用户名: 密码: 验证码:
青藏高原“黑土滩”毒杂草的化感作用及其对甘肃马先蒿(Pedicularis kansuensis)的抑制机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏高原“黑土滩”次生毒杂草的蔓延严重危害着高寒草地生态和生产功能。如何控制毒杂草是“黑土滩”治理的重要任务。其中甘肃马先蒿Pedicularis kansuensis的入侵和爆发是导致基于“黑土滩”建植的人工草地迅速衰退的重要原因。本研究根据植物化感生态学原理,从“黑土滩”5种主要次生毒杂草(黄花棘显Oxytropis ochrocephala、瑞香狼毒Stellera chamaejasme、黄帚橐吾Ligularia virgaurea、密花香薷Elsholtzia var. densa和南山蒿Artemisia nanschanica)与甘肃马先蒿的种间关系、化感作用和有效化合物鉴别等生物和化学途径,筛选出对人工牧草生长发育影响较小,但能有效抑制甘肃马先蒿的植物种类及其化感物质,为开发甘肃马先蒿的专用生物控制剂提供科学依据。试验方法是分别采用水、有机溶剂(石油醚、乙酸乙酯、乙醇)浸泡5种毒草根、茎、叶阴干样品48小时,所得浸提液对甘肃马先蒿种子萌发和幼苗生长进行化感活性测试,并用硅胶色谱柱分离,高分辨质谱检测目标化合物的结构。
     主要研究结果有:①青藏高原“黑土滩”主要次生毒杂草群落(铁棒槌Aconitum pendulum、瑞香狼毒、黄帚橐吾、黄花棘豆)的植被组成特征、土壤物理、化学性质没有显著差异。②黄花棘豆、瑞香狼毒、黄帚橐吾、密花香薷和南山蒿5种毒草(根、茎、叶)水溶物随着其室内测试浓度的升高,对甘肃马先蒿及其相邻植物垂穗披碱草Elymus nutans种子萌发和幼苗生长的化感抑制作用增强,但叶和根的浸提液之抑制效果强于茎部。南山蒿的叶部浸提液之浓度为25g/L时,对甘肃马先蒿幼苗生的抑制作用显著大于其他毒草(P<0.05),当浓度升至100g/L时,对其种了萌发和幼苗生长均产生了致死作用。③垂穗披碱草幼苗对南山蒿叶水溶物的抗性较好,因此南山蒿可作为针对防除甘肃马先蒿的生物除草剂源料。④南山蒿地上部分乙酸乙酯浸出物对甘肃马先蒿种子萌发及幼苗生长抑制作用显著(P<0.05)。通过色谱柱分离和质谱检测比对,初步得到3个目标化合物,分别为香橙烯环氧化物(C15H240)、异香橙烯环氧化物(C15H240)和6-(2-(3-羟基-1-丙烯)基)-4,8a-二甲基-1,2,4a,5,6,7,8,8a-八氢-2-萘醇(C15H24O2),属于倍半萜类化合物,3者存在协同化感作用,具有开发为甘肃马先蒿除草剂的潜力。
The poisonous plant spread grassland in Tibetan-plateau is harmful to ecological and produce function, and how to control the poisonous plant is the important task for "black soil land" treatment. The phenomenon of Pedicularis kansuensis intrude sown grassland which is "black soil land" rebuilding grassland ago was the main reason to led to speedy waning of sown grassland. This study based on chemical ecological mechanism of plant allelopathy, by testing the allelopathic relationship between the Pedicularis kansuensis, Oxytropis ochrocephala, Stellera chamaejasme, Ligularia virgaurea, Elsholtzia var. densa and Artemisia nanschanica separately, sieving the species and find effective compounds for control the Pedicularis kansuensis, but the compounds are secure for sown grassland, and provide scientific basic to develop special biological hibicides of Pedicularis kansuensis.
     The bioactivity of aqueous extract of the air dried plant (branches, leaves and roots, for 48 hr), organic extracts (branches and leaves) were evaluated on the growth of Pedicularis kansuensis and Elymus nutans. Further analyses and identification of allelochemicals were conducted by gas chromatography-mass spectrometry on the most toxic fraction.
     Followings were the results:①The vegetation composition characteristics, physical and chemical features of soil in the Aconitum pendulum, Stellera chamaejasme, Ligularia virgaurea, Oxytropis ochrocephala which were widely distributed in Tibetan-plateau had few differences.②With the concentration increasing, the dissolve solutions of Oxytropis ochrocephala, Stellera chamaejasme, Ligularia virgaurea, Elsholtzia var. densa and Artemisia nanschanica had increased allelopathy effects to Pedicularis kansuensis and its neighbor Elymus nutans. The inhibitory effects of leaves and roots dissolve solutions were stronger than the water extraction of stems when the same vegetation was in the same concentration. The leaves of Artemisia nanschanica had stronger inhibitory effects to seedlings of Pedicularis kansuensis than other poisonous plant when the concentration was 25g/L; however, when the concentration was 100 g/L, they had lethal effects to seeds germination and seedling growth of Pedicularis kansuensis.③The seedlings of Elymus nutans G. had better resistance to dissolve solutions of leaves of Artemisia nanschanica, so Artemisia nanschanica could be used as the biological material of herbicides to Pedicularis kansuensis.④The ethyl acetate extracts of the Artemisia nanschanica aerial part had a remarkable effect to seeds germination and seedling growth of Pedicularis kansuensis (P<0.05). Three target compounds aromadendrene oxide (C15H24O), isoaromadendrene epoxide(C15H24O) and 6-(3-hydroxyprop-1-en-2-yl)-4,8a-dimethyl-2,4a,5,6,7,8-hexahydro-1H-naphthalen-2-ol(C15H24O2) were obtained by separation of chromatographic column and detection of mass spectrometry, and they were all sesquiterenes, had allelopathy synergistic effects and could be used as the herbicides to Pedicularis kansuensis.
引文
[1]白永飞,许志信,李德新.内蒙古高原针茅草原群落土壤水分和碳、氮分布的小尺度空间异质性[J].生态学报,2002,22(8):1215-1223.
    [2]陈玉琨.萜类天然产物的提取及生产工艺[M].科学技术出版社,2009,10:15-80.
    [3]董汉松.植物诱导抗病性原理和方法[M].北京:科学出版社,1995.
    [4]董全民,李青云,马玉寿,等.放牧强度对夏季高寒草甸生物量和植被结构和影响[J].青海草业,2002,11(2):8-10.
    [5]董全民,赵新全,马玉寿,等.牦牛放牧率对江河源区混播禾草地上初级生物量及种间竞争力的影响[J].中国草地,2005,27(2):1-8.
    [6]董全民,赵新全,马玉寿,等.高寒小嵩草草甸暖季草场主要植物种群的生态位[J].生态学杂志,2006,25(11):1323-1327.
    [7]冯虎元,安黎哲.甘肃马先蒿属药用植物资源调查[J].中草药,2001,32(5):449-451.
    [8]高旭红.几种化学计量学方法在放线菌及其次生代谢产物抗肿瘤活性筛选中的应用[J].化学学报,2006,64(11):1163-1168.
    [9]高子勤,张淑香.连作障碍与根际微生态研究Ⅰ.根系分泌物及其生态效应[J].应用生态学报,1998,9(5):549-554.
    [10]谷文祥,段舜山,骆世明.萜类化合物的生态特性及其对植物的化感作用[J].华南农业大学学报,1998,19(4):108-112.
    [11]贺锋,陈辉蓉,吴振斌.植物间的相生相克效应[J].植物学通报,1999,16(1):19-27.
    [12]胡飞,孔垂华.胜红蓟化感作用研究Ⅰ.水溶物的化感作用及其化感物质分离鉴定[J].应该用生态学报,1997,8(3):304-308.
    [13]孔垂华,徐涛,胡飞.胜红蓟化感作用研究Ⅱ-主要化感物质的释放途径和活性[J].应用生态学报,1998,9(3):257-260.
    [14]孔垂华.植物化感作用研究中应注意的问题[J].应用生态学报,1998,(9):332-336.
    [15]孔垂华,黄寿山,胡飞.胜红蓟化感作用研究V-挥发油对真菌、昆虫和植物的生物活性及其化学成份[J].生态学报,2001,21(4):584-587.
    [16]孔垂华.21世纪植物化学生态学前沿领域[J].应用生态学报,2002,13(3):349-353.
    [17]孔垂华,胡飞.植物化学通讯研究进展[J].植物生态学报,2003,27(4):561-567.
    [18]孔垂华,徐效华,梁文举,等.水稻化感品种根分泌物中非酚酸类化感物质的鉴定与抑草活性[J].生态学报,2004,24(7):1317-1322.
    [19]孔垂华,徐效华.有机物的分离和结构鉴定[M].化学化工出版社,2005,2:23-59.
    [20]孔垂华.植物与其它有机体的化学作用—潜在的有害生物控制途径[J].中国农业科学,2007,40(4):712-720.
    [21]孔垂华,娄永根.化学生态学前沿[M].高等教育出版社,2010,7:23-78.
    [22]李国辉,兰止刚,李晓茹.联用色谱和化学计量方法分析赤芍挥发性成分[J].中南大学学报,2007,38(1):89-92.
    [23]李凌浩,史世斌.长芒草草原群落种间关联与种群联合格局的初步研究[J].生态学杂志,1994,13(3):62-67.
    [24]李玉文.化学生态学研究现状和进展(Ⅱ)-植物他感作用和矿质养分化学生态[J].东北林业大学学报,1999,27(1):56-59.
    [25]李玉占,梁文举,姜勇.苜蓿化感作用研究进展[J].生态学杂志,2004,23(5):186-191.
    [26]李希来.青藏高原“黑土滩”形成的自然因素与生物学机制[J].草业科学,2002,19(1):20-22.
    [27]李希来,杨元武,张静,等.不同退化程度“黑土滩”高山嵩草克隆生长特性[J].草业学报,2003,12(3):51-56.
    [28]李希来,黄葆宁.青海“黑土滩”草地成因及治理途径[J].中国草地,1995,4:64-67.
    [29]李香真,陈佐忠.不同放牧率对草原植物与土壤C、N、P含量的影响[J].草地学报,1998,6(2):90-98.
    [30]李育中.三种类型草地植物种间关联的测定与比较[J].生态学杂志,1991,10(6):6-10.
    [31]林大仪.土壤学实验指导[M].中国林业出版社,2004,7.
    [32]梁文举,张晓珂,姜 勇,等.根分泌的化感物质及其对土壤生物产生的影响[J].地球科学进展,2005,20(3):330-337.
    [33]刘桂荣,李东华.光度法-化学计量学方法同时测定苯胺类化合物[J].河南师范大学学报,2006,34(4):118-121.
    [34]刘湘,汪秋安.天然产物化学(第2版)[M].化学工业出版社,2010,4:26-34.
    [35]刘秀芬,马瑞霞,袁光林,等.根际他感化学物质的分离、鉴定与生物活性的研究[J].生态学报,1996,16(1):1-10.
    [36]刘伟,王启基,王溪,等.高寒草甸“黑土型”退化草地的成因及生态过程[J].草地学报,1999,7(4):300-307.
    [37]罗丽萍,葛 刚,陶勇,等.芒萁对儿种杂草和农作物的生化他感作用[J]-植物学通报,1999,16(5):591-597.
    [38]马茂华,于凤兰,孔令韶.油蒿(Artemisia ordosica)的化感作用研究[J].生态学报,1999,19(5):670-676.
    [39]马瑞君,王明理,赵坤,等.高寒草场优势杂草黄帚橐吾水浸液对牧草的化感作用[J].应用生态学报,2006,17(5):845-85.
    [40]马玉寿,李青云.“黑土型”退化草地毒杂草防除试验研究[J].草业科学,1999,16(3):46-50.
    [41]马玉寿,郎百宁,李青云,等.江河源区高寒草甸退化草地恢复与重建技术研究[J].草业科学,2002,19(9):1-4.
    [42]马玉寿,尚占环,施建军,等.江河源区“黑土滩”退化草地群落类型多样性及其群落结构研究[J].草业科学,2006,23(12):6-11.
    [43]倪永年.化学计量学在分析化学中的应用[M].北京:科学出版社.2004:1-120.
    [44]彭少麟,邵华.化感作用的研究意义及发展前景[J].应用生态学报,2001,12(5):780-786.
    [45]彭少麟,南蓬,钟扬.高等植物中的萜类化合物及其在生态系统中的作用[J].生态学杂志,2002,21(3):33-38.
    [46]裴明.冷蒿挥发性有机物释放动态及其对种子萌发的影响[D].硕士学位论文,内蒙古农业大学,2009,5.
    [47]邱正强,马玉寿,施建军,等.甘肃马先蒿对“黑土型”退化草地垂穗披碱草人工草地的影响[J].草原与草坪,2006,5:26-29.
    [48]邱正强,马玉寿,施建军.三江源区“黑十刑”退化草地垂穗披碱草人工草地毒杂草危害性分析[J].青海畜牧兽医杂志,2006b,36(3):1-2.
    [49]尚占环,龙瑞军,马玉寿.江河源区“黑土滩”退化草地特征、危害及治理思路探讨[J].中国草地学报,2006,28(1):69-74.
    [50]施弘.化学计量学方法应用于经济类植物的研究[D].博十学位论文,同济大学,2007.
    [51]施惠兰,王启基,景增春,等.江河源区人工草地及“黑土滩”退化草地群落演替与物种多样性 动态[J].草业学报,2005a,25(4):655-661.
    [52]施惠兰,王启基,景增春,等.江河源区人工草地群落特征、多样性、及其稳定性分析[J].草业学报,2005b,14(3):23-30.
    [53]师治贤,张金霞,顾文召,等.蒙古篙精油化学成分的研究[J].化学学报,1983,41(8):734-738.
    [54]唐燕,李希来,尚占环,等.植物化感作用研究在“黑土滩”治理中的应用前景[J].青海畜牧兽医杂志,2007,37(3):30-31.
    [55]王大力,祝心如.三裂叶豚草的化感作用研究[J].植物生态学报,1996,20(4):330-337.
    [56]王长庭,龙瑞军,施建军,等.高寒地区不同建植期人工草地群落垂直结构和生产力变化的研究.中国草地,2005,27(5):16-21.
    [57]王峰,张琪,蔡崇法.生化他感物质的收集与分离[J].科技进步与对策,2000,17(12):198-199.
    [58]王根绪,程国栋.江河源区的草地资源特征与草地生态变化[J].中国沙漠,2001,21(2):101-107.
    [59]王明道,陈红歌,刘新育,等.地黄对芝麻的化感作用及其化感物质的分离鉴定[J].植物生态学报,2009,33(6):1191-1198.
    [60]王希,沈禹颖,高崇岳,等.异龄苜蓿水浸液对其种子萌发的自毒效应[J].草地学报,2008,16(6):609-612.
    [61]汪茂田,谢培山,王忠东.天然有机化合物提取分离与结构鉴定[M].化学化工出版社,2006,7:105-109.
    [62]王启基,来德珍,景增春,等.三江源区资源与生态环境现状及可持续发展[J].兰州大学学报(自然科学版),2005,41(4):50-55.
    [63]吴锦容,彭少麟.化感—外来入侵植物的"Novel Weapons"[J]生态学报2005,25(11):3093-3097.
    [64]许禄.化学计量学方法(第二版)[M].北京,科学出版社,2004.
    [65]徐松鹤,尚占环,龙瑞军,等.“黑土滩”退化草地、高寒湿地及其交错区植物群落结构多样性[J].草原与草坪,2007,(4):45-49.
    [66]徐松鹤,尚占环,马玉寿,等.黄河源区退化高寒草地植物种间联结性分析[J].1西北植物学报,2008,,28(6):1222-1227.
    [67]阎飞,杨振明,韩丽梅.植物化感作用(Allelopathy)及其作用物的研究方法[J].生态学报,2000,20(4):692-696.
    [68]杨善元.凤眼莲根系中抑藻物质分离与鉴定[J].植物生理学报,1992,18(4):399-402.
    [69]于凤兰,马茂华,孔令韶.油蒿挥发油的化感作用研究[J].植物生态学报.1999.23(4):345-350.
    [70]曾任森,骆世明.香茅,胜红蓟和三叶鬼针草植物他感作用研究[J].华南农业大学学报,1993,14(4):8-14.
    [71]曾任森,林象联,骆世明,等.蟛蜞菊的生化他感作用及生化他感作用物的分离和鉴定[J].生态学报,1996,16(1):20-27.
    [72]曾任森,林象联.蟛蜞菊根分泌物的异种克生作用及初步分离[J].生态学杂志,1994,13(1):51-56.
    [73]曾任森.蟛蜞菊的生化他感作用及生化他感作用物的分离鉴定[J].生态学报,1996,16(1):20-27.
    [74]曾任森.化感作用研究中的生物测定方法综述[J].应用生态学报.1999,10(1):123-126.
    [75]曾仲大.联用色谱数据的化学计量学解析方法及应用研究[D].博士学位论文,中南大学,2006.
    [76]赵新全,周华坤.三江源区生态环境退化、恢复治理及其可持续发展[J].科技与社会,2005,20(6):471-476.
    [77]张宝琛,白雪芳,顾立华,等.生化他感作用与高寒草甸上人工草场自然退化现象的研究[J].生态学报,1989,9(2):115-120.
    [78]张金屯.数量生态学[M].北京,科学出版社,2004:98-99.
    [79]张汝民,王玉芝,侯平,等.几种牧草幼苗对冷蒿茎叶水浸提液化感作用生理响应[J].生态学报,2010,30(8):2197-2204.
    [80]张勇,丛茜,谢云飞,等NIRS分析技术在农业中的应用进展[J].农业工程学报,2007,10:285-290.
    [81]中国科学院南京土壤所.土壤理化分析[M].上海科学技术出版社,1977:514-517.
    [82]Adler P B, Raff D A, Lauenroth W K. The effect of grazing on the spatial heterogeneity of vegetation [J]. Oecologia,2001,128(4):465-479.
    [83]Bais H P, Weir T L, Perry L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms [J]. Annual Review of Plant Biology,2006,57:233-266.
    [84]Barney J N, Hay A G, Weston L A. Isolation and characterization of allelopathic volatiles from mugwort(Artemisia vulgaris) [J]. Journal Chemical Ecology,2005,31:247-265.
    [85]Barnes J P, Putnam A R. Role of benzoxazinones in allelopathy by rye(Secale cereale L.) [J], Journal Chemical Ecology,1987,13:889-905.
    [86]Berg W A, Bradford J A, Smis P L. Long-term soil nitrogen and vegetation change on sandhill rangeland [J]. Journal of Range Management,1997,50(5):482-486.
    [87]Bertin C, Weston L A, Huang T, et al. Grass roots chemistry:metatyrosine, an herbicidal nonprotein amino acid [J]. PNAS,2007,104:16964-16969.
    [88]Booth W E. Re-vegetation of abandoned fields in Kansas and Oklahoma [J]. American Journal of Botany,1941,28:415-422.
    [89]Callaway R M, Aschehoug E T. Invasive plants versus their new and old neighbors:A mechanism for exotic invasion [J]. Science,2000,290:521-523.
    [90]Callaway R M, Ridenour W M. Novel weapons:invasive success and the evolution of increased competitive ability [J]. Front Ecology Environment,2004,2:436-443.
    [91]Cambardella C A, Elliott E T. Particulate soil organic matter changes across a grassland cultivation sequence [J]. Soil Science Society of America Journal,1992,56:777-783.
    [92]Cappuccino N, Arnason J T. Novel chemistry of invasive exotic plants [J]. Biology Letter,2006, 2:189-193.
    [93]Cast K G, Mcpherson J K, Pollard A J, et al. Allelochemicals in soil from no-tillage versus conventional-tillage wheat (Triticum aestivum) fields [J]. Journal Chemical Ecology,1990. 16:2277-2289.
    [94]Chon S U, Coutts J H, Nelson C J. Effects of light, growth media, and seedling orientation on bioassays of alfalfa auto toxicity [J]. Agronomy Journal,2000,92:715-720.
    [95]Dayan T, Romagni J, Tellez M, et al. Managing weeds with natural products [J]. Pesticide Outlook, 1999,10:185-188.
    [96]Dicke M, Sabelis M W, Takabayashi J. Plant strategies of manipulating predator-prey interactions through allelochemicals:Prospects for application in pest control [J]. Journal of Chemical Ecology, 1990.16:3091-3188.
    [97]Dixon R A. Natural products and plant disease resistance [J]. Nature,2001,411:843-847.
    [98]Dormaar J F, Smoliak S, Willms W D. Distribution of nitrogen fractions in grazed and ungrazed fescue grassland Ah horizons [J]. Journal of Range Management,1990,43(1):6-9.
    [99]Doming M, Cipollini D. Leaf and root extracts of the invasive shrub, Lonicera maackii, inihibit seed germination of three herbs with no autotoxic effects [J]. Plant Ecology,2006,184:287-296.
    [100]Duke S O, Abbas H K. Natural products with potential use as herbicide [J]. ACS Symposium Series, 1995,582:348-364.
    [101]Einhelling F A, Leather G R. Potentials for exploiting allelopathy to enhance crop production [J]. Journal Chemical Ecology,1998,14:1829-1842.
    [102]Fitter A. Making allelopathy respectable [J]. Science,2003,301:1337-1338.
    [103]Fomsgard I S, Mortensen A G, Idinger J, et al. Transformation of benzoxazinones and derivatives and microbial activity in the test environment of soil ecotoxicological tests on Poecilus cupreus and Folsomia candida [J]. Journal Agriculture Food Chemical,2006,54:1086-1092.
    [104]Friedman J. Alleopathy in desert ecosystems [J]. ACS Symposium Series,1987,330:53-68.
    [105]Griexson P F. Organic acids in the rhizophere of Banksia integrifolia L. F. [J]. Plant and Soil,1992, 144:259-265.
    [106]Haig T. Allelochemicals in Plants//Zeng R S, Mallik A U, Luo S M Eds. Allelopathy in Sustainable Agriculture and Forestry [M]. Springer, New York,2008:63-104.
    [107]Hisashi K N, Yukitoshi T. Allelopathic potential of Citrus junos fruit waste from food processong industry [J]. Bioresource technology,2004, (94):211-214.
    [108]Inderjit, Weiner J. Plant allelochemical interference or soil chemical ecology [J]. Perspect Plant Ecology Evolve System,2001,4:3-12.
    [109]Inderjit, Weston L A. Are laboratory bioassays for allelopathy suitable for prediction of field response [J]. Journal Chemical Ecology,2000,26:2111-2118.
    [110]Inderjit, Weston L A, Duke S O. Challenges, achievements and opportunities in allelopathy research [J]. Journal Plant Interact,2005,1:69-81.
    [111]Jackson J R, Willemsen R W. Allelopathy in the first stages of secondary succession on the piedmont of New Jersey [J]. America Journal Botany,1976,63 (7):1015-1023.
    [112]Jennings J A, Nelson C J. Influence of soil texture on alfalfa autotoxicity [J]. Agronomy Journal, 1998,90:54-58.
    [113]Kesseler A, Baldwin I T. Defensive function of herbivore-induced plant volatile emissions in nature [J]. Science,2001,291:2141-2144.
    [114]Klein J A, Harte J, Zhao Z Q. Experimental warming cause large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau [J]. Ecology Letters,2004.1:170-179.
    [115]Kohli R K, Batish D. Singh H P. Allelopathy and its implication in ecosystems [J]. Journal Crop Production,1998,1:169-202.
    [116]Kong C H, Hu F, Xu X H. Allelopathic potential and chemical constituents of volatiles from Agertum conyzoides under stress [J]. Journal Chemical Ecology,2002,28:1173-1182.
    [117]Kong C H, Hu F, Xu X H, et al. Allelopathic plants XV:Ageratum conyzoides L. [J]. Allelopathy Journal,2004,14:1-12.
    [118]Kong C H, Wang P, Xu X H. Allelopathic interference of Ambrosia trifida with wheat (Triticum aestivum) [J]. Agriculture, Ecosystems & Environment,2007,119:416-420.
    [119]Langenheim J H. Higher plant terpenoids:A phytocentric overview of their ecological roles [J]. Journal of Chemical Ecology,1994,20(6):1223-1280.
    [120]Larcher W. Plant ecological physiology [M]. Berlin, Springer Vergag,1995:15-26.
    [121]Leather G R, Einhellig F A. Bioassays in the study of allelopathy. In:Putnam A R, Tang C S(eds.). The science of allelopathy [M]. New York:John Wiley& Sons,1986:133-145.
    [122]Lemaire G, Hodgson J, Moraes A, et al. Grassland Eco-physiology and Grazing Ecology [A]. CAB, International, Wallingford, UK,2000.
    [123]Lockwood J L, Cassey P, Blackurn T. The role of propagule pressure in explaining species invasions [J]. Trends in Ecology and Evolution,2005,20(5):223-228.
    [124]Macias F A, Marin D, Oliveros B A, et al. Structure-activity relationship (SAR) studies of benzoxazinones, their degradation products, and analogues phytotoxicity on problematic weeds Avena fatua L. and Lolium rigidum G. [J]. Journal Agriculture Food Chemical,2006,54:1040-1048.
    [125]Macias F A. Allelopathy in search for natural herbicide models [J]. ACS Symposium Series,1995, 582:310-329.
    [126]Min A N, Haig T, Pratley J E. Phytotoxicity of vulpia residues:Ⅱ. Separation, identification, and quantitation of allelochemicals from Vulpia myuros [J]. Journal Chemical Ecology,2000, 26:1465-1476.
    [127]Molisch H. Der Einfluss Einer Pflanze and die Andere allelopathy [M]. Gustave Fischer Verlag, Jena, 1937,106.
    [128]Muller C H, Muller W H, Haines B L. Volatile growth inhibitors production by shrubs [J]. Science, 1964,143:471-473.
    [129]Muller C H. The role of chemical inhibition (allelopahty) in vegetation composition [J]. Bulletin of the Torrey Botanical Club,1966,93(5):332-351.
    [130]Muller C H. Allelopathy as a factor in ecological process [J]. Vegetatio,1969,18:348-357.
    [131]Nell R L, Rice E L. Possible role of Ambrosia psilostachya on pattern and succession in old-fields [J]. The America Mildland Naturalist,1971,86(2):344-358.
    [132]Olesze K W, Jurzysta M. The allelopathic potential of alfalfa root medicagenic acid glycosides and their fate in soil environments [J]. Plant and Soil,1987,98:67-80.
    [133]Prati D, Bossdorf O. Allelopathic inhibition of germination by Alliaria petiolata (Brassicaceae) [J]. American Journal Botany,2004,91:285-288.
    [134]Putnam A R, Tang C S. The Science of Allelopathy [M]. John Wiley, Sons, New York,1986.
    [135]Putnam A R. Vegetable weed control with minimal herbicide inputs [J]. Hort Science,1990, 25:155-159.
    [136]Rao M V, Koch J R, Davis K R. Ozone:A tool for probing programmed cell death in plants [J]. Plant Molecular Biology,2000,44:345-358.
    [137]Ridenour W M, Callaway R M. The relative importance of allelopathy in interference:The effects of an invasive weed on a native bunchgrass [J]. Oecologia,2001,126:444-450.
    [138]Rimando A M, Olofsdotter M, Dayan F E, et al. Searching for rice allelochemicals:An example of bioassay-guided isolation [J]. Agronomy Journal,2001,93:16-20.
    [139]Rice E L. Some possible roles of inhibitors in old-field succession. In:Biochemical interactions among plants [M]. Washington D C, National Academy of Science,1971:128-132.
    [140]Rice E L, Pancholy S K. Inhibition of nitrification by climax ecosystems. Ⅱ. Additional evidence and possible role of tannins [J]. American Journal of Botany,1973,60:691-702.
    [141]Rice E L, Parenti R L. Causes of decrease in productivity in undisturbed tall grass prairie [J]. American Journal of Botany,1978,65:1091-1097.
    [142]Rice E L. Allelopathy (2nd Ed.) [M]. Academic Press INC, New York,1984,309-315.
    [143]Romeo J T. Raising the beam:moving beyond phytotoxicity [J]. Journal Chemical Ecology,2000, 26:2011-2014.
    [144]Shone I, Bergeson J. Interplant communication revisited [J]. Ecology,1995,76:2660-2663.
    [145]Shen B, Zheng ZH W, Dooner H K. A maize sesquiterpene cyclase gene induced by insect herbivory and volicitin:Characterization of wild-type and mutant alleles [J]. PNAS,2000, 97(26):14808-14812.
    [146]Six J, Paustian K, Elliott E T, et al. Division S-6-soil oil & water management & conservation. Soil structure and organic matter:Ⅰ. Distribution of aggregate-size classes and aggregate-associated carbon [J]. Soil Science Society of America Journal,2000a,64:681-689.
    [147]Six J, Elliott E T, Paustian K. Soil structure and soil organic matter:Ⅱ. A normalized stability index and the effect of mineralogy [J]. Soil Science Society of America Journal,2000b,64:1042-1049.
    [148]Takao K. Distribution of different forms of p-hydroxybenzoic, vanillic, p-coumaric and ferulic acids in forest soil [J]. Soil Science Plant Nutrition,1981,27(3):365-371.
    [149]Tang C S, Young C C. Collection and identification of allelopathic compuonds from the undisturbed root system of bigalta 1 impoass (Hemarthria altissima) [J]. Plant Physiology,1982,69:155-160.
    [150]Tang C S, Zhang B. Qualitative and quantitative determination of the allelochemical sphere of germinating mung bean. In:the Science of Allelopathy [M]. John Wiley & Sons New York, 1986:229-242.
    [151]Tang C S, Cai W F, Kohl K, et al. Plant stress and allelopathy [J]. ACS Symposium Series,1995, 582:142-157.
    [152]Thijs H, Shann J R, Weidenhamer J D. The effect of phytotoxins on competitive outcome in a model system [J]. Ecology,1994,75:1959-1964.
    [153]Tran D K, Nguyen H H, Tran D X, et al. Paddy weed control by medicinal and leguminous plants from Southeast Asia [J]. Crop protection,2005a,24:421-431.
    [154]Tran D X, Tawata S, Tran D K, et al. Biological control of weeds and plant pathogens in paddy rice by exploiting plant allelopathy:an overview [J]. Crop protection,2005b,24:197-206.
    [155]Waller G R, Kumari D, Friedman N, et al. Caffeine autotoxicity in coffee arabical [M]. In the Science of Allelopathy, New York,1986:243-265.
    [156]Wang X H, Fu X F. Sustainable management of Alpine meadows on the Tibetan Plateau:problems overlooked and suggestions for change [J]. AMBIO,2004,33(3):153-154.
    [157]Wang T S C, Yang T K, Chuang T T. Soil phenolic acids as plant inhibitors [J]. Soil Science,1967, 103(4):239-246.
    [158]Wang P, Liang W J, Kong C H, et al. Allelopathic potential of volatile allelochemicals of Ambrosia trifida L. on other plants [J]. Allelopathy Journal,2005,15(1):131-136.
    [159]Wang W Y, Wang Q J, Wang CH Y, et al. The effect of land management on carbon and nitrogen status in plants and soil of alpine meadows on the Tibetan Plateau [J]. Land Degradation & Development,2005,16:405-415.
    [160]Weidenhamer J D. Distinguishing resource competition and chemical interference:overcoming the methodological impasse [J]. Agronomy Journal,1996,88:866-875.
    [161]White R H, Worsham D A, Blum U. Allelopathic potential of legume debris and aqueous extracts [J]. Weed Science,1989,37:674-679.
    [162]Whittaker R H, Feeny P P. Allelochemics:Chemical interactions between species [J]. Science,1971, 171:757-770.
    [163]Whitehead D C, Hazel D, Hartley R D. Bound phenolic compounds in wheat extracts of soil, plant roots and leaf litter [J]. Soil Biological Biochemical,1983,15(2):133-136.
    [164]Willamson G B. Biossays for allelopathy:measuring treatment responses with independent controls [J]. Journal Chemical Ecology,1988,14(1):181-187.
    [165]Willis R J. The historical bases of the concept of allelopathy [J]. Journal History Biology,1985, 18:71-102.
    [166]Xuan T D, Tawata S, Hong N H, et al. Assessment of phytotoxic action of Ageratum conyzoides L. (billy goat weed) on weeds [J]. Crop Production,2004,23:915-922.
    [167]Yang R Y, Mei L X, Tang J J, et al. Allelopathic effects of invasive Solidago canadensis L. on germination and growth of native Chinese plant species [J]. Allelopathy Journal,2007,19:241-247.
    [168]Yoder J I. Host-plant recognition by parasitic Scrophu lariaceae [J]. Current Opinion in Plant Biology,2001,4:359-365.
    [169]Zerihun W, Saleem M A M. Grazing induced biodiversity in the highland ecozone of East Africa [J]. Agriculture, ecosystem & environment,2000,79(1):43-52.
    [170]Zhou H K, Zhao X Q, Tang Y H, et al. Alpine grassland degradation and its control in the source region of the Yangtze and Yellow Rivers, China [J]. Gassland Science,2005,51:191-203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700