用户名: 密码: 验证码:
乙烯对采后低温冷藏桃果实香气合成调控的分子机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桃(Prunus persica L. Batsch)属于呼吸跃变型果实,常温贮藏3-5d果实即发生腐败、变质,低温贮藏是目前延长桃果实贮藏时间的主要方法。但是桃属于冷敏果实,低温下容易果实发生冷害,出现果肉褐变、不能正常软化而发绵、出汁率低等现象,其中香味变淡甚至丧失是一个重要冷害特征,严重影响了果实品质。实验室前期研究发现,低温条件下,桃果实果香型香气物质含量较常温显著降低,而清香型香气物质的含量较常温有所增加;施加外源乙烯处理,在一定程度上促进了低温贮藏桃清香型香气向果香型香气的转变,部分清香型香气含量降低,而果香型香气含量上升。低温下施加外源乙烯处理,显著提高了内源乙烯的释放,乙烯合成相关基因ACO的活性降低。以上结果表明,乙烯与果实香气物质合成存在必然联系,但是关于乙烯对香气合成恢复的分子机理尚不清楚。通常代谢产物与代谢底物成正相关,因此很有必要从基因的转录水平,结合香气挥发代谢谱结果,对乙烯参与桃果实香气物质合成的调控作用进行研究。研究的主要结果如下:
     1、数字基因表达谱测序发现,低温贮藏条件(0℃贮藏30d的桃果实CK2,乙烯处理的桃果实T)对基因的转录表达有较大影响,低温下桃果实中能量代谢和抗病相关基因如ATP酶(ATPase)基因、防御素(cryptdin)基因、病程相关索马甜(thaumatin)基因和几丁质酶(Chitin)基因的表达水平大幅上调,这可能是对适应低温胁迫的一种应激反应。乙烯处理后,这些抗逆基因的表达显著下调,但表达水平仍高于常温贮藏桃样本CK1中的表达量,表明这些基因的转录表达可能受低温和乙烯的共同调控。低温下桃果实发生冷害,可能与能量和抗性相关代谢的失调有关。
     2、低温贮藏桃样本中,参与硬脂酸合成的硬脂酰CoA硫酯酶基因的表达水平较常温贮藏桃样本显著下调,低温条件下的两个样本(CK2和T)中,该基因的表达水平为0,低温下施加外源乙烯,没有改变硬脂酰CoA硫酯酶基因的转录水平。低温下硬脂酸合成关键基因的转录抑制,使不饱和脂肪酸主要通过亚油/麻酸途径进行。低温下亚油/麻酰CoA硫酯酶基因的表达上调,促进亚/麻油酸的合成,为香气物质合成保证底物的供应。低温导致某些香气物质合成代谢失调的原因,可能由于硬脂酰CoA硫酯酶基因的转录受抑引起硬脂酸代谢失调造成的。
     3、脂氧合酶LOX基因通过α-亚麻酸途径,参与醛类香气物质的合成。通过对LOX途径中LOX、ALDH、EH等基因家族成员的表达模式分析发现,基因家族不同成员可能参与不同的生物学过程,且它们对乙烯的敏感性不同。乙烯响应因子结合蛋白ERF12为转录抑制因子,该基因的转录受到乙烯正调控,在CK1中的表达水平最高,低温下下调表达,施加乙烯处理表达上调。乙烯响应因子结合蛋白ERF1、ERF2、ERF5为转录激活因子,三基因的转录受到乙烯负调控,在CK2中的表达水平最低。低温下,ERF12下调表达,解除了对LOX基因转录抑制作用,而促进LOX基因的上调表达,乙烯处理后ERF12表达上调,抑制LOX家族基因的转录。乙烯通过ERF1、ERF2、ERF5和ERF12等,转录激活或抑制LOX、ALDH等家族基因的转录表达,从而调控己醛、反-2-己烯醛、反-2-己烯醇等青草型香气物质的合成。
     4、利用同源克隆和RACE技术,从桃果实中克隆到1个LOX基因,该基因全长2909bp,ORF长2640bp,3’ UTR长269bp,编码879个氨基酸,属于LIPOXYGENASE超家族,含有植物LOX家族的两个保守结构域:PLAT/LH2和Lipoxygenase。通过实时荧光定量PCR检测,该基因在CK2样本中较CK1表达大幅下调,T样本中表达较CK2下调,与DGE测序所得的表达变化趋势一致。从‘大久保’果实中共检索到14条LOX同源基因,系统进化分析聚为两簇:13-LOX和9-LOX;有5条基因在DGE中没有检测到表达,另外9条基因中有4条基因的表达受到乙烯负调控,分别是PpLOX4、PpLOX10、PpLOX11和PpLOX12,施加乙烯处理后基本表达下调。
     5、利用同源克隆和RACE技术,从桃果实中克隆得到1个EH基因,该基因全长1274bp,5′UTR和3′UTR分别长161bp和143bp,最大ORF长972bp,编码323个氨基酸,属于αβ水解酶/折叠酶构型。蛋白的三维结构分析表明,该蛋白具有三位一体的活化中心Asp-His-Asp,以及Y-Y组成的帽子结构;亚细胞定位结果表明,基因定位于叶绿体;实时荧光定量PCR分析结果显示,该基因的转录表达受到低温和乙烯的双重调控,表明该基因可能同时参与多个不同的生理生化过程。
     6、烷烃类物质是桃果实中含量相对较高的发挥性成分,烷烃类通过CYP716A1的作用氧化生成1-醇,然后在ADH的作用下实现醛和醇的可逆互转。推测烷烃类通过为1-醇的合成提供底物,从而参与桃果实醛类和醇类物质的积累和释放,且乙烯对烷烃类物质的合成起到正向调控的作用。醇类物质的积累可能分别与烷烃-1-单加氧酶CYP716A和ALDH的联动作用及CYP716A和EH的联动作用通过脂肪酸降解途径参与;GDSL基因表达随脂肪酸水平的变化而变化,以维持机体内脂肪酸的动态平衡。
Peach belongs to climacteric fruit, with fruit spoilage after3-5d storage at roomtemperature. Cold storage is the main method to extend the market supply of peach fruit. Whilepeaches are coldsensitive fruit and prone to chilling injury during cold storage. Fruits Chillinginjury syptoms show up as flesh browning, innormal soften and cotton, and low juice yield etc..Low temperature resulted in the loss of flavor peach fruit, which seriously affected the edibilityof the fruits. Early research of our laboratory showed that the content of Floral/Fruity aromavolatiles were significantly lower than which stored at the ambient temperature, while thecontent of Green aroma volatiles were higher. The aroma volatiles in cold storage peach fruitswere to some extent promoted after treated by exogenous ethylene. The release quantity ofethylene significantly reduced under low temperature. On the other hand, the activity of ACOenzyme reduced. While the opposite result was received from the fruit treated by exogeneousethylene. There was necessary connection between ethylene and fruit aroma-volatile-synthesis.But till now, the molecular mechanism on synthesis of aroma volatile regulated by ethylene isunclear. Metabolites are usually positively correlated with metabolic substrates. So it isnecessary to research the regulation of ethylene on aroma synthesis of peach fruit from thegene transcription level, combining with the aroma volatile metabolite profiling. The mainresults of this research are as following:
     1. Cold storage has a greate impact on gene expression in peach fruit. Compared withCK1, expression level of genes related to energy metabolism and pathogenesis-related proteingenes such as ATPase, cryptdin, thaumatin and Chitin were greatly upregulated in CK2. Thismaybe is stress response to low temperature. After treated by exogenous ethylene, theexpression of these genes were significantly downregulated, but which were still higher than T.This result reveled that the transcriptional expression of these genes were co-regulated by low temperature and ethylene. Metabolic disorders of energy and resistance-related is the reason offruit chilling injury at low temperature storage.
     2. As far as CK2sample, the expression levels of stearoyl CoA thioesterase gene involvedin stearic acids synthesis were significantly downregulated even no expression. Exogenousethylene does not change the expression levels of stearoyl CoA thioesterase genes. In CK2, themain unsaturated fatty acids substrates for synthesis of aroma volatiles were linolenic/linoleicacid because of transcriptional inhibition of key genes involved in stearic acid synthesis. Underlow temperature, linolenic/linoleic acid CoA thioesterase genes were upregulated. Metabolicdisorder of stearic acids leaded to lack supply of substrate in cold storaged peach fruit maybethe reason that some aroma volatiles metabolic disorder.
     3. LOX genes involved in the synthesis of aldehydes aroma substances via α-linolenicacid pathway. Different family members of LOX, ALDH, EH may be involved in differentbiological processes and they have different sensitivity to ethylene pathway through analysis oftheir expression patterns. Ethylene response factor binding protein transcription factor ERF12is a transcription repressor, positively regulated by ethylene. The highest expression level ofERF12was in CK1sample, which downregulated under lower temperature, and upregulatedafter treated by ethylene. Ethylene response factor binding protein ERF1, ERF2, ERF5astranscriptional activators negatively regulated by the ethylene, which the lowest level ofexpression of the CK2. Under low temperatures, the expression of ERF12gene downregulated,lifting the inhibition of transcription for LOX gene. In peach fruit T sample, the expression ofLOX family genes downregulated after treated by ethylene because of the inhibitiontranscription of ERF12. Ethylene regulated synthesis of green aroma volatiles such as hexanal,trans-2-hexenal, trans-2-hexenol and hexenyl acetate and fruity aroma volatiles such as hexylacrylate, o-aminobenzaminicacid-1,5-dimethyl-1-ethylene-4-hexenyl and dibutyl glutaratethrough transcriptional activition or repression of LOX, ADH, AAT, ALDH controlled by ERF1,ERF2, ERF5and ERF12.
     4. Lipoxygenase gene was cloned from peach fruit by homologous cloning and RACEtechnology. The gene belong to LIPOXYGENASE superfamily with full length2640bp,3'UTR269bp and encoding879amino scids. The deduced amino acid sequence contains twoconserved domains: PLAT/LH2and Lipoxygenase. The result of real-time quantitative PCRshowed that the expression of this gene significantly downregulated in CK2than CK1andwhich was higer than in T. This result was consistent with the result of DGE sequencing. Total14LOX homologous genes were retrieved from okubo fruit with two clusters afterphylogenetic analysis:13-LOX and9-LOX. Five genes were not detected by DGE. There werefour of the nine genes negative regulated by ethylene respectively as PpLOX4, PpLOX10,PpLOX11and PpLOX12.
     5. Epoxide hydrolase gene was cloned by homologous cloning and RACE technologywith1274bp full length,161bp and143bp5'UTR and3'UTR respectively, and with972bpORF. This gene encoded323amino acids. The deduced amino acid sequence are αβ hydrolase/folding enzymes configuration with a trinity of Asp-His-Asp activation center and Y-Y capstructure. The protein was located in the chloroplast. The result of Real-time PCR analysisindicated that this ge ne was co-regulated by low temperature and ethylene. It maybeparticipate in a number of different physiological and biochemical processes.
     6. Alkanes were the high level volatile ingredients from ‘okubo’ peach fruit in relativecontent. The alkane were oxidized to1-alcohol by CYP716A1.Then the aldehydes and alcoholsconverted into each other under the activition of ADH. The substances involved in thesynthesis of alkanes were positively controlled by ethylene. Alkanes participated in theaccumulation and release aldehydes and alcohols from peach fruit by providing a substrate forsynthesis of1-ol. Accumulation of alcohols were effected by the linkage of alkane-1-monooxygenase CYP716A and ALDH and the linkage of CYP716A and epoxide hydrolaseEH respectively through fatty acid degradation pathways. The transcription expression level ofGDSL gene changed with changed in fatty acid levels and was to maintain the homeostasis of fatty acid in organ body.
引文
陈华君,马焕普,刘志民,等.两种温度条件下早熟桃果实中挥发性物质成分分析[J].植物生理学通讯,2005,41(4):525-527.
    陈银华,李汉霞,叶志彪.不同结构的外源ACO基因导入番茄对乙烯生成速率的影响[J].园艺学报,2007,34(3):644-648.
    邓翠红,李丽萍,韩涛,等.“京艳”桃果实香气成分的气相色谱-质谱测定[J].食品科学,2008,29(6):304-307.
    冯志宏,赵迎丽,闫根柱,等.变动气调贮藏保持大久保桃品质的研究[J].园艺学报,2010,37(2):207-212.
    胡花丽,梁丽松,王贵禧,等.外源乙烯对CA贮藏桃果实MDA含量、PPO和LOX活性变化的影响[J].西北林学院学报,2007,22(3):38-42.
    胡花丽,梁丽松,王贵禧,等.外源乙烯对CA贮藏桃果实品质的影响[J].食品科学,2008,29(1):338-342.
    贾小红,陈清.桃园施肥灌溉新技术[M].北京:化学工业出版社,2007.
    金宏,惠伟,丁雅荣,等.1-MCP对‘粉红女士’苹果冷藏期间品质变化和香气形成的影响[J].西北植物学报,2009,29(4):754-761.
    李斌,贾慧娟,张晓萌.果实采收前套袋对湖景蜜露桃果实品质的影响[J].植物生理与分子生物学学报,2006,32(3):280-286.
    李华,王华,刘拉平等.爱格丽白葡萄酒香气成分的GC/MS分析[J].中国农业科学,2005,38(6):1250-1254.
    李华,王华,刘拉平等.菠萝果酒香气成分的GC-MS分析[J].西北农林科技大学学报(自然科学版),2005,33(4):143-146.
    李晓颖,谭洪花,房经贵,等.果树果实的风味物质及其研究[J].植物生理学报,2011,47(10):943-950.
    李杨昕,王贵禧,梁丽松.′大久保′桃常温贮藏过程中香气成分变化及其与乙烯释放的关系[J].园艺学报,2011,38(1):35-42.
    李杨昕.大久保桃果实特征香气物质低温代谢障碍的基础研究[D].北京:中国林业科学研究院,2010.
    李志文,张平,黄艳凤,等.贮藏保鲜中SO2伤害对红提葡萄香气组分的影响[J].西北植物学报,2011,31(2):385-392.
    刘思思.草莓乙烯受体FaErs1基因克隆及RNAi植物表达载体构建[M].保定:河北农业大学,2012.
    罗华,李敏,胡大刚,等.不同有机肥对肥城桃果实产量及品质的影响[J].植物营养与肥料学报,2012,18(4):955-964.
    宋俊岐,邱并生,王荣,等.通过表达ACC脱氨酶基因控制番茄果实的成熟[J].生物工程学报,1998,14(1):33-38.
    宋丽娟,李雄伟,陈琳,等.果实香气合成与遗传控制研究概述[J].果树学报,2008,25(5):708-713.
    涂崔,潘秋红,朱保庆等.葡萄与葡萄酒单萜化合物的研究进展[J].园艺学报,2011,38(7):1397-1406.
    汪祖华,庄恩及.中国果树志·桃卷[M].北京:中国林业出版社,2001:2.
    王贵禧,王友升,梁丽松.不同贮藏温度模式下大久保桃果实冷害及其品质劣变研究[J].林业科学研究,2005.18(2):114-119.
    王贵章,陈新,梁丽松,等.冷藏桃果实醇酰基转移酶基因的克隆及对外源乙烯的响应表达[J].林业科学研究,2014,27(2):158-167.
    王力荣,朱更瑞,方伟超,等.中国桃遗传资源[J].北京:中国农业出版社,2012.
    席万鹏,郁松林,周志钦.桃果实香气物质生物合成研究进展[J].园艺学报,2013,40(9):1679-1690.
    徐文平,陈昆松,李方,等.脂氧合酶、茉莉酸和水杨酸对猕猴桃果实后熟软化进程中乙烯生物合成的调控[J].植物生理学报,2000,26(6):507-514.
    徐文平,陈昆松,徐昌杰,等.猕猴桃采后果实冷藏与货架期脂氧合酶活性和乙烯生成的变化[J].中国农业科学,2003,36(10):1196-1201.
    许文平,陈昆松,李方,等.脂氧合酶、茉莉酸和水杨酸对称猴桃果实后熟软化进程中乙烯生物合成的调控[J].植物生理学报,2000,26(6):507-514.
    许文平,陈昆松,徐昌杰,等.猕猴桃采后果实冷藏与货架期脂氧合酶活性和乙烯生成的变化[J].中国农业科学,2003,36(10):1196-1201.
    许燕华,骆萍,卢山,等.次生萜类生物合成的调控[J].中国科学基金,2000,14(4):197-200.
    杨桂敏.用酶催化油脂制备香味料的工艺研究[M].北京工商大学,2007.
    于建娜和刘文杰.库尔勒香梨果实香气成分的气象色谱-质谱分析[J].塔里木大学学报,2006,18(4):10-12.
    张波,李鲜,陈昆松.脂氧合酶基因家族成员与果实成熟衰老研究进展[J].园艺学报,2007,34(1):245-250.
    张波.猕猴桃脂氧合酶基因家族的功能解析及其调控[D].浙江杭州,浙江农业大学,2007.
    张梅.设施桃果实香气组分及相关性研究[D].泰安:山东农业大学,2007.
    张上隆,陈昆松.果实品质形成与调控的分子生理[M].北京:中国农业出版社,2007:185-186.
    张晓萌.桃果实成熟过程中香气成分形成及其生理机制研究[D].浙江杭州,浙江农业大学,2005.
    张云涛,董静,王桂霞.草莓香味的形成和香味育种[J].中国农业科学,2004,37(7):1029-1044.
    赵凌,沈文飚,翟虎渠,等.植物的脂氢过氧化物裂解酶[J].植物生理学通讯,2004,40(2):135-140.
    赵相娟,张静,魏绍冲.桃果实乙烯反应因子PpERF1基因的克隆及序列分析[J].中国农学通报,2009,25(8):38-41.
    中华人民共和国农业行业标准NY/T586-2002,鲜桃.
    ˊt Hoen P A C, Ariyurek Y, Thygesen H H, et al. Deep sequencing-based expression analysis shows majoradvances in robustness, resolution and inter-lab portability over five microarray platforms[J]. NucleicAcids Research,2008,36(21): e141.
    Aharoni A, Keizer L C P, Bouwmeester H J, et al. Identification of the SAAT Gene Involved in StrawberryFlavor Biogenesis by Use of DNA Microarrays[J]. The Plant Cell,2000,12(5):647-661.
    Aly M M, El-Agamy S Z A, Biggs R H. Ethylene production and firmness of peach and nectarine fruits asrelated to storage[J]. Proc. Fla. State Hort. Soc,1981,94:291-294.
    Angelika K, Peter P, Bernhard B. Flavour Compounds and a Quantitative Descriptive Analysis of Tomatoes(Lycopersicon esculentum Mill.) of Different Cultivars in Short-term Storage[J]. Postharvest Biologyand Technology,2004,32(1):15-28.
    Aragüez I, Valpuesta V. Metabolic engineering of aroma components in fruits[J]. Biotechnology Journal,2013,8(10):1144-1158.
    Arand M, Hemimer H, Dürk H, et al. Cloning and molecular characterization of a soluble epoxide hydrolasefrom Aspergillus niger that is related to mammalian microsomal epoxide hydrolase[J]. BiochemicalJournal,1999,344:273-280.
    Arús P, Verde I, Sosinski B, et al. The peach genome[J]. Tree Genetics and Genomes,2012,8(3):531-547.
    Aubert C, Milhet C. Distribution of the volatile compounds in the different parts of a white-fleshed peach(Prunus persica L. Batsch)[J]. Food Chemistry,2007,102:375-384.
    Balbontín C, Gaete-Eastman C, Fuentes L, et al. VpAAT1, a Gene Encoding an Alcohol Acyltransferase, IsInvolved in Ester Biosynthesis during Ripening of Mountain Papaya Fruit[J]. Journal of Agriculturaland Food Chemistry,2010,58(8):5114-5121.
    Balbontín C, Gaete-Eastman C, Vergara M, et al. Treatment with1-MCP and the role of ethylene in aromadevelopment of mountain papaya fruit[J]. Postharvest Biology and Technology,2007,43(1):67-77.
    Baldwin E A, Scott J W, Shewmaker C K. Flavor Trivia and Tomato Aroma: Biochemistry and PossibleMechanisms for Important Aroma Components[J]. Hortscience,2000,35(6):1031-1021.
    Beekwilder J, Alvarez-Huerta M, Neef E, et al. Functional characterization of enzymes forming volatileesters from straw-berry and banana[J]. Plant Physiology,2004,135:1865-1878.
    Bellevik S, Zhang J, Meijer J. Brassica napus soluble epoxide hydrolase(BNSEH1)[J]. European Journal ofBiochemistry,2002,269(21):5295-302.
    Bellincontro A, Morganti F, DeSantis D, et al. Inhibition of ethylene via different ways affects LOX andADH activities,and related volatiles compounds in peach (cv.′Royal Gem′)[J]. Acta Horticulturae,2005,682(3):445-452.
    Blee, E&Schuber, F. Biosynthesis of cutin monomers: involvement of a lipoxygenase/peroxygenasepathway[J]. The Plant Journal,1993,4(1):113-123.
    Botondi R, Sanctis F D, Bartoloni S, et al. Simultaneous application of ethylene and1-MCP affects bananaripening features during storage[J]. Journal of the Science of Food and Agriculture,2014.(OnlineVersion of Record published before inclusion in an issue, doi:10.1002/jsfa.6599).
    Boyington J C, Gaffney B J, Amzel L M. The three-dimensional structure of an arachidonic acid15-lipoxygenase[J]. Science1993,260:1482-1486.
    Bradi F, Bar E, Mourgues F, et al. Study of′Redhaven′peach and its white-fleshed mutant suggests a keyrole of CCD4carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism[J]. BMCPlant Biology,2011,11(1):24.(doi:10.1186/1471-2229-11-24).
    Bregoli A M, Scaramagli S, Costa G. Peach (Prunus Persica) Fruit Ripening: Aminoethoxy Vinyl Glycine(AVG) and Exogenous Polyamines Affect Ethylene Emission and Flesh Firmness[J]. Plant Physiology,2002,114:472-481.
    Busquets M, Deroncele V, idal-Mas J, et al. Isolation and characterization of a lipoxygenase fromPseudomonas42A2responsible for the biotransformation of oleic acid into (S)-(E)-10-hydroxy-8-octadecenoic acid[J]. Antonie Van Leeuwenhoek,2004,85:129-139.
    Cano-Salazar J, Echeverría G, Crisosto C H, et al. Cold-Storage Potential of Four Yellow-Fleshed PeachCultivars Defined by Their Volatile Compounds Emissions, Standard Quality Parameters, andConsumer Acceptance[J]. Journal of Agricultural and Food Chemistry,2012,60:1266-1282.
    Cano-Salaza J, L pez M L, Echeverr a G. Relationships between the instrumental and sensory characteristicsof four peach and nectarine cultivars stored under air and CA atmospheres[J]. Postharvest Biology andTechnology,2013,75:58-67.
    Cantín C M, Crisosto C H, Ogundiwin E A, et al. Chilling injury susceptibility in an intra-specific peach[Prunus persica (L.) Batsch] progeny[J]. Postharvest Biology and Technology,2010,58(2):79-87.
    Chehab E W, Perea J V, GoPaian B, et al. Oxylin Pathway in riee and Arabidopsis[J]. Journal Integrative.Plant biology,2007,49(l):43-51.
    Chen G P, Hackett R,Walker D et al. Identification of a specific isoform of tomato lipoxygenase (Tom LOXC)involved in the generation of fatty-acid-derived fiavor comPounds[J].Plant Physiology,2004,136:2641-2651.
    Crisosto C H, Costa G. The Peach: Botany, Production and Uses-Preharvest Factors Affecting PeachQuality[M]. USA: CAB International,2008,536-544.
    Cumplido-Laso G, Medina-Puche L, Moyano E, et al. The fruit ripening-related gene FaAAT2encodes anacyl transferase involved in strawberry aroma biogenesis[J]. Journal of Experimental Botany,2012,63(11):4275-4290.
    Czerny M, Christlbauer M, Christlbauer M, et al. Re-investigation on odour thresholds of key food aromacompounds and development of an aroma language based on odour qualities of defined aqueousodorant solutions[J]. European Food Research and Technology,2008,228:265-273.
    Daane K M, Johnson R S, Michailides T J, et al. Excess nitrogen raises nectarine susceptibility to diseaseand insects[J]. California Agriculture,1995,49(4):13-18.
    Defilippi B G, Kader A A, Dandekar A M. Apple aroma: alcohol acyltransferase, a rate limiting step for esterbiosynthesis, is regulated by ethylene[J]. Plant Science,2005,168(5):1199-1210.
    Dixon J and Hewett E W. Factors affecting apple Aroma/flavor volatile concentration:review[J]. Journal ofCrop and Horticultural Science,2000,28(3):155-173.
    Dong Li, Zhou Hongwei, Sonego Lilian, et al. Ethylene involvement in the cold storage disorderof′Flavortop′nectarine[J]. Postharvest Biology and Technology,2001,23(2):105-115.
    Eduardo I, Chietera G, Bassi D et al. Identification of key odor volatile compounds in the essential oil ofnine peach accessions[J]. Journal of Science Food Agriculture,2010,90:1146-1154.
    Eduardo I, Chietera G, Pirona R, et al. Genetic dissection of aroma volatile compounds from the essential oilof peach fruit: QTL analysis and identification of candidate genes using dense SNP maps[J]. TreeGenetics&Genomes,2013,9(1):189-204.
    El-Sharkawy I, Manríquez D, Flores F B, et al. Functional Characterization of a Melon AlcoholAcyl-transferase Gene Family Involved in the Biosynthesis of Ester Volatiles. Identification of theCrucial Role of a Threonine Residue for Enzyme Activity[J] Plant Molecular Biology,2005,59(2):345-362.
    Fan X, Mattheis JP, Buchanan D. Continuous requirement of ehtylene for apple fruit volatile synthesis[J].Journal of Agriculture and Food Chemistry,1998,46:1959-1963.
    FAO,2012.(http://faostat.fao.org).
    Fujimoto S Y, Ohta M, Usui A, et al. Arabidopsis ethylene-responsive element binding factors act astranscriptional activators or repressors of GCC box-mediated gene expression[J]. The Plant Cell,2000,12(3):393-404.
    Gillmor S A, Villasenor A, Fletterick R, et al. The structure of mammalian15-lipoxygenase revealssimilarity to the lipases and the determinants of substrate specificity[J]. Nature Structural Biology,1997,4:1003-1009.
    Gonda I, Bar E, Portnoy V, et al. Branched-chain and aromatic amino acid catabolism into aroma volatiles inCucumis melo L. fruit[J]. Journal of Experimental Botany,2010,61(4):1111-1123.
    Gong Pichang and He Chaoying. Uncovering Divergence of Rice EJC Core Heterodimer Gene DuplicationReveals Their Essential role in Growth, Development and Reproduction[J]. Plant Physiology,2014,preview on line.(doi:10.1104/pp.114.237958).
    González-Agüero M, Troncoso S, Gudenschwager O et al. Differential expression levels of aroma-relatedgenes during ripening of apricot (Prunus armeniaca L.)[J]. Plant Physiology and Biochemistry,2009,47(5):435-440.
    Greene D W. Development of Aminoethoxy Vinyl Glycine (AVG) to Retard Pre-harvest Drop in Apple[J].Acta Horticulturae,2000,527:105-109.
    Griffiths A, Bany C, AIpuche-Solis A G, et al. Ethylene and developmental signals regulate expression oflipoxygenase genes during tomato fruit ripening[J]. Journal of Experimental Botany,1995:50:793-798.
    Günther C S, Chervin C, Marsh K B, et al. Characterisation of two alcohol acyltransferases from kiwifruit(Actinidia spp.) reveals distinct substrate preferences[J]. Phytochemistry,2011,72(8):700-710.
    Hayama H, Shimada T, Fujii H, et al. Ethylene-regulation of fruit softening and softening-related genes inpeach[J]. Journal of Experimental Botany,2006,57(15):4071-4077.
    Horvat R J, Chapman G W and Rpbertson J A. Comparison of the volatile compounds from severalcommercial peach cultivars[J]. Journal of Agriculture and Food Chemistry,1990.81:234-23.
    Hui Guohua, Wu Yuling,Ye Dandan, et al. Study of peach freshness predictive method based on electronicnose[J]. Food Control,2012,28(1):25-32.
    Infante R, Farcuh M and Meneses C. Monitoring the sensorial quality and aroma through an electronic nosein peaches during cold storage[J]. Journal of the Science of Food and Agriculture,2008,88(12):2073-2078.
    Jia Huijuan, Okamoto G, Hirano K. Studies on the Sensory Evaluation of Juice Constituents of Peach Fruit[J].Journal of Fruit Science,2004,21:5-10.
    Jia Huijuan, Araki A, Okamoto G. Influence of fruit bagging on aroma volatiles and skin colorationof′Hakuho′peach (Prunus persica Batsch)[J]. Postharvest Biology and Technology,2005,35(1):61-68.
    Jia Huijuan, Okamoto G. Distribution of volatile compounds in peach fruit[J]. Journal of the JapaneseSociety for Horticultural Science,2001,70:223-225.
    Kays S J. Preharvest factors affecting appearance[J]. Postharvest Biology and Technology,1999,15:233-247
    Kim I S, Grosch W. Partial purification of a lipoxygenase from apples[J]. Journal of Agricultural and FoodChemistry,1979,27(2):243-246.
    Knee M. Fruit quality and its biological basis[M]. UK: Sheffield Academic Press,2002.
    Lavilla T, Rrcasens L, Lopez M L, et al. Maturity stages, including quality and aroma, in′Royal Glory′peaches and′Big Top′nectarines[J]. Journal of the Science of Food and Agriculture,2012,82(15):1842-1849.
    Leffingwell J C, Leffingwell D, GRAS Flavor Chemicals-Detection Thresholds[J]. Perfumer&Flavorist,1991,16:1-19.
    Li Xiaolei, Kang Luan, Hu Jingjing et al. Aroma volatile compound Analysis of SPME headspace andExtract Samples from crabapple (Malus sp.) fruit using GC-MS[J]. Agricultural Sciences in China,2008,7(12):1451-1457.
    Liu Mingchun, Diretto G, Pirrello J, et al. The chimeric repressor version of an Ethylene Response Factor(ERF) family member, Sl-ERF.B3, shows contrasting effects on tomato fruit ripening[J]. NewPhytologist,2014,203(1):206-218.
    Lopez G, Behboudian M H, Echeverria G, et al. Instrumental and Sensory Evaluation of Fruit Qualityfor′Ryan′s Sun′Peach Grown under Deficit Irrigation[J]. HortTechnolygy,2011,21(6):712-719.
    Lurie S, Crisosto C H. Chilling injury in peach and nectarine[J]. Postharvest Biology and Technology,2005,37(3):195-208.
    Maltsui K, Fukutomi S, Wilkinson J, et al. Effect of overexpression of fatty acid9-hydroperoxide lyase intomato (Lycopersicon esculentum Mill.)[J]. Journal of Agriculture and Food Chemistry,2001,49:5418-542.
    Manríquez D, El-Sharkawy I, Flores F, et al. Two highly divergent alcohol dehydrogenases of melon exhibitfruit ripening-specific expression and distinct biochemical characteristics[J]. Plant Molecular Biology,2006.61(4-5):675-685.
    Manuel R C and Albert B. Elucidation of the Methylerythritol Phosphate Pathway for IsoprenoidBiosynthesis in Bacteria and Plastids. A Metabolic Milestone Achieved through Genomics[J]. PlantPhysiology,2002,130:1079-1089.
    Mgicas S, Mateo J J. Hydrolysis of terpenyl glycosides in grape juice and other fruit juices: a review[J].Applied Microbiology and Biotechnology,2005,67(3):322-335.
    Montero-pardo P, Bentayeb K, Nerín C. Pattern recognition of peach cultivars (Prunus persica L.) from theirvolatile components[J]. Food Chemistry,2013,138:724-731.
    Morisseau C, Beetham J K, Pinot F et al. Cress and Potato Soluble Epoxide Hydrolases: Purification,Biochemical Characterization, and Comparison to Mammalian Enzymes[J]. Archives of Biochemistryand Biophysics,2000,378(2):321-332.
    Mortazavi A, Williams B A. McCue K, et al. Mapping and quantifying mammalian transcriptomes byRNA-Seq[J]. Nature methods,2008,5:621-628.
    Mpelasoka B S, Hossein B M. Production of aroma volatiles in response to deficit irrigation and to crop loadin relation to fruit maturity for′Braeburn′apple[J]. Postharvest Biology and Technology,2002,24(1):1-11.
    Needleman P, Turk J, Jakschik B A, et al. Arachidonic acid metabolism.[J]. Annual Review of Biochemistry.1986,55:69-102.
    Neri F, Mari M, Brigati S, et al. Fungicidal Activity of Plant Volatile Compounds for Controlling Monilinialaxa in Stone Fruit[J]. Plant Disease,2007,91(1):30-35.
    Noordermeer M A, Veldink G A, Vliegenthart J F. Fatty acid hydroperoxide layase: a plant cytochrome P450enzyme involved in wound healing and pest resistance[J]. Chembiochem,2001,2(7-8):494-504.
    Oldham M L., Brash A R., Newcomer M E. Insights from the X-ray crystal structure of coral8R-lipoxygenase: calcium activation via a C2-like domain and a structural basis of product chirality[J].Journal of Biological Chemistry.2005,280:39545-39552.
    Ortiz A, Graell J, L pez M L, et al. Volatile ester-synthesising capacity in′Tardibelle′peach fruit in responseto controlled atmosphere and1-MCP treatment[J]. Food Chemistry,2010,123:698-704.
    Ortiz A, Lara I, Graell J et al. Sensory acceptance of CA-stored peach fruit. Relationship to instrumentalquality parameters[J]. Acta Horticulturae.2008,796:225-230.
    Pirna R, Vecchietti A, Laari B, et al. Expression profiling of genes involved in the formation of aroma in twopeach genotypes[J]. Plant Biology,2013,15:443-451.
    Porta H, Rocha-Sosa M. Plantlipoxygenases. Physiological and molecular features[J]. Plant Physiology,2002,13(1):15-21.
    Royo J, Vancanney G, P rez A G, et al.Characterization of three potato lipoxygenases with distinctenzymatic activities and different organ-specific and wound-regulated expression patterns[J]. Journal ofBiological Chemistry,1996,271,57:21012-21019.
    S nchez G, Besada C, Badenes M L, et al. A Non-Targeted Approach Unravels the Volatile Network inPeach Fruit[J]. PLOS ONE,2012,7(6): e38992.
    S nchez G, Venegas-Caler n M, Salas J J, et al. An integrative “omics” approach identifies new candidategenes to impact aroma volatiles in peach fruit[J]. BMC Genomics,2013,14:343.
    Santarossa G P G, Lafranconi C, Alquati et al. Mutations in the “lid” region affect chain length specificityand thermostability of a Pseudomonas frugi lipase[J]. FEBS Letters,2005,579(11):2383-2386.
    Schaffer R J, Friel E N, Souleyre E J F et al. A genomics approach reveals that aroma production in apple iscontrolled by ethylene predominantly at the final step in each biosynthetic pathway[J]. Plant Physiology,2007,144(4):1899-1912.
    Sch ttler M, Boland W. Biosynthesis of Dodecano-4-lactone in Ripening Fruits: Crucial Role of anEpoxide-Hydrolase in Enantioselective Generation of Aroma Components of the Nectarine (Prunuspersica var. nucipersica) and the Strawberry (Fragaria ananassa)[J]. Helvetica Chimica Acata,1996,79:1488-1496.
    Song J and Bangerth F. Fatty acids as precursors for aroma volatile biosynthesis in pre-climacteric andclimacteric apple fruit[J]. Postharvest Biology and Technology,2003,30(2):113-121.
    Souleyre E J F, Greenwood D R, Friel E N, et al. An alcohol acyl transferase from apple (cv. Royal Gala),MpAAT1, produces esters involved in apple fruit flavor[J]. FEBS Journal,2005,272:3132-3144.
    Stapleton A, Beetham J K, Pinot F, Garbarino J E, Rockhold D R, Mendel Friedman, Hammock B D,Belknap W R. Cloning and expression of soluble epoxide hydrolase from potato. The Plant Journal,1994,6(2):251-258.
    Steczko J, Donoho G P, Clemens J C, et al. Conserved histidine residues in soybean lipoxygenase: functionalconsequences of their replacement[J]. Biochemistry,1992,31:4053-4057.
    Tamura K, Peterson D, Peterson N, et al. MEGA5: Molecular Evolutionary Genetics Analysis usingMaximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods[J]. MolecularBiology and Evolution,2011,28:2731-2739.
    Tang Q, Ma X J, Mo C M, et al. An efficient approach to finding Siraitia grosvenorii triterpene biosyntheticgenes by RNA-seq and digital gene expression analysis[J]. BMC Genomics,2011,12:343.(doi:10.1186/1471-2164-12-343).
    Tong ZhaoGuo, Gao ZhiHong, Wang Fei, et al. Selection of reliable reference genes for gene expressionstudies in peach using real-time PCR[J]. BMC Molecular Biology.2009,10:71.(doi:10.1186/1471-2199-10-71).
    Tonutti P,Bonghi C,Ramina A. Fruit firmness and ethylene biosynthesis in three cultivars of peach[J].Journal of Horticultural Science,1996,71(1):141-147.
    Toselli M, Baldie E, Marangoni B, et al. Effects of mineral and organic fertilization and ripening stage on theemission of volatile organic compounds and antioxidant acticity of′Stark Redgold′nectarine[J]. ActaHorticulturae (ISHS),2010,868:381-388.
    Vellosillo T, Martinez M, Lopez M A, et al. Oxylipins produced by the9-lipoxygenase pathway inArabidopsis regulate lateral root development and defense responses through a specific signalingcascade[J]. Plant cell,2007,19:831-846.
    Verde I, Abbott A G, Scalabrin S, et al. The high-quality draft genome of peach (Prunus persica) identifiesunique patterns of genetic diversity, Domestication and genome evolution[J]. Nature Genetics,2013,45(5):487-494.
    Vick B A, Zimmerman D C. Arachidonic acid metabolism[J]. Academic Press,1987,9:52-90.
    Visai C and vanoli M. Volatile compound production during growth and ripening of peaches andnectarines[J]. Scientia Horticulturae,1997,70:15-24.
    Wang Yiju, Chen Feng, Fang Jinbao, et al. Effects of Germplasm Origin and Fruit Character on VolatileComposition of Peaches and Nectarines[J]. ACS symposium series.2010,1035:95-117.
    Wang Yiju, Yang Chunxiang Li Shaohua et al. Volatile characteristics of50peaches and nectarines evaluatedby HP-SPME with GC-MS[J]. Food Chemistry,2009,116(1):356-364.
    Wang Yiju, Yang Chunxiang, Liu Chunyan, et al. Effects of Bagging on Volatiles and Polyphenols in“Wanmi” Peaches during Endocarp Hardening and Final Fruit Rapid Growth Stages[J]. Journal of FoodScience,2010,75(9):455-460.
    Wu T, Qin Z W, Zhou X Y, et al. Transcriptome profile analysis of floral sex determination in cucumber[J].Journal of Plant Physiology,2010,167(11):905-913.
    Xi Wanpeng, Zang Bo, Liang Li, et al. Postharvest temperature influences volatile lactone production viaregulation of acyl-CoA oxidases in peach fruit[J]. Plant Cell and Environment,2012,35(3):534-545.
    Xi Wanpeng, Zhang Bo, Shen Jiyuan, et al.2012. Intermittent warming alleviated the loss of peach fruitaroma-related esters by regulation of AAT during cold storage[J]. Postharvest Biology and Technology,2012,74(1):42-48.
    Yahia E M. Apple flavor[M]. Horticultural Reviews, U.S.A., New York:1994,16:197-234.
    Yahyaoui F E L, Wongs-Aree C, Latché A, et al. Molecular and biochemical characteristics of a geneencoding an alcohol acyl-transferase involved in the generation of aroma volatile esters during melonripening[J]. European Journal of Biochemistry,2002,269(9):2359-2366.
    Yun Z, Jin S, Ding Y D, et al. Comparative transcriptomics and proteomics analysis of citrus fruit, toimprove understanding of the effect of low temperature on maintaining fruit quality during lengthypost-harvest storage[J]. Journal of Experimental Botany,2012,63(8):2873-2893.
    Zhang Bo, Shen Jiyuan Wei Wenwen,et al. Expression of Genes Associated with Aroma Formation Derivedfrom the Fatty Acid Pathway during Peach Fruit Ripening[J]. Journal of Agricultural and FoodChemistry,2010,58(10):6157-6165.
    Zhang Bo, Wi Wanpeng, Wei Wenwen, et al. Changes in aroma-related volatiles and gene expression duringlow temperature storage and subsequent shelf-life of peach fruit[J]. Postharvest Biology andTechnology,2011,60:7-16.
    Zhang Bo, Yin XueRen, Shen JiYuan, et al. Volatiles Production and Lipoxygenase Gene Expression inKiwifruit Peel and Flesh During Fruit Ripening[J], Journal of the American Society for HorticultureScience,2009,134(4):472-477.
    Zhang Hongmei, Wang Jun, Ye Sheng, et al. Application of Electronic Nose and Statistical Analysis toPredict Quality Indices of Peach[J]. Food Bioprocess Technology,2012,5(1):65-72.
    Zhang Xiaomeng Jia Huijuan. Changes in Aroma Volatile Compounds and Ethylene ProductionDuring′Hujingmilu′Peach (Prunus persica L.) Fruit Development[J]. Journal of Plant Physiology andMolecular Biology,2005,31(1):41-46.
    Zheng Y, Boeglin W E, Schneider C, et al. A49-kDa mini-lipoxygenase from Anabaena sp. PCC7120retains catalytically complete functionality[J]. Journal of Biological Chemistry.2008,283:5138-5147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700