用户名: 密码: 验证码:
短距离水下布里渊脉冲无线通信关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年,电磁前兆场在洛伦兹介质和徳拜介质等色散介质中的传播分析和实验证明了布里渊前兆场的脉冲峰值代数衰减特性,这一研究成果激起了雷达探测、微波成像、超宽带通信等多个领域研究者的极大兴趣,形成了一个新的研究热点。但在水下通信领域尚无更深入的研究,因此本文从水下通信的角度对布里渊前兆场在淡水和海水中的传播特性进行了分析,探讨了水下短距离脉冲通信的可行性。
     在电磁场的稳态部分到达前出现的电磁振荡称为电磁前兆场,电磁前兆场包括高频谱能量主导的索末菲前兆场和低频谱能量主导的布里渊前兆场,其中布里渊前兆场因在色散介质中的幅度衰减速度小而备受关注。淡水和海水都属于色散介质,电磁波在色散介质中传播会受到相位色散和频率色散的相互作用,在传播几个吸收深度后,其传播过程逐渐演变为一个局部具有相对固定频率和衰减速度的且以恒定速度传播的余波行为。布里渊前兆场的传播受到介质的色散特性和初始信号能量频谱分布的影响,因此深入研究介质色散特性以及不同信号的频谱对布里渊前兆场的传播影响,对于选择或设计水下通信的脉冲信号,实现短距离、高带宽水下无线通信具有重要的意义。
     介质的色散特性是影响布里渊前兆传播的主要因素,而色散特性主要受介电常数的影响。淡水和海水的介电常数既有形式简单的理论模型,也有依据测量数据拟合出来的实际模型。本文在不同介电常数模型分析的基础上,以形式简单的理论模型完成了电磁场传播的近似表示和传播动态描述;给出了不同介质模型的鞍点动态、复相位函数以及电磁场传播的近似公式;验证了淡水和海水不同介质模型的鞍点动态、复相位函数动态以及布里渊前兆传播动态;分析了不同介电常数模型对布里渊前兆传播的影响。
     初始信号的频谱能量分布是影响布里渊前兆传播的另一个主要因素,因此必须要选择或设计适合水下通信的信号。信号在传播过程中的幅度衰减和时域宽度特性是衡量信号是否适合水下通信的标准。本文分别选取单脉冲超宽带信号、载波调制信号和双布里渊脉冲信号等三类八种信号,分析了不同信号在淡水和海水中不同相对传播距离上的传播动态;得到了不同输入信号幅度衰减和时域宽度特性;确定了双梯形脉冲作为水下脉冲通信的候选信号。
     在水下通信的自然环境中,既要考虑水体盐度和温度差异对水下通信的影响,又要确定脉冲的操作频率和时间间隔,它们决定通信范围和信道带宽的主要因素。本文在完成水体盐度、温度和脉冲频率对脉冲传播影响分析的基础上,重点分析了淡水50米范围内和海水1米范围内的双梯形脉冲的传播情况;综合考虑实际传播范围内的脉冲幅度和相对传播距离上的脉冲传播特性,给出了不同通信范围内可能达到的最大通信带宽,得出了在淡水5米范围内和海水0.1米范围内可以达到100MHz通信带宽的重要结论。
     本文作为水下脉冲通信的基础研究工作,详细地分析了淡水和海水的介质特性、布里渊前兆场的传播动态和不同信号的传播特性,选择了水下脉冲通信候选信号,预测了不同通信范围内的信道带宽,这些工作对水下通信的后续实验和信道建模具有一定的借鉴意义。
In recent years, the analysis and experiments of electromagnetic precursors fieldpropagation in Lorentz and Debye dispersive medium have proved Brillouinprecursors’ peak amplitude algebraic attenuation property. This research has arousedgreat interest of researchers in the fields of radar remote sensing, microwave imaging,ultra-wideband communications, and has became a new research focus. However,underwater communications has not been studied deeply, so Brillouin precursor fieldpropagation characteristics in freshwater and seawater were analyzed from the pointof view of the underwater communication, and the feasibility of underwater shortdistance pulse communication was discussed.
     The electromagnetic oscillations before the arrival of the steady-state portion ofthe electromagnetic field are called electromagnetic precursor field, which includesthe Sommerfeld precursor with high spectral energy and the Brillouin precursor withlow spectral energy. Brillouin precursor has been more concerned for itslow-attenuation in the dispersive medium. Freshwater and seawater are dispersivemedia. The electromagnetic wave propagating in a dispersive medium is interacted byphase dispersion and frequency dispersion, after spreading several absorption depthdistances, which will gradually evolves into a local mature dispersion regime with arelatively fixed frequency and decay rate at a constant speed. Brillouin precursor fieldpropagation is affected by the dispersion characteristics of the dielectric and the initialsignal energy spectrum distribution. Therefore, the depth study of the propagationeffects of the dielectric dispersion characteristics and the spectrum of the differentsignals on Brillouin precursor field has great significance for the selection or designof the underwater communication pulse signal, and then achieve the underwatercommunication in short distance with high bandwidth.
     The main factor that affects the Brillouin precursor propagation is the dispersioncharacteristics of the dielectric, which is mainly influenced by permittivity. Thedielectric constant models of freshwater and seawater have both the simple theoreticalmodel and the practical model using measurement data fitting. On the base of thedifference analysis between the dielectric constant models, approximaterepresentation and dynamic description of the electromagnetic field propagation havebeen completed in the form of a simple theoretical model; The approximate formulasof saddle point dynamics, complex phase function, as well as electromagnetic fieldpropagation are given with different dielectric constantmodels for freshwater andseawater; Saddle point dynamics, complex phase function, and Brillouin precursorpropagation dynamics are verified in freshwater and seawater with different dielectricmodel; Influence of different the dielectric constant model on Brillouin precursorpropagation are analyzed.
     The spectral energy distribution of the initial signal is another main factor toaffect the Brillouin precursor propagation, so the suitable signal form for underwatercommunication must be selected or designed. The amplitude attenuationcharacteristics and temporal width spreading characteristics of signal are standards tomeasure whether a signal is suitable for underwater communication. In the analysisprocess, three types of eight kinds of signals of single pulse ultra-wideband signals,carrier modulation signals and double Brillouin pulse signals are selected to analyzepropagation dynamics with relative propagation distance in freshwater and seawater,and to get the amplitude attenuation factor and the temporal width spreading factor ofthe propagation process, and the double trapezoidal pulse is selected as the candidateunderwater pulse communication signal.
     In underwater communication natural environment, it is necessary to considerthe influences of water salinity and temperature on the underwater communications,and the determination of the operating frequency and pulse intervals which determinethe communication range and bandwidth of the channel. On the basis of the analyzingof the influence of water salinity, temperature and pulse frequency of the pulse propagation, the study is focused on the double trapezoidal pulse propagation within50meters in freshwater and within1meter in seawater; the maximum possiblecommunication bandwidth within different communication range is predicted bycomprehensive consideration of the pulse amplitude with the actual propagationdistance and the pulse propagation characteristics with relative propagation distance,and then the important conclusion that the communication bandwidth can reach100MHz within5meters in freshwater and within0.1meter range in seawater isderived.
     As the basic research in underwater pulse communication, the details of thedielectric characteristics of freshwater and seawater, the Brillouin precursor fieldpropagation dynamics and the propagation characteristics of signals are analyzed, thecandidate pulse signal underwater communication is selected, and the communicationrange and channel bandwidth are predicted, which provide a reference for nextexperiments and underwater communication channel modeling.
引文
[1] Lanbo L, Shengli Z, Jun‐Hong C. Prospects and problems of wireless communication forunderwater sensor networks[J]. Wireless Communications and Mobile Computing,2008,8(8):977-994.
    [2] Goh J H, Shaw A, Al-Shamma'a A I. Underwater wireless communication system[C]. Journalof Physics: Conference Series. IOP Publishing,2009,178(1):12-29.
    [3] Shaneyfelt T, Joordens M A, Nagothu K, et al. RF communication between surface andunderwater robotic swarms[C].Automation Congress,2008. WAC2008. World. IEEE,2008:1-6.
    [4] Uribe C, Grote W. Radio communication model for underwater WSN[C]. New Technologies,Mobility and Security (NTMS),20093rd International Conference on. IEEE,2009:1-5.
    [5] Olhoeft G R. Electrical, magnetic, and geometric properties that determine ground penetratingradar performance[C]. Proceedings of GPR.1998,98:177-182.
    [6] Lukin, K. On the Description of Electromagnetic Signal Propagation through ConductingMedia[J]. ELECTROMAGNETIC PHENOMENA,2007,7(1):180-184..
    [7] Persson L, Asraf D E, Sigray P, et al. Bispectral analysis of underwater EM pulses[C].Higher-Order Statistics,1999. Proceedings of the IEEE Signal Processing Workshop on.IEEE,1999:357-361.
    [8] Meissner T, Wentz F J. The complex dielectric constant of pure and sea water from microwavesatellite observations[J]. Geoscience and Remote Sensing, IEEE Transactions on,2004,42(9):1836-1849.
    [9] Somaraju R, Trumpf J. Frequency, temperature and salinity variation of the permittivity ofseawater[J]. Antennas and Propagation, IEEE Transactions on,2006,54(11):3441-3448.
    [10] Shaw A, Al-Shamma'a A I, Wylie S R, et al. Experimental investigations of electromagneticwave propagation in seawater[C]. Microwave Conference,2006.36th European. IEEE,2006:572-575.
    [11] Al-Shamma'a A I, Shaw A, Saman S. Propagation of electromagnetic waves at MHzfrequencies through seawater[J]. Antennas and Propagation, IEEE Transactions on,2004,52(11):2843-2849.
    [12] Siegel M, King R. Electromagnetic propagation between antennas submerged in the ocean[J].Antennas and Propagation, IEEE Transactions on,1973,21(4):507-513.
    [13] Scott L, Smith G. Measurement techniques for antennas in dissipative media[J]. Antennas andPropagation, IEEE Transactions on,1973,21(4):499-507.
    [14] Williams E G, Valdivia N P. Near-Field Electromagnetic Holography in Conductive Media[J].Antennas and Propagation, IEEE Transactions on,2010,58(4):1181-1192.
    [15] Haskell R, Case C. Transient signal propagation in lossless, isotropic plasmas[J]. Antennasand Propagation, IEEE Transactions on,1967,15(3):458-464.
    [16] Cartwright N A, Oughstun K E. Ultrawideband pulse propagation through a homogeneous,isotropic, lossy plasma[J]. Radio Science,2009,44(4):1-11.
    [17] King R W P, Wu T T. The propagation of a radar pulse in sea water[J]. Journal of appliedphysics,1993,73(4):1581-1590.
    [18] Oughstun K E, Sherman G C. Propagation of electromagnetic pulses in a linear dispersivemedium with absorption (the Lorentz medium)[J]. JOSA B,1988,5(4):817-849.
    [19] Shen S, Oughstun K E. Dispersive pulse propagation in a double-resonance Lorentzmedium[J]. JOSA B,1989,6(5):948-963.
    [20] Sherman G C, Oughstun K E. Energy-velocity description of pulse propagation in absorbing,dispersive dielectrics[J]. JOSA B,1995,12(2):229-247.
    [21] Oughstun K E, Balictsis C M. Gaussian pulse propagation in a dispersive, absorbingdielectric[J]. Physical review letters,1996,77(11):2210-2213.
    [22] Balictsis C M, Oughstun K E. Generalized asymptotic description of the propagated fielddynamics in Gaussian pulse propagation in a linear, causally dispersive medium[J]. PhysicalReview E,1997,55(2):1910.
    [23] Oughstun K E, Smith P D. On the accuracy of asymptotic approximations in ultrawidebandsignal, ultrashort-pulse, time-domain electromagnetics[C]. Antennas and Propagation SocietyInternational Symposium,2000. IEEE. IEEE,2000,2:685-688.
    [24] Oughstun, K. Continuous Evolution of the Total Field. Electromagnetic and Optical PulsePropagation2, Springer US.144:503-677.
    [25] Solhaug J A, Oughstun K E, Stamnes J J, et al. Uniform asymptotic description of theBrillouin precursor in a single-resonance Lorentz model dielectric[J]. Pure and AppliedOptics: Journal of the European Optical Society Part A,1998,7(3):575.
    [26] T.M.Roberts. Measured Electromagnetic Pulses Verify Asymptotics and Analysis for Linear,Dispersive Media[J]. Journal of Electromagnetic Waves and Applications2006,20:774-777.
    [27] Safian R, Sarris C D, Mojahedi M. Joint time-frequency and finite-difference time-domainanalysis of precursor fieldsin dispersive media[J]. Physical Review E,2006,73(6):066602.
    [28] Abravanel M, Vazquez Alejos A, Dawood M. Experimental detection of Brillouin precursorthrough planar metallic slab in microwave frequencies[C]. Antennas and Propagation(APSURSI),2011IEEE International Symposium on. IEEE,2011:1902-1905.
    [29] Alejos A V, Dawood M, Sun J. Experimental analysis of Brillouin precursor formation in saltwater[C]. Antennas and Propagation (APSURSI),2011IEEE International Symposium on.IEEE,2011:3222-3224.
    [30] Alejos A V, Dawood M, Medina L. Experimental dynamical evolution of the Brillouinprecursor for broadband wireless communication through vegetation[J]. Progress InElectromagnetics Research,2011,111:291-309.
    [31] Alejos A V, Dawood M, Medina L. Experimental improvement of vegetation masses remotesensing by introducing analysis of Brillouin precursor[C]. Antennas and Propagation(APSURSI),2011IEEE International Symposium on. IEEE,2011:3245-3248.
    [32] Alejos A V, Dawood M, Mohammed H U. Analysis of Brillouin precursor propagationthrough foliage for digital sequences of pulses[J]. Geoscience and Remote Sensing Letters,IEEE,2011,8(1):59-63.
    [33] Alejos A V, Dawood M, Sun J X. Dynamical evolution of Brillouin precursors in multilayeredsea water-based media[C]. Antennas and Propagation (EUCAP), Proceedings of the5thEuropean Conference on. IEEE,2011:1357-1361.
    [34] McConnell J R, McConnell J R. Rotational Brownian motion and dielectric theory[M].London: Academic Press,1980.
    [35] Cartwright N. Low frequencies and the Brillouin precursor[J]. Antennas and Propagation,IEEE Transactions on,2011,59(5):1571-1579.
    [36] Cartwright N A. Low frequencies and peak amplitude in UWB pulse propagation[C].Electromagnetic Theory (EMTS),2010URSI International Symposium on. IEEE,2010:604-607.
    [37] Dawood M, Mohammed H U R, Alejos A V. Experimental detection of Brillouin precursorsthrough tap water at microwave frequencies[J]. Electronics letters,2010,46(25):1645-1647.
    [38] Mohammed H U R, Dawood M, Alejos A V. Experimental detection and characterization ofBrillouin precursor through loamy soil at microwave frequencies[J]. Geoscience and RemoteSensing, IEEE Transactions on,2012,50(2):436-445.
    [39] Zhang H, Zhang G, Gulliver T A. Brillouin precursor propagation through water with staticconductivity[C]. Communications, Computers and Signal Processing (PacRim),2011IEEEPacific Rim Conference on. IEEE,2011:160-165.
    [40] Oughstun K E. Beer's law and the unique penetration properties of the Brillouin precursor incomplex media[C]. Antennas and Propagation Society International Symposium (APSURSI),2010IEEE. IEEE,2010:1-4.
    [41] Oughstun K E. Dynamical evolution of the Brillouin precursor in Rocard-Powles-Debyemodel dielectrics[J]. Antennas and Propagation, IEEE Transactions on,2005,53(5):1582-1590.
    [42] Solhaug J A, Oughstun K E, Stamnes J J, et al. Uniform asymptotic description of theBrillouin precursor in a single-resonance Lorentz model dielectric[J]. Pure and AppliedOptics: Journal of the European Optical Society Part A,1998,7(3):575–602.
    [43] Cartwright N A. Uniform Asymptotic Description of the Unit Step Function ModulatedSinusoidal Signal[D]. University of Vermont,2004.
    [44] Cartwright N A, Oughstun K E. Ultrawideband pulse penetration in an isotropic collisionlessplasma[C].2007CNC/USNC North American Radio Science Meeting.2007,502.
    [45] Wyns P, Foty D P, Oughstun K E. Numerical analysis of the precursor fields in lineardispersive pulse propagation[J]. JOSA A,1989,6(9):1421-1429.
    [46] Melamed T, Felsen L B. Pulsed-beam propagation in lossless dispersive media. II. Anumerical example[J]. JOSA A,1998,15(5):1277-1284.
    [47] Xiao H, Oughstun K E. Hybrid numerical–asymptotic code for dispersive-pulse propagationcalculations[J]. JOSA A,1998,15(5):1256-1267.
    [48] Dvorak S L, Dudley D G. Propagation of ultra-wide-band electromagnetic pulses throughdispersive media[J]. Electromagnetic Compatibility, IEEE Transactions on,1995,37(2):192-200.
    [49] Jones J. On the propagation of a pulse through a dispersive medium[J]. American Journal ofPhysics,1974,42:43.
    [50] He S, Str m S. Time-domain wave splitting and propagation in dispersive media[J]. JOSA A,1996,13(11):2200-2207.
    [51] Wait J R. Propagation of pulses in dispersive media(Distortion of electromagnetic pulse afterpropagating through dispersive channel, using approximate procedures and obtainingtransient response)[J]. JOURNAL OF RESEARCH,1965,69:1387-1401.
    [52] Knop C. Pulsed electromagnetic wave propagation in dispersive media[J]. Antennas andPropagation, IEEE Transactions on,1964,12(4):494-496.
    [53] Kelley B, Manoj K, Jamshidi M. Broadband RF communications in underwater environmentsusing multi-carrier modulation[C]. Systems, Man and Cybernetics,2009. SMC2009. IEEEInternational Conference on. IEEE,2009:2303-2308.
    [54] King R W P. The propagation of a Gaussian pulse in sea water and its applicaiton to remotesensing[J]. Geoscience and Remote Sensing, IEEE Transactions on,1993,31(3):595-605.
    [55] Margetis D. Pulse propagation in sea water[J]. Journal of applied physics,1995,77(7):2884-2888.
    [56] sterberg U, Andersson D, Lisak M. On precursor propagation in linear dielectrics[J]. Opticscommunications,2007,277(1):5-13.
    [57] Sun J, Alejos A V, Dawood M. Under-sea remote sensing using Brillouin precursors[C].Antenna Technology (iWAT),2011International Workshop on. IEEE,2011:222-226.
    [58] Laurens J E K, Oughstun K E. Electromagnetic impulse response of triply-distilled water[C].Ultra-Wideband Short-Pulse Electromagnetics4,1998. IEEE,1998:243-264.
    [59] Chen P, Xu X. Impact of rough surface on Brillouin precursors in lossy and dispersive mediausing FDTD simulation[C]. Antennas and Propagation (APSURSI),2011IEEE InternationalSymposium on. IEEE,2011:247-250.
    [60] Chen P, Xu X. Numerical study of the scattered Brillouin precursors from an infinite cylinderin lossy dispersive media[C]. Antennas and Propagation (APSURSI),2011IEEEInternational Symposium on. IEEE,2011:3237-3240.
    [61] Safian R. Numerical evaluation of the scattering of Brillouin precursors from targets insidewater[J]. Antennas and Propagation, IEEE Transactions on,2010,58(2):616-620.
    [62] Safian R, Mirzaei H, Elhami H. Detection of objects inside water exploiting the Brillouinprecursors[C]. Radar Conference,2009. EuRAD2009. European. IEEE,2009:517-520.
    [63]丰雷,刘忠乐.基于水下通讯的横波电场特性研究[J].水雷战与舰船防护,2006,1:25-27.
    [64]陈聪,周骏,龚沈光.海水中电磁波传播特性的研究[J].海军工程大学学报,2004,16(2):61-64.
    [65]张玉民,物理学,戚伯云.电磁学[M].科学出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700