorantbinding protein from Anopheles gambiae: Evidence for a common ligand release mechanism.Biochemical and Biophysical Research Communications.2006,339(1):157–164.
    351. Wojtasek H, Leal WS. Degradation of an alkaloid pheromone from the pale-brown chafer,Phyllopertha diversa (Coleoptera: Scarabaeidae), by an insect olfactory cytochrome P450. FEBSLetters.1999,458:333–336.
    352. Wu G, Robertson DH, Brooks CL3rd, Vieth M. Detailed analysis of grid-based molecular docking:a case study of CDOCKER-a CHARMm-based MD docking algorithm. Journal of ComputationalChemistry.2003,24:1549–1562.
    353. Xiang YY, Yang MF, Li ZZ. Sex pheromone components of the female black cutworm moth inChina: identification and field trials. Zoological Research.2009,30:59–64.
    354. Xiang YY, Yang MF, Li ZZ. Calling behavior and rhythms of sex pheromone production in theblack cutworm moth in China. Journal of Insect Behavior.2010,23:35–44.
    355. Xia Y, Wang G, Buscariollo D, Pitts RJ, Wenger H, Zwiebel LJ. The molecular and cellular basisof olfactory-driven behavior in Anopheles gambiae larvae. Proceedings of the National Academyof Sciences of the United States of America.2008,105:6433–6438.
    356. Xiu WM, Dong SL. Molecular characterization of two pheromone binding proteins andquantitative analysis of their expression in the beet armyworm, Spodoptera exigua Hübner. Journalof Chemical Ecology.2007,33:947–961.
    357. Xiu WM, Zhou YZ, Dong SL. Molecular characterization and expression pattern of twopheromone-binding proteins from Spodoptera litura (Fabricius). Journal of Chemical Ecology.2008,34:487–498.
    358. Xu PX, Zwiebel LJ, Smith DP. dentification of a distinct family of genes encoding atypicalodorant-binding proteins in the malaria vector mosquito, Anopheles gambiae. Insect MolecularBiology.2003,12:549–560.
    359. Xu P, Atkinson R, Jones DN, Smith DP. Drosophila OBP LUSH is required for activity ofpheromone-sensitive neurons. Neuron.2005,45:193–200.
    360. Xu YL, He P, Zhang L, Fang SQ, Dong SL, Zhang YJ, Li F. Large-scale identification ofodorant-binding proteins and chemosensory proteins from expressed sequence tags in insects.BMC Genomics.2009,10:632.
    361. Xu XZ, Xu Wei, Rayo Josep, Ishida Yuko, Leal Walter S, Ames James B. NMR structure of navelorangeworm moth pheromone-binding protein (AtraPBP1): Implications for pH-sensitivepheromone detection. Biochemistry.2010,49:1469–1476.
    362. Yao CA, Ignell R, Carlson JR. Chemosensory coding by neurons in the coeloconic sensilla of theDrosophila antenna. Journal of Neurobiology.2005,25:8359-8367.
    363. Yin J, Feng H, Sun H, Xi J, Cao Y, Li KB. Functional Analysis of General Odorant BindingProtein2from the Meadow Moth, Loxostege sticticalis L.(Lepidoptera: Pyralidae). PLoS ONE.2012,7: e33589.
    364. Ye J, Fang L, Zheng HK, Zhang Y, Chen J, Zhang ZJ, Wang J, Li ST, Li RQ, Bolund L, Wang J.WEGO: a web tool for plotting GO annotations. Nucleic Acids Research.2006,34: W293–W297.
    365. Yu F, Zhang S, Zhang L, Pelosi P. Intriguing similarities between two novel odorant-bindingproteins of locusts. Biochemical and Biophysical Research Communications.2009,385:369–374.
    366. Zacharuk RY, Shields VD. Sensilla of immature insect. The Annual Review of Entomology1991,36:331–354.
    367. Zhang SG, Maida R, Steinbrecht RA. Immunolocalization of odorant-binding proteins in noctuidmoths (Insecta, Lepidoptera). Chemical Senses.2001,26:885–896.
    368. Zhang ZC, Wang MQ, Zhang GA. Molecular cloning and expression of pheromone bindingprotein1from the diamondback moth, Plutella xylostella. Entomologia Experimentalis etApplicata.2009,133:136–145.
    369. Zhang GH, Li YP, Xu XL, Chen H, Wu JX. Identification and characterization of two generalodorant binding protein genes from the oriental fruit moth, Grapholita molesta (Busck). Journal ofChemical Ecology.2012a,38:427–436.
    370. Zhang TT, Mei XD, Feng JN, Berg BG, Zhang YJ, Guo YY. Characterization of threepheromone-binding proteins (PBPs) of Helicoverpa armigera (Hübner) and their bindingproperties. Journal of Insect Physiology.2012b,58:941–948.
    371. Zhong T, Yin J, Deng SS, Li KB, Cao YZ. Fluorescence competition assay for the assessment ofgreen leaf volatiles and trans-β-farnesene bound to three odorant-binding proteins in the wheataphid Sitobion avenae (Fabricius). Journal of Insect Physiology.2012,58:771–781.
    372. Zhou JJ, Zhang GA, Huang W, Birkett MA, Field LM, Pickett JA&Pelosi P. Revisitingodorant-binding protein LUSH of Drosophila melanogaster: evidence for odour recognition anddiscrimination. FEBS Letters.2004,558:23–26.
    373. Zhou JJ, Kan Y, Antoniw J, Pickett JA, Field LM. Genome and EST analyses and expression of agene family with putative functions in insect chemoreception. Chemical Senses.2006,31:453–465.
    374. Zhou JJ, He XL, Pickett JA, Field LM. Identification of odorant-binding proteins of the yellowfever mosquito Aedes aegypti: genome annotation and comparative analyses. Insect MolecularBiology.2008a,17:147–163.
    375. Zhou SH, Zhang J, Zhang SG, Zhang L. Expression of chemosensory proteins in hairs on wings ofLocusta migratoria (Orthoptera: Acrididae). Journal of Applied Entomology.2008b,132:439–450.
    376. Zhou JJ, Robertson G, He XL, Dufour S, Hooper AM, Pickett JA, Keep NH, Field LM.Characterisation of Bombyx mori odorant-binding proteins reveals that a general odorant-bindingprotein discriminates between sex pheromone components. Journal of Molecular Biology.2009,389:529–545.
    377. Zhou JJ. Odorant-binding proteins in insects. Vitamins&Hormones.2010,83:241–272.
    378. Zhou JJ, Vieira FG, He XL, Smadja C, Liu RH, Rozas J, Field LM. Genome annotation andcomparative analyses of the odorant-binding proteins and chemosensory proteins in the pea aphidAcyrthosiphon pisum. Insect Molecular Biology.2010a,19(Suppl.2):113–122.
    379. Zhou JJ, Field LM, He XL. Insect odorant-binding proteins: do they offer an alternative pestcontrol strategy? Outlooks on Pest Management.2010b,21:31–34.
    380. Zhou XH, Ban LP, Iovinella I, Zhao LJ, Gao Q, Felicioli A, Sagona S, Pieraccini G, Pelosi P,Zhang L, Dani FR. Diversity, abundance and sex-specific expression of chemosensory proteins inthe reproductive organs of the locust Locusta migratoria manilensis. Biological Chemistry.2013,394:43-54.
    381. Zhu JY, Zhao N, Yang B. Global transcriptional analysis of olfactory genes in the head of pineshoot beetle, Tomicus yunnanensis. Comparative and Functional Genomics.2012,2012:491748.
    382. Ziegelberger G. The multiple role of the pheromone-binding protein in olfactory transduction. CibaFoundation symposium.1996,200:267–280.
    383. Zwiebel LJ, Takken W. Olfactory regulation of mosquito-host interactions. Insect Biochemistryand Molecular Biology.2004,34:645–52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700