用户名: 密码: 验证码:
单壁碳纳米管拉曼光谱及电输运性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了单壁碳纳米管(SWNTs)的拉曼光谱和电输运特性。
     首先,利用共振拉曼光谱研究了SWNTs对几种外界作用,包括应力、静电注入和纳米颗粒修饰等的响应。对较大直径超长碳管中反常拉曼光谱的研究发现,沿着碳管轴向特征拉曼光谱G+、G-和G'峰分别位于1553、1563和2597 cm-1,均明显低于文献报道的实验和理论值。显著的拉曼红移可归因于内建张应力作用,用红外激光退火可以使应力释放,拉曼峰向高波数移动。较大直径的碳纳米管具有相对较小的曲率效应,更容易受到内建应力的影响。均匀应力的存在为利用应力工程调制碳管能带结构提供了叮能。
     在SWNTs场效应管(FETs)工作状态下,分别用光子能量为1.96 eV和2.41eV的两种激光激发平均直径为1.4 nm的SWNTs束中金属性和半导体性碳管,原位研究了半导体性及金属性碳管拉曼光谱对外加电场的响应。发现金属性碳管中,G-拉曼模在负栅压下向高波数移动并伴随着峰宽的窄化,但对正偏压无响应。这一发现证明了在SWNTs束中存在Kohn反常现象,金属性碳管的LO声子模随着费米能级的变化而变化,为利用拉曼光谱原位监测FETs沟道中载流子浓度提供了可能。在源、漏偏压作用下的拉曼光谱测量发现,随着单位长度SWNTs上电功率消耗的增加,G峰向低波数平移,波形同时逐渐展宽。这一现象说明产生了热声子,并且在通常的SWNT-FETs中,大大低估了衬底对声子的散射。
     其次,用电子束蒸发和快速热退火工艺在SWNT-FETs表面自组装了金纳米颗粒,制备出新奇的SWNTs复合结构——SWNT@金纳米颗粒。拉曼光谱测量表明,表面金属纳米颗粒的库仑作用改变了SWNTs的电子结构。电输运测量发现,当温度低于150 K时,在长约2μm的导电沟道中观察到强烈的电流振荡。这种库仑阻塞引起的单电子效应可以用两种机理解释:(1)肖特基势垒高度调制——库仑阻塞效应主导着对金纳米颗粒的电注入过程,一旦在电极附近的金纳米颗粒俘获了电荷,其静电势能的改变会影响到接触附近肖特基势垒的高度,进而影响碳管沟道中的电流;(2)能带调制——俘获了电荷的金纳米颗粒充当散射中心,它们改变了沿碳管沟道的局部电势,缩短了电荷在碳管中传输的平均自由程,进而引起电流振荡。
     借助于纳米碳链@SWNT复合结构,第一次详细研究了sp杂化的一维碳原子链的拉曼谱和电学特性。发现纳米碳链@SWNT复合结构具有独特的量了线特性,呈现非线性电学特性,电导随温度的变化遵从幂指数关系,类似于Luttinger流体。低温下观察到均匀的库仑振荡峰,表明其可用于制作性能优良的单电子器件。
     再次,用传统光刻技术结合自对准的方法制备出间距约为5 nm的金属电极,为单分子电学特性的研究创造了条件。成功制备出大面积纳米间距电极阵列,利用交流介电泳技术成功实现了在整个硅片上碳管纳米器件的集成。这一简单且廉价的工艺有望应用于未来分子电路的构建。
     最后,用低功函数的金属(Sc,Sm,Al等)作为源、漏电极材料制备了性能稳定的n型SWNT-FETs。Sc和碳管具有较好的亲和性,费米能级与碳管的导带相匹配,显示出良好的欧姆接触特性。所制备的SWNT-FETs的开关电流比大于3个数量级,并且在约5μm的导电通道中呈现出近似弹道输运的性质,电导约为0.02 G0。
This thesis presents the main findings in my PhD project on the Raman spectrum and the electron transport properties of single-walled carbon nanotubes (SWNTs). Resonance Raman spectroscopy is firstly used to characterize the structural properties of SWNTs under various external perturbations, including strain, nanoparticles decorated, electrostatic gating, electrical heating, et al. Afterwards, the electron transport mechanisms in two novel SWNTs hybrid structures, SWNT@Au-NCs (gold nanocrystals) and SWNT@Cn (carbon chains), are investigated. At last, stable n-type SWNT field effect transistors (FETs) are successfully fabricated. One conventional optical lithography compatible method is developed for sub-10 nm nanogap electrode arrays fabrication, which has been proven an excellent way for nano-sized devices integration.
     Abnormal Raman scattering from a large diameter ultralong SWNT is studied in detail. Along the SWNT, the Raman spectra show the frequencies of 1553,1563, and 2597 cm-1 for G+, G-, and G'peaks, respectively, much lower than the corresponding frequencies well reported both experimentally and theoretically. The significant downshifts in the peaks frequencies can be attributed to self-built tensile strain which is likely caused by carbon nanodots decorated on the tube. After infrared laser heating is performed to one point of it, all the Raman modes are found to shift to higher frequencies and approach to their conventional values. We suggest that the SWNTs with larger diameters easily possess such self-built strain compared to small-diameter SWNTs because of the weaker curvature effect for the larger ones.
     In situ Raman measurements have been carried out on a thin bundle of SWNTs in FET configuration at various gate voltages. Two excitation lasers with the photon energy of 1.96 eV and 2.41 eV are selected to excite the Raman scattering modes of metallic and semiconducting SWNTs in the bundle, respectively. For the metallic SWNTs, the G-Raman mode is found to shift to higher frequencies and narrow down its line shape at negative gate voltages, but be insensitive to positive gate voltages. These findings confirm that the Kohn anomaly exists in a thin SWNTs bundle and that the LO phonon mode changes along with the position of the Fermi level in the metallic SWNTs. In contrast, semiconducting SWNTs do not show any observable changes in the Raman spectra.
     Electrical bias voltages tuned Raman spectroscopic of SWNT-FET show that the G peaks shift gradually to lower frequency, become broader and decrease in intensity, along with the increasing of electrical power per unit length on the SWNT. This result indicates that the generation of hot phonons and the underestimation of the interaction between the SWNTs and the SiO2 substrate.
     Self-assembly gold nanocrystals (Au-NCs) are formed on the surface of SWNTs on a platform of FET by electron-beam evaporation and post rapid thermal annealing processes. Strong oscillations in the SWNTs channel (~2000 nm long) current occur below 150 K. The Raman scattering from the SWNTs suggests that the electronic structure of the SWNTs has been significantly altered by the strong Coulombic interaction with attached Au-NCs. Two possible mechanisms are presented to explain the observations:(1) the charging process of Au-NCs is dominated by the Coulomb blockade effect. Thus the electrostatic potential of charged Au-NCs modifies the Schottky barrier at the SWNT/Au electrode contacts and subsequently affects the SWNT channel current (or the Schottky barrier modulation) and (2) the charged Au-NCs serve as scattering centers, which modify the local potential along the SWNTs channel and then induce the oscillations in the current (i.e. energy band modulation).
     Pure sp-hybridized linear carbon chains (Cn) encapsulated within vertically aligned SWNTs (Cn@SWNT) is observed using Raman spectroscopy and electrical measurements. For the first time Cn@SWNT is shown to possess unique quantum wire properties, including nonlinear electrical property and conductance power law behaving characteristic of a Luttinger-liquid. Single electron tunneling (SET) and Coulomb blockade phenomena were clearly recorded at 40 K with a series of different bias voltages from 1 to 10 mV. The high bias voltage 10 mV indicates that SET can occur on Cn@SWNT at temperature up to 110 K, providing many potential applications in computer industry, single electron memory, highly sensitive electrometer among others.
     We have developed a fabrication method for nanogap electrodes without employing electron-beam lithography to measure the electrical characteristics of nanostructured molecules. This side layer-controlled method enables us to reproducibly fabricate down to~5 nm nanogap electrodes. The fully compatibility with traditional microfabrication make us easily fabricate nanogap electrode array for higher density integration. Combined with the AC dielectrophresis method, one example for short channel SWNT-FETs array is demonstrated.
     Owing to the unique 1-D structure of SWNTs with fully saturated surface bonds and no interface states, resulting in no Fermi-level pinning, stable n-type SWNT-FETs are fabricated using the low workfunction metals, Sc, Sm, or even Al as source/drain electrodes. The well matching between the Fermi level of Sc and the conductance band of SWNTs make the SWNT-FETs show nice ohmic contact property and with quite high Ion/Ioff ratio (more than 3 orders) and conductance (~0.02 Go in 5μm channel).
引文
[1]G. E. Moore, in "Progress in digital integrated electronics" International Electron Devices Meeting IEDM (1975) p.11-13.
    [2]http://www.itrs.net/Links/2007ITRS/Home2007.htm,"International Technology Roadmap for Semocpnductor," (2007).
    [3]G. D. Wilk, R. M. Wallace, and J. M. Anthony, "High-kappa gate dielectrics: Current status and materials properties considerations", Journal of Applied Physics 89 (2001) 5243-5275.
    [4]A. Dixit, A. Kottantharayil, N. Collaert, M. Goodwin, M. Jurezak, and K. De Meyer, "Analysis of the parasitic S/D resistance in multiple-gate FETs", IEEE Transactions on Electron Devices 52 (2005) 1132-1140.
    [5]J. L. Hoyt, H. M. Nayfeh, S. Eguchi, I. Aberg, G. Xia, T. Drake, E. A. Fitzgerald, and D. A. Antoniadis, in "Strained silicon MOSFET technology" International Electron Devices Meeting IEDM (2002) p.23-26.
    [6]P. Avouris, J. Appenzeller, R. Martel, and S. J. Wind, "Carbon nanotube electronics", Proceedings of the IEEE 91 (2003) 1772-1784.
    [7]H. Klauk, U. Zschieschang, J. Pflaum, and M. Halik, "Ultralow-power organic complementary circuits", Nature 445 (2007) 745-748.
    [8]G. Maruccio, P. Visconti, V. Arima, S. D'Amico, A. Biasco, E. D'Amone, R. Cingolani, R. Rinaldi, S. Masiero, T. Giorgi, and G. Gottarelli, "Field Effect Transistor Based on a Modified DNA Base", Nano Lett.3 (2003) 479-483.
    [9]J. Appenzeller, J. Knoch, R. Martel, V. Derycke, S. J. Wind, and P. Avouris, "Carbon nanotube electronics", Ieee Transactions on Nanotechnology 1 (2002) 184-189.
    [10]A. Oberlin, M. Endo, and T. Koyama, "Filamentous growth of carbon through benzene decomposition", Journal of Crystal Growth 32 (1976) 335-349.
    [11]S. Iijima, "Helical microtubules of graphitic carbon", Nature 354 (1991) 56-58.
    [12]Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, "Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls", Nature 363 (1993) 605-607.
    [13]S. Saito, G. Dresselhaus, and M. S. Dresselhaus, "Physics properties of carbon nanotubes",(London:Imperial College Press,1998).
    [14]L. C. Venema, "Electronic Structure of Carbon Nanotubes" (Delft University Press,2000).
    [15]K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima, "Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes", Science 306 (2004) 1362-1364.
    [16]A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, "Crystalline Ropes of Metallic Carbon Nanotubes", Science 273 (1996) 483-487.
    [17]http://online.itp.ucsb.edu/online/qhall_c98/dekker/.
    [18]S. J. Tans, A. R. M. Verschueren, and C. Dekker, "Room-temperature transistor based on a single carbon nanotube", Nature 393 (1998) 49-52.
    [19]R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris, "Single-and multi-wall carbon nanotube field-effect transistors", Applied Physics Letters 73 (1998) 2447-2449.
    [20]R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K. K. Chan, J. Tersoff, and P. Avouris, "Ambipolar Electrical Transport in Semiconducting Single-Wall Carbon Nanotubes", Physical Review Letters 87 (2001) 256805.
    [21]A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. J. Dai, "Ballistic carbon nanotube field-effect transistors", Nature 424 (2003) 654-657.
    [22]C. W. Zhou, J. Kong, and H. J. Dai, "Electrical measurements of individual semiconducting single-walled carbon nanotubes of various diameters", Applied Physics Letters 76 (2000) 1597-1599.
    [23]A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, "Logic circuits with carbon nanotube transistors", Science 294 (2001) 1317-1320.
    [24]A. Javey. Q. Wang, A. Ural, Y. M. Li, and H. J. Dai, "Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators", Nano Letters 2 (2002) 929-932.
    [25]S. J. Wind, J. Appenzeller, R. Martel, V. Derycke, and P. Avouris, "Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes", Applied Physics Letters 80 (2002) 3817-3819.
    [26]M. Radosavljevic, S. Heinze, J. Tersoff, and P. Avouris, "Drain voltage scaling in carbon nanotube transistors", Applied Physics Letters 83 (2003) 2435-2437.
    [27]A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, and H. J. Dai, "High-kappa dielectrics for advanced carbon-nanotube transistors and logic gates", Nature Materials 1 (2002) 241-246.
    [28]S. Heinze, M. Radosavljevic, J. Tersoff, and P. Avouris, "Unexpected scaling of the performance of carbon nanotube Schottky-barrier transistors", Physical Review B 68 (2003)235418.
    [29]J. Appenzeller, J. Knoch, V. Derycke, R. Martel, S. Wind, and P. Avouris, "Field-Modulated Carrier Transport in Carbon Nanotube Transistors", Physical Review Letters 89 (2002) 126801.
    [30]A. Javey, J. Guo, D. B. Farmer, Q. Wang, D. Wang, R. G. Gordon, M. Lundstrom, and H. Dai, "Carbon Nanotube Field-Effect Transistors with Integrated Ohmic Contacts and High-k Gate Dielectrics", Nano Letters 4 (2004) 447-450.
    [31]B. M. Kim, T. Brintlinger, E. Cobas, M. S. Fuhrer, H. M. Zheng, Z. Yu, R. Droopad, J. Ramdani, and K. Eisenbeiser, "High-performance carbon nanotube transistors on SrTiO3/Si substrates", Applied Physics Letters 84 (2004) 1946-1948.
    [32]H. Dai, J. Kong, C. Zhou, N. Franklin, T. Tombler, A. Cassell, S. Fan, and M. Chapline, "Controlled Chemical Routes to Nanotube Architectures, Physics, and Devices", The Journal of Physical Chemistry B 103 (1999) 11246-11255.
    [33]T. Durkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, "Extraordinary Mobility in Semiconducting Carbon Nanotubes", Nano Letters 4 (2004) 35-39.
    [34]S. Li, Z. Yu, C. Rutherglen, and P. J. Burke, "Electrical Properties of 0.4 cm Long Single-Walled Carbon Nanotubes", Nano Letters 4 (2004) 2003-2007.
    [35]J. Appenzeller, J. Knoch, R. Martel, V. Derycke, S. Wind, and P. Avouris, in "Short-channel like effects in Schottky barrier carbon nanotube field-effect transistors" Electron Devices Meeting,2002. IEDM'02. Digest. International (2002) p.285-288.
    [36]S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and P. Avouris, "Carbon nanotubes as Schottky barrier transistors", Physical Review Letters 89 (2002) 106801.
    [37]J. Appenzeller, Y. M. Lin, J. Knoch, and P. Avouris, "Band-to-Band Tunneling in Carbon Nanotube Field-Effect Transistors", Physical Review Letters 93 (2004) 196805.
    [38]X. L. Liu, C. Lee, C. W. Zhou, and J. Han, "Carbon nanotube field-effect inverters", Applied Physics Letters 79 (2001) 3329-3331.
    [39]V. Derycke, R. Martel, J. Appenzeller, and P. Avouris, "Controlling doping and carrier injection in carbon nanotube transistors", Applied Physics Letters 80 (2002) 2773-2775.
    [40]P. Avouris, "Molecular Electronics with Carbon Nanotubes", Accounts of Chemical Research 35 (2002) 1026-1034.
    [41]Y. Ohno, S. Iwatsuki, T. Hiraka, T. Okazaki, S. Kishimoto, K. Maezawa, H. Shinohara, and T. Mizutani, "Position-controlled carbon nanotube field-effect transistors fabricated by chemical vapor deposition using patterned metal catalyst", Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 42 (2003) 4116-4119.
    [42]F. Nihey, H. Hongo, Y. Ochiai, M. Yudasaka, and S. Iijima, "Carbon-nanotube field-effect transistors with very high intrinsic transconductance", Japanese Journal of Applied Physics Part 2-Letters 42 (2003) L1288-L1291.
    [43]V. Derycke, R. Martel, J. Appenzeller, and P. Avouris, "Carbon Nanotube Inter-and Intramolecular Logic Gates", Nano Letters 1 (2001) 453-456.
    [44]J. Kong, C. W. Zhou, E. Yenilmez, and H. J. Dai, "Alkaline metal-doped n-type semiconducting nanotubes as quantum dots", Applied Physics Letters 77 (2000) 3977-3979.
    [45]M. Radosavljevic, J. Appenzeller, P. Avouris, and J. Knoch, "High performance of potassium n-doped carbon nanotube field-effect transistors", Applied Physics Letters 84(2004)3693-3695.
    [46]C. W. Zhou, J. Kong, E. Yenilmez, and H. J. Dai, "Modulated chemical doping of individual carbon nanotubes", Science 290 (2000) 1552-1555.
    [47]Y. Zhou, A. Gaur, S.-H. Hur, C. Kocabas, M. A. Meitl, M. Shim, and J. A. Rogers, "p-Channel, n-Channel Thin Film Transistors and p-n Diodes Based on Single Wall Carbon Nanotube Networks", Nano Letters 4 (2004) 2031-2035.
    [48]M. Shim, A. Javey, N. W. Shi Kam, and H. Dai, "Polymer Functionalization for Air-Stable n-Type Carbon Nanotube Field-Effect Transistors", Journal of the American Chemical Society 123 (2001) 11512-11513.
    [49]J. Li, Q. Zhang, H. Li, and M. B. Chan-Park, "Influence of Triton X-100 on the characteristics of carbon nanotube field-effect transistors", Nanotechnology 17 (2006) 668.
    [50]A. Javey, M. Shim, and H. J. Dai, "Electrical properties and devices of large-diameter single-walled carbon nanotubes", Applied Physics Letters 80 (2002) 1064-1066.
    [51]C. Zhou, J. Kong, and H. Dai, "Intrinsic Electrical Properties of Individual Single-Walled Carbon Nanotubes with Small Band Gaps", Physical Review Letters 84 (2000) 5604.
    [52]Y. M. Lin, J. Appenzeller, and P. Avouris, "Ambipolar-to-unipolar conversion of carbon nanotube transistors by gate structure engineering", Nano Letters 4 (2004) 947-950.
    [53]M. S. Fuhrer, B. M. Kim, T. Durkop, and T. Brintlinger, "High-mobility nanotube transistor memory", Nano Letters 2 (2002) 755-759.
    [54]M. Radosavljevic, M. Freitag, K. V. Thadani, and A. T. Johnson, "Nonvolatile Molecular Memory Elements Based on Ambipolar Nanotube Field Effect Transistors", Nano Letters 2 (2002) 761-764.
    [55]C. H. Lee, K. T. Kang, K. S. Park, M. S. Kim, H. S. Kim, H. G. Kim, J. E. Fischer, and A. T. Johnson, "The nano-memory devices of a single wall and peapod structural carbon nanotube field effect transistor", Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes& Review Papers 42 (2003) 5392-5394.
    [56]J. B. Cui, R. Sordan, M. Burghard, and K. Kern, "Carbon nanotube memory devices of high charge storage stability", Applied Physics Letters 81 (2002) 3260-3262.
    [57]J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, "Nanotube Molecular Wires as Chemical Sensors", Science 287 (2000) 622-625.
    [58]T. Someya, J. Small, P. Kim, C. Nuckolls, and J. T. Yardley, "Alcohol vapor sensors based on single-walled carbon nanotube field effect transistors", Nano Letters 3(2003)877-881.
    [59]P. Qi, O. Vermesh, M. Grecu, A. Javey, Q. Wang, H. Dai, S. Peng, and K. J. Cho, "Toward Large Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Molecular Detection", Nano Letters 3,347-351 (2003).
    [60]J. U. Lee, P. P. Gipp, and C. M. Heller, "Carbon nanotube p-n junction diodes", Applied Physics Letters 85 (2004) 145-147.
    [61]M. Freitag, V. Perebeinos, J. Chen, A. Stein, J. C. Tsang, J. A. Misewich, R. Martel, and P. Avouris, "Hot Carrier Electroluminescence from a Single Carbon Nanotube", Nano Letters 4 (2004) 1063-1066.
    [62]M. Freitag, J. Chen, J. Tersoff, J. C. Tsang, Q. Fu, J. Liu, and P. Avouris, "Mobile Ambipolar Domain in Carbon-Nanotube Infrared Emitters", Physical Review Letters 93(2004)076803.
    [63]G Jing and A. A. Muhammad, "Carrier transport and light-spot movement in carbon-nanotube infrared emitters", Applied Physics Letters 86 (2005) 023105.
    [64]P. G Collins, M. S. Arnold, and P. Avouris, "Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown", Science 292 (2001) 706-709.
    [65]P. G. Collins, M. Hersam, M. Arnold, R. Martel, and P. Avouris, "Current Saturation and Electrical Breakdown in Multiwalled Carbon Nanotubes", Physical Review Letters 86 (2001) 3128.
    [66]M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, "Sorting carbon nanotubes by electronic structure using density differentiation", Nat Nano 1 (2006) 60-65.
    [67]M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, "Raman spectroscopy of carbon nanotubes", Physics Reports-Review Section of Physics Letters 409 (2005) 47-99.
    [68]C. Thomsen and S. Reich, in Light Scattering in Solids Ix; Vol.108 (2007) p. 115-235.
    [69]S. D. M. Brown, P. Corio, A. Marucci, M. A. Pimenta, M. S. Dresselhaus, and G. Dresselhaus, "Second-order resonant Raman spectra of single-walled carbon nanotubes", Physical Review B 61 (2000) 7734-7742.
    [70]K. Kneipp, H. Kneipp, P. Corio, S. D. M. Brown, K. Shafer, J. Motz, L. T. Perelman, E. B. Hanlon, A. Marucci, G. Dresselhaus, and M. S. Dresselhaus, "Surface-enhanced and normal Stokes and anti-Stokes Raman spectroscopy of single-walled carbon nanotubes", Physical Review Letters 84 (2000) 3470-3473.
    [71]O. E. Alon, "Number of Raman-and infrared-active vibrations in single-walled carbon nanotubes", Physical Review B 63 (2001) 201403.
    [72]S. D. M. Brown, A. Jorio, P. Corio, M. S. Dresselhaus, G. Dresselhaus, R. Saito, and K. Kneipp, "Origin of the Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes", Physical Review B 63 (2001) 155414.
    [73]V. N. Popov and L. Henrard, "Evidence for the existence of two breathinglike phonon modes in infinite bundles of single-walled carbon nanotubes", Physical Review B63 (2001)233407.
    [74]J. X. Cao, X. H. Yan, Y. Xiao, Y. Tang, and J. W. Ding, "Exact study of lattice dynamics of single-walled carbon nanotubes", Physical Review B 67 (2003) 045413.
    [75]A. Hartschuh, A. J. Meixner, and L. Novotny, "Local phonon modes of single-walled carbon nanotubes observed by near-field Raman spectroscopy", Electronic Properties of Synthetic Nanostructures 723 (2004) 163-167.
    [76]J. Y. Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Ustunel, S. Braig, T. A. Arias, P. W. Brouwer, and P. L. McEuen, "Electron-phonon scattering in metallic single-walled carbon nanotubes", Nano Letters 4 (2004) 517-520.
    [77]U. J. Kim, C. A. Furtado, X. M. Liu, G. G. Chen, and P. C. Eklund, "Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes", Journal of the American Chemical Society 127 (2005) 15437-15445.
    [78]V. Zolyomi, J. Kurti, A. Gruneis, and H. Kuzmany, "Origin of the fine structure of the Raman D band in single-wall carbon nanotubes", Physical Review Letters 90 (2003)157401.
    [79]N. Chandrabhas, A. K. Sood, D. Sundararaman, S. Raju, V. S. Raghunathan, G. V. N. Rao, V. S. Sastry, T. S. R. Radhakrishnan, Y. Hariharan, A. Bharathi, and C. S. Sundar, "Structure and Vibrational Properties of Carbon Tubules", Pramana-Journal of Physics 42 (1994) 375-385.
    [80]S. S. Xie, W. Z. Li, C. Y. Wang, L. W. Xu, H. Zhang, Y. Zhang, and L. X. Qian, "Morphology, structure and Raman scattering of carbon nanotubes produced by using mesoporous materials", Science in China Series a-Mathematics Physics Astronomy 40 (1997)971-977.
    [81]J. Kurti, G. Kresse, and H. Kuzmany, "First-principles calculations of the radial breathing mode of single-wall carbon nanotubes", Physical Review B 58 (1998) R8869-R8872.
    [82]J. Maultzsch, H. Telg, S. Reich, and C. Thomsen, "Radial breathing mode of single-walled carbon nanotubes:Optical transition energies and chiral-index assignment", Physical Review B 72 (2005) 205438.
    [83]H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, "Optical properties of single-wall carbon nanotubes", Synthetic Metals 103 (1999) 2555-2558.
    [84]A. Jorio, A. G. Souza Filho, G. Dresselhaus, M. S. Dresselhaus, A. K. Swan, M. S. Unlu, B. B. Goldberg, M. A. Pimenta, J. H. Hafner, C. M. Lieber, and R. Saito, "G-band resonant Raman study of 62 isolated single-wall carbon nanotubes", Physical Review B 65 (2002) 155412.
    [85]M. A. Pimenta, A. Marucci, S. A. Empedocles, M. G. Bawendi, E. B. Hanlon, A. M. Rao, P. C. Eklund, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, "Raman modes of metallic carbon nanotubes", Physical Review B 58 (1998) R16016.
    [86]P. Corio, A. Jorio, N. Demir, and M. S. Dresselhaus, "Spectro-electrochemical studies of single wall carbon nanotubes films", Chemical Physics Letters 392 (2004) 396-402.
    [87]P. Corio, P. S. Santos, V. W. Brar, G. G. Samsonidze, S. G. Chou, and M. S. Dresselhaus. "Potential dependent surface Raman spectroscopy of single wall carbon nanotube films on platinum electrodes", Chemical Physics Letters 370 (2003) 675-682.
    [88]A. Sedeki, L. G. Caron, and C. Bourbonnais, "Electron-phonon coupling and Peierls transition in metallic carbon nanotubes", Physical Review B 62 (2000) 6975-6978.
    [89]L. M. Woods and G. D. Mahan, "Electron-phonon effects in graphene and armchair (10,10) single-wall carbon nanotubes", Physical Review B 61 (2000) 10651-10663.
    [90]S. Piscanec, M. Lazzeri, F. Mauri, A. C. Ferrari, and J. Robertson, "Kohn anomalies and electron-phonon interactions in graphite", Physical Review Letters 93 (2004)185503.
    [91]M. Oron-Carl, F. Hennrich, M. M. Kappes, H. V. Lohneysen, and R. Krupke, "On the electron-phonon coupling of individual single-walled carbon nanotubes", Nano Letters 5 (2005) 1761-1767.
    [92]S. Piscanec, A. C. Ferrari, A. Lazzeri, F. Mauri, and J. Robertson, "Kohn anomalies and electron-phonon coupling in carbon nanotubes", Electronic Properties of Novel Nanostructures 786 (2005) 424-427.
    [93]S. Sapmaz, P. Jarillo-Herrero, Y. M. Blanter, and H. S. J. van der Zant, "Coupling between electronic transport and longitudinal phonons in suspended nanotubes", New Journal of Physics 7 (2005) 1367.
    [94]M. Machon, S. Reich, and C. Thomsen, "Electron-phonon coupling in carbon nanotubes", Physica Status Solidi B-Basic Solid State Physics 243 (2006) 3166-3170.
    [95]G. S. Ge, E. B. Barros, R. Saito, J. Jiang, G. Dresselhaus, and M. S. Dresselhaus, "Electron-phonon coupling mechanism in two-dimensional graphite and single-wall carbon nanotubes", Physical Review B (Condensed Matter and Materials Physics) 75 (2007) 155420.
    [96]K. T. Nguyen, A. Gaur, and M. Shim, "Fano lineshape and phonon softening in single isolated metallic carbon nanotubes", Physical Review Letters 98 (2007) 145504.
    [97]B. S. Elman, M. S. Dresselhaus, G. Dresselhaus, E. W. Maby, and H. Mazurek, "Raman scattering from ion-implanted graphite", Physical Review B 24 (1981) 1027.
    [98]V. Zolyomi and J. Kurti, "Calculating the discrepancy between the Stokes and anti-Stokes Raman D band of carbon nanotubes using double resonance theory" Physical Review B 66 (2002) 073418.
    [99]C. Jiang, J. Zhao, H. A. Therese, M. Friedrich, and A. Mews, "Raman Imaging and Spectroscopy of Heterogeneous Individual Carbon Nanotubes", The Journal of Physical Chemistry B 107 (2003) 8742-8745.
    [100]L. G. Cancado, M. A. Pimenta, B. R. A. Neves, M. S. S. Dantas, and A. Jorio, "Influence of the Atomic Structure on the Raman Spectra of Graphite Edges", Physical Review Letters 93 (2004) 247401.
    [101]C. Thomsen, "Second-order Raman spectra of single and multiwalled carbon nanotubes", Physical Review B 61 (2000) 4542-4544.
    [102]R. P. Vidano, D. B. Fischbach, L. J. Willis, and T. M. Loehr, "Observation of Raman band shifting with excitation wavelength for carbons and graphites", Solid State Communications 39 (1981) 341-344.
    [103]J. Maultzsch, S. Reich, and C. Thomsen, "Double-resonant Raman scattering in graphite:Interference effects, selection rules, and phonon dispersion", Physical Review B 70 (2004) 155403.
    [104]A. B. Kleschenkov, A. M. Lerer, V. V. Makhno, P. V. Makhno, and O. S. Labunko, "Electrodynamic Analysis of Carbon Nanotube Antenna",2008 International Conference on Mathematical Methods in Electromagnetic Theory,127-129 (2008).
    [105]Y. Lan and B. Q. Zeng, "Properties of carbon nanotube antenna",2007 5th International Conference on Microwave and Millimeter Wave Technology Proceedings, 93-96 (2007).
    [106]A. Jorio, A. G. Souza, V. W. Brar, A. K. Swan, M. S. Unlu, B. B. Goldberg, A. Righi, J. H. Hafner, C. M. Lieber, R. Saito, G. Dresselhaus, and M. S. Dresselhaus, "Polarized resonant Raman study of isolated single-wall carbon nanotubes:Symmetry selection rules, dipolar and multipolar antenna effects", Physical Review B 65 (2002) 121402.
    [107]A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, "High-resolution near-field Raman microscopy of single-walled carbon nanotubes", Physical Review Letters 90 (2003) 095503.
    [108]V. C. Moore, M. S. Strano, E. H. Haroz, R. H. Hauge, R. E. Smalley, J. Schmidt, and Y. Talmon, "Individually Suspended Single-Walled Carbon Nanotubes in Various Surfactants", Nano Letters 3 (2003) 1379-1382.
    [109]J. Li, Q. Zhang, D. Yang, and J. Tian, "Fabrication of carbon nanotube field effect transistors by AC dielectrophoresis method", Carbon 42 (2004) 2263-2267.
    [110]S. Blatt, F. Hennrich, et al. "Influence of Structural and Dielectric Anisotropy on the Dielectrophoresis of Single-Walled Carbon Nanotubes", Nano Letters 7 (2007) 1960-1966.
    [111]A. Vijayaraghavan, S. Blatt, D. Weissenberger, M. Oron-Carl, F. Hennrich, D. Gerthsen, H. Hahn, and R.Krupke, "Ultra-Large-Scale Directed Assembly of Single-Walled Carbon Nanotube Devices", Nano Letters 7 (2007) 1556-1560.
    [112]Minot, E. D.; Yaish, Y.; Sazonova, V.; Park, J. Y.; Brink, M.; McEuen, P. L "Tuning Carbon Nanotube Band Gaps with Strain", Phys. Rev. Lett.90 (2003) 156401-156404.
    [113]Yang, L.; Han, J. "Electronic Structure of Deformed Carbon Nanotubes", Phys. Rev. Lett.85(2000)154-157.
    [114]Yang, L.; Anantram, M. P.; Han, J.; Lu, J. P. "Band-gap change of carbon nanotubes:Effect of Small Uniaxial and Torsional Strain", Phys. Rev. B 60 (1999) 13874-13878.
    [115]Farhat, H.; Son, H.; Samsonidze, Ge. G.; Reich, S.; Dresselhaus, M. S.; Kong, J. "Phonon Softening in Individual Metallic Carbon Nanotubes due to the Kohn Anomaly", Phys. Rev. Lett.99(2007) 145506-145509.
    [116]Wood, J. R.; Zhao, Q.; Frogley, M. D.; Meurs, E. R.; Prins, A. D.; Peijs, T.; Dunstan, D. J.; Wagner, H. D. "Carbon Nanotubes:From Molecular to Macroscopic Sensors", Phys. Rev. B 62 (2000) 7571-7575.
    [117]Yuan, S. N.; Zhang, Q.; You, Y. M.; Shen, Z. X.; Shimamoto, D.; Endo, M. "Correlation between in Situ Raman Scattering and Electrical Conductance for an Individual Double-Walled Carbon Nanotube", Nano Lett.9 (2009) 383-387.
    [118]Huang, Y.; Young, R. J. "Non-linear Elasticity in Carbon Fibres", J. Mater. Sci. Lett.12 (1993) 92-95.
    [119]Montes-Moran, M. A.; Young, R. J. "Raman Spectroscopy Study of High-modulus Carbon Fibres:Effect of Plasma-treatment on the Interfacial Properties of Single-fibre-epoxy Composites:Part Ⅱ:Characterisation of the Fibre-matrix Interface", Carbon 40 (2002) 857-875.
    [120]Souza Filho, A. G.; Kobayashi, N.; Jiang, J.; Gruneis, A.; Saito, R.; Cronin, S. B.; Mendes Filho, J.; Samsonidze, G G.; Dresselhaus, G.; Dresselhaus, M. S. "Strain-Induced Interference Effects on the Resonance Raman Cross Section of Carbon Nanotubes", Phys. Rev. Lett.95 (2005) 217403-217406.
    [121]Cronin, S. B.; Swan, A. K.; Unlu, M. S.; Goldberg, B. B.; Dresselhaus, M. S.; Tinkham, M. "Measuring the Uniaxial Strain of Individual Single-Wall Carbon Nanotubes:Resonance Raman Spectra of Atomic-Force-Microscope Modified Single-Wall Nanotubes", Phys. Rev. Lett.93 (2004) 167401-167404.
    [122]Cronin, S. B.; Swan, A. K.; Unlu, M. S.; Goldberg, B. B.; Dresselhaus, M. S.; Tinkham, M. "Resonant Raman Spectroscopy of Individual Metallic and Semiconducting Single-wall Carbon Nanotubes under Uniaxial Strain", Phys. Rev. B 72 (2005) 035425-035432.
    [123]Duan, X. J.; Son, H. B.; Gao, B.; Zhang, J.; Wu, T. J.; Samsonidze, G G.; Dresselhaus, M. S.; Liu, Z. F.; Kong, J. "Resonant Raman Spectroscopy of Individual Strained Single-Wall Carbon Nanotubes", Nano Lett.7 (2007) 2116-2121.
    [124]Zheng, L. X.; O'Connell, M. J.; Doom, S. K.; Liao, X. Z.; Zhao, Y. H.; Akhadov, E. A.; Hoffbauer, M. A.; Roop, B. J.; Jia, Q. X.; Dye, R. C.; Peterson, D. E.; Huang, S. M.; Liu, J.; Zhu, Y. T. "Ultralong Single-wall Carbon Nanotubes", Nature Mat.3 (2004) 673-676.
    [125]Zheng, L. X.; Satishkumar, B. C.; Gao, P. Q.; Zhang, Q. "Kinetics Studies of Ultralong Single-Walled Carbon Nanotubes", J. Phys. Chem. C 113 (2009) 10896-10900.
    [126]Jorio, A.; Saito, R.; Hafner, J. H.; Lieber, C. M.; Hunter, M.; McClure, T.; Dresselhaus, G.; Dresselhaus, M. S. Structural (n, m) "Determination of Isolated Single-Wall Carbon Nanotubes by Resonant Raman Scattering", Phys. Rev. Lett.86 (2001) 1118-1121.
    [127]Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. "Raman Spectroscopy of Carbon Nanotubes", Phys. Rep.409 (2005) 47-99.
    [128]Tsang, J. C.; Freitag, M.; Perebeinos, V.; Liu, J.; Avouris, P. "Doping and Phonon Renormalization in Carbon Nanotubes", Nat. Nanotechnol.2 (2007) 725-730.
    [129]Paillet, M.; Poncharal, P.; Zahab, A. "Electrostatics of Individual Single-Walled Carbon Nanotubes Investigated by Electrostatic Force Microscopy" Phys. Rev. Lett.94(2005) 186801-186804.
    [130]Nikitin, T.; Li, X.; Zhang, Z.; Ogasaware, H.; Dai, H.; Nilsson, A. "Hydrogen Storage in Carbon Nanotubes through the Formation of Stable C-H Bonds", Nano Lett. 8(2008)162-167.
    [131]Muniz, A. R.; Singh, T.; Maroudas, D."Effects of Hydrogen Chemisorption on the Structure and Deformation of Single-walled Carbon Nanotubes", Appl. Phys. Lett. 94(2009)103108-103110.
    [132]Raravikar, N. R.; Keblinski, P.; Rao, A. M.; Dresselhaus, M. S.; Schadler, L S.; Ajayan, P. M. "Temperature Dependence of Radial Breathing Mode Raman Frequency of Single-Walled Carbon Nanotubes", Phys. Rev. B 66 (2002) 235424-235432.
    [133]Grimvall, G. Thermophysical Properties of Materials. North-Holland, Amsterdam,1986.
    [134]Mohiuddin, T. M. G.; Lombardo, A.; Nair, R. R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D. M.; Galiotis, C.; Marzari, N.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C. "Uniaxial Strain in Graphene by Raman Spectroscopy:G Peak Splitting, Gruneisen Parameters, and Sample Orientation", Phys. Rev. B 79 (2009) 205433-205440.
    [135]Mounet, N.; Marzari, N. First-principles Determination of the Structural, Vibrational and Thermodynamic Properties of Diamond, Graphite, and Derivatives. Phys. Rev. B 71(2005)205214-205227.
    [136]M. S. Dresselhaus, G Dresselhaus, and A. Jorio, "Raman Spectroscopy of Carbon Nanotubes in 1997 and 2007", J. Phys. Chem. C 111 (2007) 17887.
    [137]M. Milnera, J. Kurti, M. Hulman, and H.Kuzmany, "Periodic Resonance Excitation and Intertube Interaction from Quasicontinuous Distributed Helicities in Single-Wall Carbon Nanotubes", Phys. Rev. Lett.84 (2000) 1324.
    [138]W. Kohn, "Image of the Fermi Surface in the Vibration Spectrum of a Metal", Phys. Rev. Lett.2(1959)393.
    [139]M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson "Phonon linewidths and electron-phonon coupling in graphite and nanotubes", Phys. Rev. B 73 (2006)155426.
    [140]S. Piscanec, M. Lazzeri, J. Robertson, A. C. Ferrari, and F. Mauri, "Optical phonons in carbon nanotubes:Kohn anomalies, Peierls distortions, and dynamic effects", Phys. Rev. B 75 (2007) 035427.
    [141]J. Yan, Y. B. Zhang, P. Kim, and A. Pinczuk, "Electric field effect tuning of electron-phonon coupling in graphene", Physical Review Letters 98 (2007) 166802.
    [142]M. Lazzeri, and F. Mauri, "Nonadiabatic Kohn Anomaly in a Doped Graphene Monolayer", Phys. Rev. Lett.97 (2006) 266407.
    [143]V. Perebeinos, J.Tersoff, and Ph. Avouris, "Electron-Phonon Interaction and Transport in Semiconducting Carbon Nanotubes", Phys. Rev. Lett.94 (2005) 086802.
    [144]J. Jiang, R. Saito, K. Sato, J. S. Park, Ge. G Samsonidze, A. Jorio, G Dresselhaus, and M. S. Dresselhaus, "Exciton-photon, exciton-phonon matrix elements, and resonant Raman intensity of single-wall carbon nanotubes", Phys. Rev. B 75 (2007) 035405.
    [145]S. Piscanec, M. Lazzeri, F. Mauri, A. C. Ferrari, and J. Robertson, "Kohn Anomalies and Electron-Phonon Interactions in Graphite", Phys. Rev. Lett.93 (2004) 185503.
    [146]H. Farhat, H. Son, Ge. G. Samsonidze, S. Reich, M. S. Dresselhaus, and J. Kong, "Phonon Softening in Individual Metallic Carbon Nanotubes due to the Kohn Anomaly", Phys. Rev. Lett.99(2007) 145506.
    [147]J. C. Tsang, M. Freitag, V. Perebeinos, J. Liu, and Ph. Avouris, "Doping and phonon renormalization in carbon nanotubes" Nature Nanotechnology 2 (2007) 725-730,.
    [148]A. Das. A. K.Sood, A. Govindaraj, A. M. Saitta, M. Lazzeri, F. Mauri, and C. N. R Rao, "Doping in Carbon Nanotubes Probed by Raman and Transport Measurements" Phys. Rev. Lett.99 (2007) 136803.
    [149]A. Jorio, M. A. Pimenta, A. g. Souza Filho, Ge. G. Samsonidze, A. K. Swan, M. S. Unlu, B. B. Goldberg, R. Saito, G. Dresselhaus, M. S. Dresselhaus, "Resonance Raman Spectra of Carbon Nanotubes by Cross-Polarized Light", Phys. Rev. Lett.90 (2003)107403.
    [150]P. M. Rafailov, J. Maulzsch, and C. Thomsen, "Electrochemical switching of the Peierls-like transition in metallic single-walled carbon nanotubes", Phys. Rev. B 72 (2005)045411.
    [151]J. Yan, Y. b. Zhang, P. Kim, and A. Pinczuk, "Electric Field Effect Tuning of Electron-Phonon Coupling in Graphene", Phys. Rev. Lett.98 (2007) 166802.
    [152]N. Caudal, A. M. Saitta, M. Lazzeri, and F. Mauri, "Kohn anomalies and nonadiabaticity in doped carbon nanotubes", Phys. Rev. B 75 (2007) 115423.
    [153]M. Steinerl, M. Freitag, V. Perebeinos, J. C. Tsang, J. P. Small, M.Kinoshita, D. N. Yuan, J. Liu, P. Avouris, "Phonon populations and electrical power dissipation in carbon nanotube transistors", Nat. Nanotechnol.4 (2009) 320.
    [154]Y. Takahashi, M. Nagase, H. Namatsu, K. Kurihara, K. Iwdate, Y. Nakajima, S. Horiguchi, K. Murase and M. Tabe, "Fabrication technique for Si single-electron transistor operating at room temperature", Elect. Lett.31 (1995) 136-137.
    [155]H. Ishikuro, T. Fujii, T. Saraya, G. Hashiguchi, T. Hiramoto, and T. Ikoma, "Coulomb blockade oscillations at room temperature in a Si quantum wire metal-oxidesemiconductor field-effect fabricated by anisotropic on a silicon-on-insulator substrate", Appl. Phys. Lett.68(1996) 3585-3587.
    [156]K. Yano, T. Ishii, T. Hashimoto, T. Kobayashi, F. Murai, and K. Seki, "Transport characteristics of polycrystalline-silicon wire influenced by single-electron charging at room temperature", Appl. Phys. Lett.67 (1995) 828-830.
    [157]L. L. Sohn, L. P. Kouwenhoven, and G. Schon, "Mesoscopic electron transport", Kluwer academic publishers. (1997).
    [158]J. Park, "Electron transport in single molecule transistors", PhD thesis, (2003).
    [159]L. Roschier, "Fabrication of single electron transistor using scanning probe manipulation", Master thesis, (1999).
    [160]M. Bockrath, D. H. Cobden, P. L. McEuen, N. G. Chopra, A. Zettl, A. Thess, and R. E. Smalley, "Single-electron transport in ropes of carbon nanotubes. Single-electron transport in ropes of carbon nanotubes", Science 275 (1997) 1922-1925.
    [161]H.W.Ch. Postma, T. Teepen, Z. Yao, M. Grifoni, and C. Dekker, "Carbon nanotube single-electron transistors at room temperature", Science 293 (2001) 76-79.
    [162]P. Jarillo-Herrero, S. Sapmaz, C. Dekker, L.P. Kouwenhoven, and H.S.J. van der Zant, "Electron-hole symmetry in a semiconducting carbon nanotube quantum dot", Nature 429 (2004) 389-392.
    [163]S.J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, and C. Dekker, "Individual single-wall carbon nanotubes as quantum wires", Nature 386 (1997) 474-477.
    [164]J. B. Cui, M. Burghard, and K. Kern, "Room temperature single electron transistor by local chemical modification of carbon nanotubes", Nano Lett.2 (2002) 117-120.
    [165]T. Kamimura, M. Maeda, K. Sakamoto, and K. Matsumoto, "Room-temperature single hole transistors made using semiconductor carbon nanotube with artificial defects near carrier depletion region", Jpn. J. Appl. Phys.44 (2005) 461-464.
    [166]J. Nygard, D. H. Cobden, M. Bockrath, P. L. McEuen, and P. E. Lindelof, "Electrical transport measurements on single-walled carbon nanotubes", Appl. Phys. A 69 (1999) 297-304.
    [167]H. Dai, E. W. Wong, and C. M. Lieber "Probing Electrical Transport in Nanomaterials:Conductivity of Carbon Nanotubes", Science 272 (1996) 523.
    [168]Bozovic D, Bockrath M, Hafner J H, Lieber C M, Park H, and Tinkham M "Electronic properties of mechanically induced kinks in single-walled carbon nanotubes",Appl. Phys. Lett.78(2001) 3693.
    [169]Mason N, Biercuk M J, and Marcus C M "Local Gate Control of a Carbon Nanotube Double Quantum Dot", Science 303 (2004) 655.
    [170]Takahashi Y, Ono Y, Fujiwara A, and Inokawa H "Silicon single-electron devices", J. Phys.:Condens. Matter 14 (2002) R995.
    [171]S. Iijima, and T. Ichihashi "Single-shell carbon nanotubes of 1-nm diameter" Nature 363 (1993) 603.
    [172]Wilder J W G, Venema L C, Rinzler A G, Smalley R E, and Dekker C, "Electronic structure of atomically resolved carbon nanotubes", Nature 391 (1998) 59.
    [173]Liu Z T, lee C, Narayanan V, Pei G, and Kan E C "Metal nanocrystal memories-Part 1:Device design and fabrication", IEEE Transactions on Electron Devices 49 (2002) 1606.
    [174]Shen Z, Liu S, Hou S, Gu Z, and Xue Z "In situ splitting of carbon nanotube bundles with atomic force microscopy", J. Phys. D:Appl. Phys.36 (2003) 2050.
    [175]Zhuang L, Guo L, and Chou S Y"Silicon single-electron quantum-dot transistor switch operating at room temperature", Appl. Phys. Lett.72 (1998) 1205.
    [176]Li H, Zhang Q, and Li J, "Carbon-nanotube-based single-electron/hole transistors", Appl. Phys. Lett.88(2006)013508.
    [177]Beenakker C W J, "Theory of Coulomb-blockade oscillations in the conductance of a quantum dot", Phys. Rev. B 44 (1991) 1646.
    [178]Li H, Zhang Q, and Li J, "Interpretation of Coulomb oscillations in carbon-nanotube-based field-effect transistors", Phys. Rev. B 73 (2006) 235431.
    [179]Shin M, Lee J, and Ahn C, "Simulation Study of the Scalling Behavior of Top-Gated Carbon Nanotube Field Effect Transistors", J. Nanosci. Nanotech.8 (10) (2008) 5389.
    [180]Lee C, Meteer J, Narayannan V, and Kan E C, "Self-assembly of metal nanocrystals on ultrathin oxide for nonvolatile applications", J. Electron. Mater.34 (2005)1.
    [181]Voggu R, Pal S, Pati S K, and Rao CNR, "Semiconductor to metal transition in Snits caused by interaction with gold and platinum nanoparticles", J. Phys.:Condens. Matter 20 (2008)215211.
    [182]McEuen P L, Bockrath M, Cobden D H, Yoon Y G, and Louie S G, "Disorder, Pseudospins, and Backscattering in Carbon Nanotubes", Phys. Rev. Lett.83 (1999) 5098.
    [183]Matsuoka K, Kataura H, and M Shiraishi, "Ambipolar Single Electron Transistors Using Side-Contacted Single-Walled Carbon Nanotubes", Chem. Phys. Lett. 417(2006)540.
    [184]Duley, W. W. "Chemical evolution of carbonaceous material in interstellar clouds", Astrophys. J.528 (2000) 841-848.
    [185]Zolyomi V., Rusznyak, A. and Kurti J. "Deriving Carbon Atomic Chains from Graphene Phys", Rev. Lett.102 (2009) 205501.
    [186]Yang, S. Kertesz, J. "Linear Cn Clusters:Are They Acetylenic or. Cumulenic" J. Phys. Chem A 112(2008) 146-151.
    [187]Szafert, S. Gladysz, J. A. "Carbon in one dimension:Structural Analysis of the higher polyynes", Chem. Rev.103 (2003) 4175-4205.
    [188]Thorne, R. E. "Charge-density-wave conductors", Phys. Today.42-47 (1996).
    [189]Wang, Z. X. et al. "Carbon-atom chain formation in the core of nanotubes", Phys. Rev. B 61 (2000) R2472-R2474.
    [190]Zhao, X. et al. "Carbon nanowire made of a long linear carbon chain inserted inside a multiwalled carbon nanotube", Phys. Rev. Lett.90 (2003) 1874011-1874014.
    [191]Cazzanelli, E. et al. "High-temperature evolution of linear carbon chains inside multiwalled nanotubes", Phys. Rev. B 75 (2007) 1214051-1214054.
    [192]Jinno, M. et al. "Raman scattering study for heat-treated carbon nanotubes: The origin of 1855 cm-1 Raman band", Chem. Phys. Lett.418 (2006) 109-114.
    [193]Nishide, D. et al. "Raman spectroscopy of size-selected linear polyyne molecules C2nH2 (n=4-6) encapsulated in single-wall carbon nanotubes", J. Phys. Chem. C111 (2007) 5178-5183.
    [194]Luo, Z. et al. "Effect of ion bombardment on the synthesis of vertically aligned single-walled carbon nanotubes by plasma-enhanced chemical vapor deposition", Nanotechnology 19 (2008) 255607.
    [195]Dresselhaus, M. S. Eklund, P. C. "Phonons in carbon nanotubes", Adv. Phys. 49(2000)705-814.
    [196]Fan X. et al. "Density functional theory study of finite carbon chains". ACS Nano in press (2010).
    [197]Rusznyak, S. et al. "Bond-length alternation and charge transfer in a linear carbon chain encapsulated within a single-walled carbon nanotubes", Phys. Rev. B 72 (2005)155420-155425.
    [198]Li, J. et al. "Mechanism of manupulating carbon nanotubes using AC dielectrophoresis",Appl. Phys. Lett.86(2005) 153116-153118.
    [199]Ravagnan, L. et al. "Influence of cumulenic chains on the vibrational and electronic properties of sp-sp2 amorphous carbon", Phys. Rev. Lett.98 (2007) 2161031-2161034.
    [200]Bockrath, M. et al. "Luttinger-liquid behavior in carbon nanotube", Nature 397(1999)598-601.
    [201]Sakurai, H. et al. "Metal-insulator transition in NaxTiO2 (x=0.2-0.25)", Phys. Rev. B 75 (2007) 115128-115132.
    [202]Ong, N. P. et al. "Effect of impurities on the anomalous transport properties of NbSe3", Phys. Rev. Lett.42 (1979) 811-814.
    [203]A. Aviram, M. A. Ratner, "Molecular rectifiers", Chem. Phys. Lett.29 (1974) 277.
    [204]J. R. Heath, M. A. Ratner, "Mozart and Quantum Mechanics:An appreciation of Victor Weisskopf', Phys. Today 56 (2003) 43.
    [205]X. D. Cui, A. Primak, X. Zarate, J. Tomfohr, O. F. Sankey, A. L. Moore, T. A. Moore, D. Gust, G. Harris, S. M. Lindsay, "Reproducible Measurement of Single-Molecular Conductivity", Science 294 (2001) 571.
    [206]M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, J. M. Tour, "Conductance of a Molecular Junction", Science 278 (1997) 252.
    [207]H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, P. L. McEuen, "Fabrication of metallic electrodes with nanometer separation by electromigration", Appl. Phys. Lett. 75(1999)301.
    [208]S. I. Khondaker, Z. Yao, "Disorder, Pseudospins, and Backscattering in Carbon Nanotubes", Appl. Phys. Lett.81 (2002)4613.
    [209]A. F. Morpurgo, C. M. Marcus, D. B. Robinson, "Controlled fabrication of metallic electrodes with atomic separation", Appl. Phys. Lett.74 (1999) 2084.
    [210]Y. V. Kervennic, D. Vanmaekelbergh, L. P. Kouwenhoven, H. S. J. Van der Zant, "Planar nanocontacts with atomically controlled separation", Appl. Phys. Lett.83 (2003) 3782.
    [211]K. Liu, P. Avouris, J. Bucchignano, R. Martel, S. Sun, J. Michl, "Simple fabrication scheme for sub-10 nm electrode gaps using electron-beam lithography", Appl. Phys. Lett.80 (2002) 865.
    [212]M. S. M. Saifullah, T. Ondarcuhu, D. K. Koltsov, C. Joachim, M. E. Welland, "A reliable scheme for fabricating sub-5 nm co-planar junctions for single-molecule electronics", Nunolechnology 13 (2002) 659.
    [213]T. Dadosh, Y. Gordin, R. Krahne, I. Khivrich, D. Mahalu, V. Frydman, J. Sperling, A. Yacoby, I. Bar-Joseph, "Measurement of the conductance of single conjugated molecules", Nature 436 (2005) 677.
    [214]J. O. Lee, G. Lientschnig, F. Wiertz, M. Struijk, R. A. J. Janssen, R. Egberink, D. N. Reinhoudt, P. Hadley, C. Dekker, "Absence of Strong Gate Effects in Electrical Measurements on Phenylene-Based Conjugated Molecules", Nano Lett.3 (2003) 113.
    [215]C. Zhou, M. R. Deshpande, M. A. Reed, L. Jones, J. M. Tour, "Nanoscale metal/self-assembled monolayer/metal heterostructures", Appl. Phys. Lett.71 (1997) 611.
    [216]C. Berger, Z. Song, T. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. De Heer, "Ultrathin Epitaxial Graphite:2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics", J. Phys. Chem. B 108 (2004) 2827.
    [217]J. G. Kushmerick, D. B. Holt, S. K. Pollack, M. A. Ratner, J. C. Yang, T. L. Schull, J. Naciri, M. H. Moore, R. Shashidhar, "Effect of Bond-Length Alternation in Molecular Wires", J. Am. Chem. Soc.124(2002) 10654.
    [218]R. L. McCreery, J. Wu, R. P. Kalakodimi, "Electron transport and redox reactions in carbon-based molecular electronic junctions", Phys. Chem. Chem. Phys.8 (2006) 2572.
    [219]H. B. Akkerman, P.W. M. Blom, D. M. de Leeuw, B. de Boer, "Towards molecular electronics with large-area molecular junction". Nature 441 (2006) 69.
    [220]C. Klinke, J. Chen, A. Afzali, Ph. Avouris, "Charge Transfer Induced Polarity Switching in Carbon Nanotube Transistors", Nano Lett.5 (2005) 555-558.
    [221]A. Javey, Q. Wang, A. Ural, Y. Li, H. Dai, "Carbon Nanotube Transistor Arrays for Multistage Complementary Logic and Ring Oscillators", Nano Lett.2 (2002) 929-932.
    [222]A. JAVEY, H. KIM, M. BRINK, Q. WANG, A. URAL, J. GUO, P. MCINTYRE, P. MCEUEN, M. LUNDSTROM, H. DAI,"High-κ dielectrics for advanced carbon nanotube transistors and logic gates", Nat. materials 1 (2002) 241-246.
    [223]A. Javey, Q. Wang, W. Kim, H. Dai,"Advancements in Complementary Carbon Nanotube Field-Effect Transistors",IEDM7803 (2003).
    [224]Z. Zhang, S. Wang, L. Ding, X. Liang, T. Pei, J. Shen, H. Xu, Q. Chen, R. Cui, Y. Li, L. M. Peng, "Self-Aligned Ballistic n-Type Single-Walled Carbon Nanotube Field-Effect Transistors with Adjustable Threshold Voltage", Nano Lett.8 (2008) 3696-3701.
    [225]L. Ding, S. Wang, Z. Zhang, Q. Zeng, Z. Wang, T. Pei, L. Yang, X. Liang, J. Shen, Q. Chen, R. Cui, Y. Li, L. M. Peng, "Y-Contacted High-Performance n-Type Single-Walled Carbon Nanotube Field-Effect Transistors:Scaling and Comparison with Sc-Contacted Devices", Nano Lett.9 (2009) 4209-4214.
    [226]T. Kim, S. Kim, E. Olson, J. M. Zuo,"In situ measurements and transmission electron microscopy of carbon nanotube field-effect transistors", Ultramicroscopy 108 (2008)613-618.
    [227]Q. Cao. H. Kim, N. Pimparkar, J. P. Kulkarni, C. Wang. M. Shim. K. Roy, M. A. Ala, J. A. Rogers,"Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates", Nature 454 (2008) 495-500.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700