用户名: 密码: 验证码:
冷季豆品质性状近红外模型建立及区域分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
豌豆(Pisum sativum L.)和蚕豆(Vicia faba L.)是我国重要的冷季食用豆类作物,营养丰富,分布广泛,品种多样,是重要的种质资源。一直以来,国际市场都将食用豆作为高价值高价格产品进行贸易,随着我国生活水平的提高,人们对食用豆健康营养的消费需求越来越强。面对外部市场需求的不断扩大,做好豌豆和蚕豆的种质品质性状研究,既有利于种质选种育种和产地种植,也为加工储运、工艺和设备选择提供依据。
     本研究以品质性状为主线,通过化学方法检测了256份豌豆和244份蚕豆中蛋白质、淀粉、脂肪和总多酚的含量,探讨了品质性状间的相关性,并筛选出了品质性状相对含量较高的豌豆96份次,蚕豆种质102份次,分别占37.5%和41.8%。
     采用目测法,研究了豌豆种质表观性状粒形、粒色和脐色的单项和组合,蚕豆种质的粒长、粒色和脐色单项和组合与品质性状的关系,其中品质性状随单项或多项表观性状均有显著差异特点(P<0.05)。表观性状组合预估品质的准确度范围为57.1%~100%,变异系数较小。
     本文研究了豌豆和蚕豆种质品质性状的快速筛选方法。在25℃条件下,通过探讨仪器分辨率、扫描次数以及样品粒径对粉末样品平均光谱和SD光谱的影响,明确了本实验中适宜建模条件为分辨率16cm-1,扫描次数64次,样品粉末粒度60目。以豌豆籽粒模型为例,对影响模型的稳健性的样品温度和籽粒水分含量因素进行了探讨,发现扫描温度和含水量越接近建模样品条件,模型稳定性越好。
     以化学检测数据为参考值,采用偏最小二乘法(PLS),对190份豌豆和244份蚕豆的粉末和籽粒建立了近红外回归模型,粉末模型整体优于籽粒模型,其中豌豆粉末蛋白质、淀粉、脂肪和总多酚模型的相关系数分别为0.99、0.99、0.94和0.95;籽粒蛋白质、淀粉、脂肪和总多酚模型的相关系数分别为0.97、0.95、0.94和0.94;蚕豆粉末蛋白质、淀粉、脂肪和总多酚模型的相关系数分别为0.97、0.93、0.81和0.89,蚕豆籽粒蛋白质、淀粉、脂肪和总多酚模型的相关系数分别为088、0.89、0.81和0.84。相关系数较高说明豌豆和蚕豆近红外模型具有较高预测准确度。
     应用两步聚类分析,研究了冷季豆的主要品质性状和产地区域的关系,分别得到豌豆种质的品质-产地聚类模式:聚类1低蛋白质含量-北部中部区,聚类2低淀粉含量-西部区,聚类3高蛋白质、淀粉和脂肪含量-西南部区;蚕豆种质的品质-产地聚类模式:聚类1高脂肪含量-西南部区,聚类2高蛋白质含量-东、北部中部区,聚类3高淀粉和脂肪含量-西部区。产地聚类模式与播种期、经度、纬度和海拔高度对冷季豆品质性状的实际影响相一致。
Field pe(aPisum sativum L.)and faba bean (Vicia faba L.) are important cold-season grain legumescultivated in China. Cold-season grain legumes are popularly nutritional sources of rich protein,carbohydrates and fiber, as well as many total polyphenol, essential vitamins and minerals but low oiland sodium. Both legumes are grown at altitude from hundreds meters to three or four thousands metersfar from city pollution and low fertilizer needed, in which ecological environment are clean and healthy.In global trade, field pea and faba bean are always considered as high-value products due to nutrientvalue and excellent ecological environment, as well as expensive labor cost. Consumers have becomemore health conscious, demanding and willing to pay for the “good quality”. Quality traits of the foodlegumes are essential identify index for the choice of germplasm resource, food procedure and evenprocessing equipments designed.
     This research analyzed the content of protein, starch, oil and total polyphenol in field pea (256varieties) and faba bean (244varieties) by chemical methods. The coefficient of correlation (r2) betweenquality traits was calculated. The legumes germplasm with excellent quality traits were screened and atotal of96pea accessions and102faba bean accessions were obtained, with the ratio of37.5%and41.8%, respectively.
     By visual-observe method, the relation between apparent traits (seed shape, seed coat color andhilum color) and quality traits of pea accessions were researched. The difference of quality traits of peaaccessions in certain sorts of seed shapes, seed coat color and hilum color was significant (P<0.05).Also faba bean did in certain sorts of seed length, seed coat colors and hilum colors be significant (P<0.05). Range of accuracy of prediction by combined apparent traits was from57.1%to100%withlower value of coefficient of variation.
     Feasibility of the Fourier Transform Near-Infrared Spectroscopy (FT-NIRS) on estimating qualitytraits in pea and faba bean were evaluated in current study, respectively. Firstly, using pea powder assample, the influence of scanning conditions, such as different resolution, different scan times andsample granularity, were identified to unify the scanning term to get high quality spectra. Spectra wereobtained by Matrix-I FT-NIR spectrometer (Bruker Optics, Ettlingen, German) at25℃with repeated9times at different levels of resolutions, scan times and particle size and performed by OPUS6.5foraverage spectrum. By the difference of value of absorption bands and SD patterns of the average spectra,optimal scanning conditions were resolution of16cm-1, scanning of64times, and sample particle sizeof60mush.
     Secondly, estimation models were developed for protein, starch, oil, and total polyphenol of peaand faba bean using near infrared spectroscopy (NIRS), respectively. A total of190pea samples weremeasured in both milled powder and intact seed forms. Partial least squares (PLS) regression wasapplied for model development. The optimal models were powder-based for protein and starch withresidual predictive deviation (RPD) of5.88and5.82as well as coefficients of correlation (r2) of0.99 and0.99, respectively. The optimal models were seed-based for protein, starch, oil and total polyphenolwith coefficients of correlation (r2) of0.97,0.95,0.94, and0.94, respectively. High values of correlationcoefficient (r2) revealed that models had good predictive capacities for rapid germplasm analysis of pea.A total of244faba bean samples were also measured in both milled powder and intact seed forms.Models of powder were generally superior to models in intact seed. The optimal seed powder-basedmodels for protein, starch, oil and total polyphenol had coefficients of correlation (r2) of0.97,0.93,0.81,and0.89, respectively. The optimal models of faba bean were seed-based for protein, starch, oil andtotal polyphenol with coefficients of correlation (r2) of0.88,0.89,0.81, and0.84, respectively. Thirdly,the influence of temperature and water content of samples for prediction of pea seed models of proteinand starch were measured. The results showed robust prediction were obtained when temperature andwater content of samples were close to the condition of samples in calibration set. Temperature regionwas above15℃and best at25℃. The content of water was below11.2%near to calibration samplesof ambient temperature drying.
     To explore the relationship between quality traits and producing regions,150pea varieties withspecific information were analyzed by two-step cluster analysis. Three distinct groupings were obtainedwith obvious features. Group1was in low protein content at production area of North and Central China.Group2was in low starch content at production area of West China. Group3was in high protein, starchand oil content at production area of Southwest China. The clustering accuracy was62.5%. Therelationship between nutrient contents and producing areas of faba bean accessions were determined bytwo-step cluster analysis. Three distinct groupings of faba bean were obtained with region-constituentfeatures, i.e., Group1of high oil at production area of Southwest China, Group2of high protein atproduction area of North and Central China, and Group3of high starch as well as total polyphenol atproduction area of West China. The clustering accuracy was79.5%. The value of clustering accuracymight be related with influence of cultivating location on survive of the crops. Moreover, the nutritioncontents were affected by seeding date, longitude, latitude, and altitude of plant location. Clusteranalysis revealed that the contents of quality traits in both legumes were strongly influenced bygeographical factors.
引文
1.甘莉,孙秀丽,金良,等. NIRS定量分析油菜种子含油量、蛋白质含量数学模型的创建.中国农业科学,2003,36(12):1609~1613。
    2.毕京翠,张文伟,肖应辉,等.应用近红外光谱技术分析稻米蛋白质含量.作物学报,2006,05:709~715。
    3.蔡国伟,孙正龙,孔令国,等.基于两步聚类法的受扰机群同调性分析.中国电力,2013,46(2):46~49。
    4.陈惠,杨润强,韩永斌,等.发芽蚕豆富集γ-氨基丁酸的培养液组分优化.中国粮油学报,2011(11):27~31。
    5.陈文杰,谭小力,王竹云,等.用傅立叶变换近红外光谱仪测定油菜种子品质指标的研究.陕西农业科学,2002(8):6~9。
    6.褚小立,袁洪福,王艳斌,等.近红外稳健分析校正模型的建立(Ⅰ)-样品温度的影响.光谱学与光谱分析,2004,24(6):666~671。
    7.褚小立,袁洪福.近红外光谱分析技术发展和应用现状.现代仪器,2011,5:1~4。
    8.崔再兴,李玲.豌豆的特征特性及开发利用价值.杂粮作物,2010,30(2):154~155。
    9.杜双奎,杨红丹,于修烛,等.食用豆粉功能特性与糊化特性.中国食品学报,2011,11(2):77~86。
    10.傅翠真,胡谟彪,曹永生,等.西部地区食用豆类营养特点及其利用.西南农业学报,1997,10(2):62~66。
    11.傅翠真,李安智,张丰德,等.中国食用豆类营养品质分析研究与评价.中国粮油学报,1991,6(4):8~11。
    12.贺晨帮,宗绪晓.豌豆种质资源形态标记遗传多样性分析.植物遗传资源学报,2011,12(1):42~48。
    13.黄敏.盐酸左旋多巴甲酯滴眼液的研制及药效学机制的初步研究[硕士学位论文].广西医科大学,2008。
    14.李国明,叶俊生,郑国红,等.左旋多巴-壳聚糖微球的制备及其释药性能.应用化学,2007,(9):1062~1065。
    15.李君霞,闵顺耕,张洪亮,等.水稻糙米粗蛋白近红外光谱定量分析模型的优化研究.光谱学与光谱分析,2006,26(5):833~837。
    16.李君霞,张洪亮,严衍禄,等.水稻蛋白质近红外定量模型的创建及在育种中的应用.中国农业科学,2006,39(4):836~841。
    17.李玲.国内豌豆种质资源形态性状多样性分析[硕士学位论文].北京:中国农业科学院,2009。
    18.李楠,许韵华,宋雯雯,等.利用近红外光谱技术快速检测大豆氨基酸含量.植物遗传资源学报,2012,13(6):1037~1044。
    19.李宁,闵顺耕,覃方丽,等.近红外光谱法非破坏性测定黄豆籽粒中蛋白质、脂肪含量.光谱学与光谱分析,2004,24(1):45~49。
    20.李伟平.构建重组大肠杆菌生物合成左旋多巴[硕士学位论文].江南大学.2005。
    21.李雪琴,裘爱泳.蚕豆生理活性物质研究进展.粮食与油脂,2002,(7):34~35。
    22.李艳红.鹰嘴豆蛋白酶解物的制备及其抗氧化肽的研究[博士学位论文].江南大学,2008。
    23.李勇文.左旋多巴甲酯对斜视性弱视猫模型的作用[硕士学位论文].广西医科大学.2010。
    24.李兆丰,顾正彪,洪雁.豌豆淀粉的研究进展.食品与发酵工业,2003,29(10):70~74。
    25.刘凤芹,徐东旭,包克发,等.冀西北地区蚕豆优异资源产量性状分析.中国种业,2010,(7):56~58。
    26.刘明,谭斌,田晓红,等.七种食用豆化学组成及挤压加工特性研究.食品科技,2010,35(8):189-197。
    27.刘秀菊,冬性蚕豆种质资源遗传多样性分析[硕士学位论文].中国农业科学院.2007。
    28.罗长兵,陈立伟,严衍禄,等.小麦PLS近红外定量分析中温度修正的研究.光谱学与光谱分析,2007,27(10):1993~1996。
    29.罗栋源.从猫豆中提取左旋多巴的生产工艺[硕士学位论文].湖北工业大学,2011。
    30.马进福,青海高原冷季豌豆生产发展现状与对策.现代农业科技,2008,15:124~126。
    31.马毓霞,王勇,高阳,等.大豆膳食纤维多功能活化研究.粮油食品科技,2005,13(5):35~36。
    32.闵顺耕,李宁,张明祥.近红外光谱分析中异常值的判别与定量模型优化.光谱学与光谱分析,2004,24(10):1205~1209。
    33.闵顺耕,覃方丽,李宁,等.傅里叶变换近红外光谱法测定大麦种蛋白质、淀粉和赖氨酸含量.分析化学,2003,31(7):843~845。
    34.牛晓颖.基于傅立叶变换近红外光谱的绍兴黄酒风味成分定量分析及其酒龄鉴别的研究[博士学位论文].浙江大学,2009。
    35.庞文,杨示英,宗绪晓,等.广西原产和外引蚕豆种质资源鉴定评价.植物遗传资源科学,2002,3(4),39~43。
    36.彭学君.聚类分析在数据挖掘中的应用探究.科教文汇,2007,(26):216。
    37.彭珍荣.万品珍. L-酪氨酸合成L-多巴的研究.氨基酸杂志,1989(4):l~2。
    38.秦华俊.近红外光谱分析技术在食品、饲料中的应用研究[硕士学位论文].南昌大学,2007。
    39.石永峰.豌豆的营养价值及其加工技术.粮食与饲料工业,1994,4:21~23。
    40.宋敏.吉林省野豌豆属植物遗传多样性研究[硕士学位论文].吉林农业大学,2011。
    41.宋庆明.蚕豆肽制备及其生物活性的研究[硕士学位论文].天津科技大学,2009。
    42.孙君明,韩粉霞,闫淑荣,等.傅里叶近红外反射光谱法快速测定大豆脂肪酸含量.光谱学与光谱分析,2008,28(6):92~97。
    43.谭斌,任保中.中国食用豆类资源深度开发利用的思考.稻米品质测控及美味技术-2006中日学术研讨会论文集,2006。
    44.王春明,刘洋.蚕豆组成及加工利用进展.农业机械,2011,6(17):91~93。
    45.王冬,叶升锋,闵顺耕,等.近红外光谱分辨率对液体样品近红外定量模型影响的研究.光谱学与光谱分析,2009,29(7):1813~1817。
    46.王海飞,关建平,马钰,等.中国蚕豆种质资源ISSR标记遗传多样性分析.作物学报,2011,37(4):595~602。
    47.王海飞,关建平,孙雪莲,等.世界蚕豆种质资源遗传多样性和相似性的ISSR分析.中国农业科学,2011,44(5):1056~1062。
    48.王海飞.蚕豆种质资源遗传多样性分析及分子标记开发[硕士学位论文].中国农业科学院,2011。
    49.王惠文.偏最小二乘回归方法及其应用.北京:国防工业出版社,1999。
    50.王韬,张录达,劳彩莲,等. PLS回归法建立适应温度变化的近红外光谱定量分析模型.中国农业大学学报,2004,9(6):76~79。
    51.王文真.在近红外光谱定量分析中应注意的几个问题,现代科学仪器,1996,1,24~25。
    52.王学顺.近红外光谱信息提取及其在木材材性分析中的应用研究[博士学位论文].东北林业大学.2010。
    53.王志刚.菜用豌豆种质资源形态性状遗传多样性分析[硕士学术论文],北京:中国农业科学院,2009。
    54.吴春芳,唐益其,姜永平,等.蚕豆育种研究进展(Ⅱ)蚕豆育种目标、方法及展望.上海农业学报,2007,23(3):113~116。
    55.吴东儒,李振华,赵帜平,等.蚕豆外源凝集素的研究.安徽大学学报(自然科学版),1983,(2):95~102。
    56.吴静珠,李慧,王克栋,等.光谱预处理在农产品近红外模型优化中的应用研究.农机化研究,2011,3:178~181。
    57.吴静珠,刘翠玲,邢素霞,等.光谱分辨率的选取对食用油近红外模型性能影响分析.北京工商大学学报(自然科学版),2012,01:66~68。
    58.吴静珠,王一鸣,张小超,等.近红外光谱分析中定标集样品挑选方法研究.农业机械学报,2006,04:80~82。
    59.吴静珠,王一鸣,张小超,等.样品状态与装样条件对近红外光谱测定的影响研究.现代科学仪器,2006,01:69~71。
    60.吴志强,杨江丽.两步聚类分析在图书馆门禁数据挖掘中的研究.四川图书馆学报,2012,(3):13~17。
    61.严清彪,刘玉皎.不同蚕豆品种的品质分析.安徽农业科学,2012,40(31):15153~15154。
    62.严衍禄.近红外光谱分析基础与应用.北京:中国轻工业出版社,2005。
    63.阎娥,刘建利,原江锋,等.蚕豆壳中原花青素的提取及抗氧化性研究.食品工业科技,2009,30(2):65~67。
    64.杨丹,刘新,刘洪刚,等.近红外光谱分辨率对绿茶氮含量模型的影响.光谱学与光谱分析,2013,33(7):1786~1790。
    65.杨菁,迟德钊,刘玉皎,等.基于形态性状的青海蚕豆核心种质的初步构建.分子植物育种,2009,7(3):599~606。
    66.杨菁,青海不同生态条件不同基因型蚕豆蛋白质含量差异的研究.北方园艺,2010,(6):69~71。
    67.杨小红,郭玉秋,傅旸,等.利用近红外光谱分析玉米籽粒脂肪酸含量的研究.光谱学与光谱分析,2009,29(1):108~111。
    68.叶楠,周梅华,蔡建林.我国新能源汽车潜在采用者两步聚类分析.广东广播电视大学学报,2012,4:97~100。
    69.叶茵,中国蚕豆学.北京:中国农业出版社,2003。
    70.尹洪波,陈坚,李静,等.左旋多巴的酶法合成.生物技术,1998,(2):5~8。
    71.于平福,黄凤珠.基于两阶段聚类法的荔枝果实主要性状分析.安徽农业科学,2005,33(9):1630~1632。
    72.袁星星,陈新,陈华涛,等.中国南方菜用豌豆新品种及高产栽培技术.作物研究,2010,24(3):192~194。
    73.袁星星,陈新,陈华涛,等.适合中国南方栽培的蚕豆新品种及其高产栽培技术.江苏农业科学,2010,5,206~208。
    74.张环,车宗贤,李玉芳.用近红外光谱法测定大麦品质的研究.甘肃农业科技,2009,(3):6~9。
    75.张灵帅,王卫东,谷运红,等.水分含量对近红外测定小麦蛋白质含量的影响.安徽农业科学.2010,38(1):96~97。
    76.张乾元,韩冬,李铎.黄豌豆营养成分和功能研究进展.食品科技,2012,37(6):141~144。
    77.赵丽丽,赵龙莲,李军会,等.傅里叶变换近红外光谱仪扫描条件对数学模型预测精度的影响.光谱学与光谱分析,2004,24(1):41~44。
    78.赵晓云.全国春秋蚕豆农艺性状研究.研究初报.甘肃农业科技,1999,11:13~14。
    79.郑冬梅.豆渣膳食纤维提取工艺预处理条件的研究.食品科学,2005,26(9):340~346。
    80.郑建仙.功能性食品.北京:中国轻工业出版社,1995。
    81.郑卓杰,王述民,宗绪晓.中国食用豆类学.北京:中国农业出版社,1997。
    82.周俊玲,张蕙杰.食用豆国际贸易情况分析.中国食物与营养,2011,17(10):45~47。
    83.朱志华,李为喜,张晓芳,等.食用豆类种质资源粗蛋白及淀粉含量的评价.植物遗传资源学报,2005,6(4):427~430。
    84.朱志华,王文真,刘三才,等.近红外漫反射光谱分析技术在作物种质资源品质性状鉴定中的应用.现代科学仪器,2006,(1):63~66。
    85.诸立伟,杨莅,许国忠.思利巴治疗大龄弱视儿童的疗效.实用医学杂志,2009,(25)2:283~284。
    86.祝诗平,王一鸣,张小超,等.基于遗传算法的近红外光谱谱区选择方法.农业机械学报,2004,(5).152~156。
    87.宗绪晓,关建平,顾竟,等.中国和国际豌豆核心种质群体结构与遗传多样性差异分析.植物遗传资源学报,2009,10(3):347~353。
    88.宗绪晓,Ford R,Redden R R,等.豌豆属(Pisum)SSR标记遗传多样性结构鉴别与分析.中国农业科学,2009,42(1):36~46。
    89.宗绪晓,包世英,关建平等编著,蚕豆种质资源描述规范和数据标准.北京:中国农业出版社,2006。
    90.宗绪晓,关建平,王海飞,等.世界栽培豌豆(Pisum sativum L.)资源群体结构与遗传多样性分析.中国农业科学,2010,43(2):240~251。
    91.宗绪晓,关建平,王述民,等.中国豌豆地方品种SSR标记遗传多样性分析.作物学报,2008,34(8):1330~1338。
    92.宗绪晓,王志刚,关建平.豌豆种质资源描述规范和数据标准.北京:中国农业出版社,2005:1~2。
    93.宗绪晓.蚕豆的营养特点加工技术和利用途径.中国粮油学报,1993,8(S1):51~54。
    94. Allenetal A. K., Purification of the glycoprotein lectin from the broad bean (Vicia faba) and acomparison of its properties with lectins of similar specificity. Biochemical Journal,1976,155(1):127–135.
    95. Alonso R., Orue, E., Marzo, F. Effects of extrusion and conventional processing methods onprotein and antinutritional factor contents in pea seeds. Food Chemistry,1998,63(4):505-512.
    96. Amarowicz R., Pegg R. B., Legumes as a source of natural antioxidants. European Journal ofLipid Science and Technology,2008,110(10):865-878.
    97. Ambigaipalan P., Hoover R., Donner E., et al., Structure of faba bean, black bean and pinto beanstarches at different levelsof granule organization and their physicochemical properties. FoodResearch International,201144(9):2962–2974.
    98. Amin M.N., Hossain M.A., Roy K.C., Effects of moisture content on some physical properties oflentil seeds. Journal of Food Engineering,2004,65(1):83–87.
    99. Arkinson V. P.T., Meat-Like Protein Food Product [P].United States Patent,3488770A.1970.
    100. Armour J. C., Perera R. L. C., Buchan W. C., et al. Protease inhibitors and lectins in soya beansand effects of aqueous heat-treatment. Journal of the Science of Food and Agriculture,1998,78(2):225-231.
    101. Babic V., Jelena V., Prodanovi S., Andjelkovic V., Babic M., Kravi N., The identification ofdrought tolerant maize accessions by the two-step cluster analysis. Romanian agriculturalresearch.2012,29:53-61
    102. Bao J. S., Cai Y. Z., Corke H., Prediction of rice starch quality parameters by near-infraredreflectance spectroscopy. Journal of Food Science,2001,66(7):936-939.
    103. Barnes R. J., Dhanoa M. S., Lister S. J., Standard normal variate transformation and de-trendingof near-infrared diffuse reflectance spectra. Applied Spectroscopy,1989,43(5):772-777.
    104. Bicakci Z., A hemolysis trigger in glucose-6-phosphate dehydrogenase enzyme deficiency Viciasativa (Vetch). Saudi Medical Journal,2009,30(2):292-294.
    105. Binder D. A., Bayesian Cluster Analysis. Biometrika.1978,65(1):31-38.
    106. Bishnoi S., Khetarpaul N., Protein digestability of vegetables and field peas (Pisum sativum)varietal differences and effect of domestic processing and cooking methods. Plant Foods forHuman Nutrition,1994,46(1):71-76.
    107. Blackman G. E., Black J. K., Physiological and ecological studies in the analysis of plantenvironment.11. A further assessment of the influence of shading on the growth of differentspecies in the vegetative phase. Annals of Botany.1959,23(89):51-63.
    108. Blackman G.E., Wilson G. L., Physiological and ecological studies in the analysis of plantenvironment. VII. An analysis of the differential effects of light intensity on the net assimilationrate, leaf-area ratio, and relative growth rate of different species. Annals of Botany.1951,15(3):373-408.
    109. Blackman G.E., Wilson G. L., Physiological and ecological studies in the analysis of plantenvironment. VI. The constancy for different species of a logarithmic relationship between netassimilation rate and light intensity and its ecological significance. Annals of Botany.1951,15(1):63-94.
    110. Boschin G., Arnoldi A., Legumes are valuable sources of tocopherols. Food Chemistry,2011,127(3):1199–1203.
    111. Bressani R., Chon C., Effects of altitude above sea level on the cooking time and nutritional valueof common beans. Plant Foods for Human Nutrition,1996,49(1):53-61.
    112. Bressani R., Elias L.G., The nutritional role of polyphenols in beans. In J.H. Hulse, Polyphenolsin cereals and legumes. Canada: IDRC,1980.
    113. Caligari S., Lupin (Lupinus albus) protein isolate (L-ISO) has adequate nutritional value andreduces large intestinal weight in rats after restricted and ad libitum Feeding. NutritionMetabolism,2006,50(6):528-537.
    114. arman K., Some Physical Properties of Lentil Seeds. Journal of Agricultural EngineeringResearch,1996,63(2):87–92.
    115. Choi W. S., Han J, H., Physical and mechanical properties of pea-protein-based edible films.Journal of Food Science.2001,66(2):319-322.
    116. Chung H. J., Liu, Q., Physicochemical properties and in vitro digestibility of flour and starchfrom pea (Pisum sativum L.) cultivars. International Journal of Biological Macromolecules,2012,50(1):131–137.
    117. Conry M C, Morgan K, Curry P, et al., The clustering of health behaviours in Ireland and theirrelationship with mental health, self-rated health and quality of life. BMC Public Health,2011,11(1):692.
    118. Cosgrove D. J., Inositol phosphates. Their chemistry Biochemistry and Physiology. ElsevierScientific Publishing Company, Amsterdam: The Netherlands,1980.
    119. Dickinson E., Emulsifying properties of covalent protein dextran hybrids. Colloids and surfaces,1992,64(3):299-310.
    120. Domitrovic R., The Molecular Basis for the Pharmacological Activity of Anthocyans. CurrentMedicinal Chemistry,2011,29:4454-4469.
    121. Dong Y., Qu S. Y., Nondestructive method for analysis of the soybean quality. InternationalJournal of Food Engineering,2012,8(4).
    122. dos Santos C. A., Lopo M., Páscoa R. N., et al., A review on the applications of portablenear-infrared spectrometers in the agro-food industry. Applied Spectroscopy.2013,67(11):1215-1233.
    123. Duc G., Bao S. Y., Baumc M., et al., Diversity maintenance and use of Vicia faba L. geneticresources. Field Crops Research,2010,115(3):270-278.
    124. El-Moniem G.M.A., Honke J., Bednarska A., Effect of frying various legumes under optimumconditions on amino acids, in vitro protein digestibility, phytate and oligosaccharides. Journal ofthe Science of Food Agriculture,2000,80(1):57–62.
    125. FAO. Statistical Database, Food and Agriculture Organization (FAO) of the United Nations,Rome. http://faostat. fao. org,2009.
    126. Fordonski G., Gorecki R. J., Halmajan H., et al. Seed physiology and biochemistry. In: Hedley,C.L.(Ed.), Carbohydrates in Grain Legume Seed: Improving Nutritional Quality and AgronomicCharacteristics. CAB International Publishing,2001.
    127. Friedman H. P., Rubin J., On some Invariant criteria for grouping data. Journal of AmericanStatistics Association,1967,62(320):1159-1178
    128. Garcia R. M., Bello P. A., Yee M. H., Resistant Starch Content and Structural Changes in Maize(Zea mays) Tortillas during Storage. Starch-Starke,2009,(7):414-421
    129. Geladi P., MacDougall D., Martens H., Linearization and scatter-correction for near-infraredreflectance spectra of meat. Applied Spectroscopy,1985,39(3):491-500.
    130. Goyoaga C., Burbano C., Cuadrado C., et al. Content and distribution of vicine, convicine andL-DOPA during germination and seedling growth of two Vicia faba L. varieties. European FoodResearch and Technology,2008,227(5):1537-1542.
    131. Goyoaga C., Burbano C., Cuadrado C., et al., Content and distribution of protein, sugars andinositol phosphates during the germination and seedling growth of two cultivars of Vicia faba.Journal of Food Composition and Analysis,2011,24(3):391–397.
    132. Grant G., More L. J., McKenzie N. H., et al., The effect of heating on the haemagglutinationactivity and nutritional properties of bean (Phaseolus vulgaris) seeds. Journal of the Science ofFood and Agriculture,1982,33(12):1324-1326.
    133. Hanelt P., The infraspecific variability of Vicia Faba L. and its classification. Kulturpflanze.1972,20:75-128.
    134. Hassan I. A., Basahi J. M., Kadi M. W., et al., Physiological and biochemical impairment in beanplants due to supplementary ultraviolet radiation and water stress: possible protective roles ofsecondary metabolites. Australian Journal of Basic and Applied Sciences,2012,6(9):552-561.
    135. Hindle P.H., Historical development. Handbook of Near Infrared Analysis.edited by Burns D.A.and Ciurczak E.W.2nd ed., Revised and Expanded. New York: Marcel Dekker. Inc.2001.1.
    136. Hodgson G.L., Physiological and ecological studies in the analysis of plant environment.13. Acomparison of the effects of seasonal variations in light energy and temperature on the growthof Helianthus annuus and Vicia faba in the vegetative phase. Annals of Botany,1967,31(122):291-308.
    137. Inci N. E., Toker C., Screening and selection of faba beans (Vicia faba L.) for cold tolerance andcomparison to wild relatives. Genetic Resources and Crop Evolution,2011,58(8):1169-1175.
    138. Iqbal A., Khalil I. A., Ateeq N., et al. Nutritional quality of important food legumes. FoodChemistry,2006,97(2):331-335.
    139. Iwata E., Hotta H., Goto M., The Screening Method of a Bifidogenic Dietary Fiber Extractedfrom Inedible Parts of Vegetables. Journal Science Vitaminol,2009,55(4):385-388.
    140. Jadwiga Sadowska, Tomasz Jelinski, Wioletta B aszczak, Stanis aw Konopka, Józef Fornal,andWojciech Rybinski. The effect of seed size and microstructure on their mechanical propertiesand frictional behavior. International Journal of Food Properties,2013,16:814-825.
    141. Jezierny D., Mosenthin R., Bauer E The use of grain legumes as a protein source in pig nutrition:A review. Animal Feed Science and Technilogy,2010,3-4:111-128.
    142. Jukka R., Eetu R., Jussi T., et al. Inline moisture measurement during granulation with afour-wavelength near infrared sensor: an evaluation of particle size and binder effects. EuropeanJournal of Pharmaceutics and Biopharmaceutics,2000,50:271-276.
    143. Kadam S. S., Deshpande S. S., Jambhale N. D., Seed structure and composition. In: Salunkhe DK, Kadam S S, eds. Handbook of World Food Legumes: Nutritional Chemistry, ProcessingTechnology, and Utilization (Vol. I). Boca Raton: CRC Press,1989.
    144. Katell C., Pascal M., Corinne P., Nutritional value of faba bean (Vicia faba L.) seeds for feed andfood. Field Crops Research,2010,3(SI):329-339.
    145. Keneni G., Jarso M., Wolabu T., Extent and pattern of genetic diversity for morpho-agronomictraits in Ethiopian highland pulse landraces: II. Faba bean (Vicia faba L.). Genetic Resources andCrop Evolution,2005,52(5):551-561.
    146. Khalil A. H., Mansour E. H., The effect of cooking, autoclaving and germination on thenutritional quality of faba beans. Food Chemistry,1995,54(2):177-182.
    147. Khodapanahi E., Lefsrud M., Orsat V., Singh J., Warkentin T. D., Study of Pea Accessions forDevelopment of an Oilseed Pea. Energies,2012,5(10):3788-3802.
    148. King D., Fan M. Z., Ejeta G., et al., The effects of tannins on nutrient utilisation in the White Pekinduck. British Poultry Science,2000,41(5):630-639.
    149. Knaup B., Oehme A., Valotis A., et al. Anthocyanins as lipoxygenase inhibitors. MolecularNutrition and Food Research,2009,53(5):617-624.
    150. Koepke U., Nemecek T., Ecological services of faba bean. Field crops research,2010,115(3):217-233.
    151. Krupa-Kozak U., Soral-Smietana M., Bean seed proteins digestibility affected by pressure andmicrowave cooking. Acta Alimentaria,2010,39(2):234-238.
    152. Kumar V., Rani A., Solanki S., et al., Influence of growing environment on the biochemicalcomposition and physical characteristics of soybean seed. Journal of Food Composition andAnalysis,2006,19(2):188-195.
    153. Ladizinsky G., On the origin of the broad bean, Vicia faba L. Israel Journal of Botany,1975,24(2/3):80-88.
    154. Lee J.H., Baek I.Y., Ko J.M., et al., Antioxidant and tyrosinase inhibitory activities from seed coatof brown soybean. Food Science and Biotechnology,2008,1:1-7.
    155. Lee S. J., Seguin P., Kim J.-J., et al., Isoflavones in Korean soybeans differing in seed coat andcotyledon color. Journal of Food Composition and Analysis,2010,23(2):160-165.
    156. Lichtenfeld C., Manteuffel R., Mu¨ ntz K. et al., Protein degradation and proteolytic activities ingerminating field beans (Vicia faba L., var. minor). Biochemie und Physiologie der Pflanzen,1979.17:255–274.
    157. Liu D., Zeng X. A., Sun D. W., NIR Spectroscopy and imaging techniques for evaluation of fishquality-a review. Applied Spectroscopy Reviews,2013,48(8):609-628.
    158. Liu H.Y., Qiu, N.X., Ding H.H.,et al., Polyphenols contents and antioxidant capacity of68Chinese herbals suitable for medical or food uses. Food Research International,2008,41(4):363-367.
    159. Longo R., Castellani A., Sberze P., et al. Distribution of L-DOPA and related amino acids in vicia.Phytochemistry,1974,13:166-167.
    160. Lucas M. R., Huynh Bao-Lam, Vinholes P. da S., et al., Association studies and legume syntenyreveal haplotypes determining seed size in Vigna unguiculata. Plant science,2013,4(95):1-9.
    161. Luo Y.W., Xie W.H., Cui Q.X., Effects of Phytases and Dehulling Treatments on In Vitro Iron andZinc Bioavailability in Faba Bean (Vicia faba L.) Flour and Legume Fractions. Journal of FoodScience,2010,75(2): C191-C198.
    162. Luo Y.W., Xie W.H., Xie C.Y., Impact of soaking and phytase treatments on phytic acid, calcium,iron and zinc in faba bean fractions. International Jourrnal of Food Science and Technology,2009,44(12):2590-2597.
    163. Madhujith T., Shahidi F., Antioxidant potential of pea beans (Phaseolus vulgaris L.). Journal ofFood Science,2005,70(1): S85-90.
    164. Manju B., Maharaj S., Non destructive estimation of total phenol and crude fiber content in intactseeds of rapeseed–mustard using FTNIR. Industrial Crops and Products,2013,42:357-362.
    165. Maqbool A., Shafiq S., Lake L., Radiant frost tolerance in pulse crops—a review. Euphytica,2010,172(1):1–12.
    166. María. M. Y., Improvement of functional properties of chickpea proteins by hydrolysis withimmobilised Alcalase. Food Chemistry,2010,122(4):1212-1217.
    167. Marzo F., Milagro F. I., Urdaneta E. Extrusion decreases the negative effects of kidney bean onenzyme and transport activities of the rat small intestine. Journal of Animal Physiology andAnimal Nutrition,2011,95(5):591-598.
    168. Mohesenin N. N., Physical properties of plant and animal materials. New York: Gordon andBreach Science Publishers Inc.,1980:51-87.
    169. Murcia M.A., Rincón F., Size as source of variance in lipid composition of pea. Food Chemistry.1992,44(1):29-35.
    170. Murray I., Forage Analysis by Near Infrared Spectroscopy, in Sward Measurement Handbook,2nd edn, Ed by Davies A, Baker R D,Grant S A, et al. The British Grassland Society,1993.285.
    171. Nikolopoulou D., Grigorakis K., Stasini M., et al., Differences in chemical composition of fieldpea (Pisum sativum) cultivars: Effects of cultivation area and year. Food Chemistry,2007,103(3):847-852.
    172. Noda T., Tsuda S., Mori M., et al. The effect of harvest dates on the starch properties of variouspotato cultivars. Food Chemistry,2004,86(1):119-125.
    173. Nozzolillo C., Ricciardi L., Lattanzio V., Flavonoid constituents of seed coats of Vicia faba(Fabaceae) in relation to genetic control of their color. Canadian Journal of Botany.1989,67(5):1600-1604.
    174. Oehme1A., Valotis A., Krammer G., et al. Preparation and characterization of shellac-coatedanthocyanin pectin beads as dietary colonic delivery system. Molecular Nutrition and FoodResearch.2011,55(S1): S75–S85.
    175. Pelgrom P. J. M., Vissers A. M., Boom R. M., et al., Dry fractionation for production offunctional pea protein concentrates. Food Research International,2013,53(1):232-239.
    176. Pizo H, Bobrecka-Jamro D., Rzasa B., Nutrient contents in horse bean and lupin seeds grown inthe foothill areas of southeastern Poland. Zeszyty Naukowe Akademii Rolniczej im HugonaKoataja w Krakowie, Sesja Naukowa,1992,32(260):267-276.
    177. Polignano G. B., Uggenti P., Scippa G., The pattern of genetic diversity of faba bean collectionsfrom Ethiopia and Afghanistan. Genetic Resources and Crop Evolution.1993,40(2):71-75.
    178. Polignano G.B., Alba E., Uggenti P., Geographical patterns of variation in Bari faba beangermplasm collection. Genetic Resources and Crop Evolution.1999,46(2):183-192.
    179. Primomo V.S., Poysa V., Ablett G.R., et al., Agronomic performance of recombinant inbred linepopulations segregating for isoflavone content in soybean seeds. Crop Science,2005,45(6):2203-2211.
    180. Pulse Canada (2008). Crop profile for peas. Retrieved Dec15,2013, fromhttp://www.pulsecanada.com/what-arepulses/peas
    181. Rajaram S., Approaches for breaching yield stagnation in wheat. Genome,1999,42(2):629-634.
    182. Rimbach G., Pallauf J., Cadmium accumulation, zinc status, and mineral bioavailability ofgrowing rats fed diets high in zinc with increasing amounts of phytic acid. Biological TraceElement Research,1997,57(1):59-70.
    183. Roy F., Boye J.I., Simpson B.K., Bioactive proteins and peptides in pulse crops: Pea, chickpeaand lentil. Food Research International,2010,43(2):432-442.
    184. Rubio L. A., High apparent ileal digestibility of amino acidsin raw and germinated faba bean(Vicia faba)-and chickpea (Cicer arietinum)-based diets forrats. Journal of the Science of Foodand Agriculture,2002,82:1710–1717.
    185. Rupérez P., Poligosaccharides in raw and processed legumes. European Food Research andTechnology,1998,206(2):130-133.
    186. Sandhu K. S., Singh N., Kaur M., Characteristics of the different corn types and their grainfractions: physicochemical, thermal, morpholog-ical, and rheological properties of starches.Journal of Food Engineering,2004,64(1):119-127.
    187. Santiago A. R., Muniz P., Cavia S. M., et al., Cancer chemotherapy reduces plasma totalpolyphenol and total antioxidants capacity in colorectal cancer patients. Molecular BiologyReports,2012,39(10):9355–9360.
    188. Saura-Calixto F., Serrano J., Goni I., Intake and bioaccessibility of total polyphenols in a wholediet. Food Chemistry.2007,101(2):492–501.
    189. Scott A.J., Symon M. J., Clustering methods based on likelihood ratio criteria. Biometrics,1971,27(2):387-398.
    190. Seguin P., Zheng W., Smith D.L., Deng W., Isoflavone content of soybean cultivars grown ineastern Canada. Journal of the Science Food and Agriculture,2004,84(11):1327-1332.
    191. Shao Y.N., Cen Y.L., He Y., Infrared spectroscopy and chemometrics for the starch and proteinprediction in irradiated rice. Food Chemistry,2011(4):1856-1861.
    192. Shetty P., Atallah M.T., Shetty K., Effects of UV treatment on the proline-linked pentosephosphate pathway for phenolics and L-DOPA synthesis in dark germinated Vicia faba. ProcessBiochemistry,2002,37(11):1285-1295.
    193. Shi J. B., Hou W. W., Liu Y.J., A study on the difference of protein-subunit in faba bean underdifferent eco-types in Qinghai. Acta Agriculturae Universitatis Jiangxiensis.2011,33(6):1056-1061.
    194. Siddique K. H. M., Erskine W., Hobson K., et al., Cool-season grain legume improvement inAustralia—use of genetic resources. Crop and Pasture Science,2013,64(4):347–360.
    195. Singh J., Dartois A., Kaur L., Starch digestibility in food matrix: a review. Trends in Food Scienceand Technology,2010,21(4):168-180.
    196. Slinkard A. E., Bhatty R. S., Drew B. N., et al., Dry peas and lentil as new crops in Saskatchewan:A case study. In J. Janick, J. E. Simon (Eds.), Advances in new crops. Portland, Or: Timber Press,1990:164-168.
    197. Teena M., Manickavasagan A., Mothershaw A., Potential of Machine Vision Techniques forDetecting Fecal and Microbial Contamination of Food Products: A Review. Food and bioprocesstechnology.2013,6(7):1621-1634.
    198. Thakur P., Kumar S., Malik J. A., Cold stress effects on reproductive development in grain crops:An overview. Environmental and Experimental Botany,2010,67(3):429-443.
    199. Tkachuk R., Kuzina F. D., Reichert R. D., Analysis of protein in ground and whole field peas bynear-infrared reflectance. Cereal Chemistry.1987,64(6):418-422.
    200. Toews R., Wang N., Physicochemical and functional properties of protein concentrates frompulses. Food Research International,2013,52(1):445-451.
    201. Tsuchikawa S., Schwanninger M., A review of recent near-infrared research for wood and paper(part2). Appllied Spectroscopy Reviews,2013,48(7):560-587.
    202. Turkmen N., Sari F., Velioglu Y. S., The effect of cooking methods on total phenolics andantioxidant activity of selected green vegetables. Food Chemistry,2005,93(4):713-718.
    203. Urbano G., Lopez-Jurado M., Aranda P., et al. The role of phytic acid in legumes: antinutrient orbeneficial function? Journal of Physiology and Biochemistry,2000,56(3):283-294.
    204. Vahrmeijer A. L., Hutteman M., Van der Vorst J. R., et al., Image-guided cancer surgery usingnear-infrared fluorescence. Nature Reviews Clinical Oncology,2013,10(9):507-518.
    205. Wang C.Y., Sherrard M., Pagadala S., et al., Isoflavone content among maturity group0to IIsoybeans. Journal of America Oil Chemists’s Society,2000,77(5):483-487.
    206. Wang D., Dowell F. E., Lacey R. E., Single wheat kernel size effects on near infrared reflectancespectra and color classification. Cereal Chemistry,1999,76(1):34-37.
    207. Wang D. J., Williams B. A., Ferruzzi M. G., Different concentrations of grape seed extract affectin vitro starch fermentation by porcine small and large intestinal inocula. Journal of the Scienceof Food and Agriculture2013,93(2):276-283.
    208. Wang N., Hatcher D. W., Warkentin T. D., et al., Effect of cultivar and environment onphysicochemical and cooking characteristics of field pea (Pisumsativum). Food Chemistry.,2010,118(1):109-115.
    209. Wang N., Hatcher D.W., Gawalko E. J., Effect of variety and processing on nutrients and certainanti-nutrients in field peas (Pisum sativum). Food Chemistry,2008,111:132-138.
    210. Wei, C. X., Qin, F. L., Zhu, L. J., et al., Microstructure and ultrastructure of high-amylose riceresistant starch granules modified by antisense RNA inhibition of starch branching enzyme.Journal of Agricultural and Food Chemistry,2009,58(2):1224-1232.
    211. Wolosiak R., Worobiej E., Piecyk M., et al,. Activities of amine and phenolic antioxidants andtheir changes in broad beans (Vicia faba) after freezing and steam cooking. International Journalof Food Science and Technology,2010,45(1):29-37.
    212. Yang N., Ren G., Application of near-infrared reflectance spectroscopy to the evaluation of rutinand D-chiro-Inositol contents in tartary buckwheat. Journal of Agricultural and Food Chemistry,2008,56(3):761-764.
    213. Yao Y., Cheng X. Z., Wang S. H., et al., Influence of Altitudinal Variation on the Antioxidant andAntidiabetic Potential of Azuki Bean (Vigna angularis). International Journal of Food Sciencesand Nutrition,2012,63(1):117-124.
    214. Yao Y., Sang W., Zhou M. J., et al., Phenolic composition and antioxidant activities of11celerycultivars. Journal of food science,2010,75(1):C9-C13.
    215. Zhao H.Y., Guo B. l., Wei Y.M., et al., Near infrared reflectance spectroscopy for determination ofthe geographical origin of wheat. Food Chemistry,2013,138(2):1902–1907.
    216. Zhao Y.T., Chang R.Z., Li Y.J., et al., Relationship between physical characters, chemicalcomposition, germination and cold-tolerance in soybean. Chinese Journal of Botany.1994,6(1):60-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700