用户名: 密码: 验证码:
不同肥料处理对小麦冠层结构影响及形态模拟模型构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2005~2007年在河南农业大学科教园区进行较为系统的大田随机区组试验,研究了等氮条件下无机肥(尿素N)、有机肥(鸡粪OM)和有机无机肥配施(N+OM)三种处理对豫麦34冠层结构特性、群体光分布、产量和籽粒蛋白质含量的影响,同明构建了有机无机肥配施条件下小麦地上部形态模拟模型。主要结果如下:
     (1)三种肥料处理下,拔节期到灌浆期小麦冠层平均叶倾角、透光率都随着生育期的推移呈现先减少后增大的趋势,叶面积指数、消光系数呈现先增大后减少的趋势,四个指标的峰值都出现在抽穗期;孕穗期到抽穗30天,三种肥料处理豫麦34的旗叶SPAD值都随着生育期的推移呈现先平缓上升后急剧下降的趋势。透光率与平均叶倾角成正相关,与叶面积指数成显著性负相关,透光率与叶面积指数的相关性要比与平均叶倾角的相关性要大,消光系数与平均叶倾角成显著性负相关,与叶面积指数成显著性正相关。
     (2)拔节期,有机无机肥配施处理小麦平均叶倾角最小,为53.89°,叶面积指数、群体透光率、消光系数依次为4.63、0.055和0.63,均处在有机肥处理和无机肥处理之间。孕穗期到灌浆期,有机无机肥配施处理小麦旗叶的叶绿素含量最高,平均叶倾角介于鸡粪和尿素处理之间,为51.96°,叶面积指数、群体消光系数均为最大,分别为5.80和0.66;群体透光率最小,为0.028。有机无机肥配施处理的小麦穗粒数、穗粒重、生物产量、经济产量均高于鸡粪处理和尿素处理。三种肥料处理以有机无机肥配施的最佳,配施处理小麦冠层结构适宜、群体光分布合理、株型最佳。
     (3)在试验基础上,采取基于植物结构与功能反馈机制,以生长周期(GC)为时间步长,以叶元为结构单元,建立了有机无机配施条件下的小麦地上部形态模拟模型(包括发育模型、同化物生产模型、同化物分配和积累模型、叶、茎、鞘形态构建模型等),并且小麦叶元数与积温变化呈线性关系。对各模型的检验结果表明:小麦节间长度、节间粗度模拟植与实测值的标准误差(RMSE)分别为1.419和0.053;、叶片长度和叶鞘长度模拟植与实测值间的标准误差分别为1.709和1.950,模拟误差均在允许范围,预测效果较好,说明构建模型实用有效。
The effects of treatments of urea, chicken manure and mixed fertilizer on canopy architecture、grain yield and quality of wheat at the same amount of nitrogen application were systematically studied in field randomized block experiment at Henan Agricultural University Research Station of Scientific Research and Teaching during 2005-2007.The experiment also further study morphology simulation model construction. The results of experiments were as follows:
     Firstly, From the jointing stage to filling stage, MTA、DIFN of treatments under urea, chicken manure and mixed fertilizer first decreased and then increased with the advance of growth stage. LAI、K of three treatments first increased and then decreased. The peak of four indexes appeared on the heading stage. From booting stage to 30 d after heading, wheat flag leaves’SPAD of three treatments first gentle increased and then rapid decreased with the advance of growth stage. DIFN had the positive correlations with MTA and the significant negative correlations with LAI. The correlation between DIFN and LAI was bigger than the correlation between DIFN and MTA. K had the significant negative correlations with MTA and the significant positive correlations with LAI.
     Secondly, During Jointing stage, average leaf angle of mixed fertilizer treatment was 53.89°, this number was less than that of urea and chicken manure treatment, and its leaf area index, light transmission rate and extinction coefficient was 4.63, 0.055 and 0.63, respectively, and in the middle of the three treatments. From booting stage to grain filling stage, the average leaf angle of mixed fertilizer treatment was 51.96°, and in the middle of the three treatments; Leaf area index and extinction coefficient number was 5.80 and 0.66, respectively, and were the biggest among the three treatments. Light transmission rate was 0.028, which was the least among the three treatments. Grains of per spike, spike weight, biomass yield, grain yield, quality of the mixed fertilizer treatment were all higher than that of the other two treatments. In general, canopy architecture of wheat was the best, and sunlight distribution was reasonable in mixed fertilizer treatment.
     Thirdly, Morphology simulation model construction of wheat in mixed fertilizer treatment was studied. A parallelly simulated model was developed based on the mechanism of feedback between plant morphological architecture and eco-physiological function. In the dissertation, the time interval was set by growth cycle ( GC ) and the architectural unit by metamer. The model was comprised of several sub-modules including developmental model, assimilate production model, and assimilate partitioning and accumulation model and organ’s morphological construction model. The developmental module performs the predictions of wheat growth process based on the linear correlation between the increase in the number of metamers and the change in accumulative temperature. The results of experiments were as follows:Simulated with observed stem length and stem thickness’s RMSE were 1.419 and 0.053. Simulated with observed value of growth of different leaf position and different sheath length’s RMSE were 1.709 and 1.950. Simulated errors were all on allowed range. The show better prediction effect. The model construction were practical and effective.
引文
[1]林忠辉,周允华,王辉民,张谊光.青藏高原冬小麦冠层几何结构、光截获及其对光合潜能的影响[J].生态学报,1998,18(4):392-398.
    [2]朱云集,崔金梅,郭天财等.不同穗型小麦品种群体光合特性及产量性状的研究[J].作物学报,2001,9.
    [3]范仲学,王璞,梁振兴,MARION Boening Zilkens,WILHELM Claupei.优化灌溉与施肥对冬小麦冠层结构的影响研究[J].中国生态农业学报,2005,13(3):79-81.
    [4]王天铎.光合作用与作物产量[J].植物生理学通讯,1988,(l):52-54.
    [5]董树亭.高产冬小麦群体光合能力与产量关系的研究[J].作物学报,1991,17(6):461-469.
    [6]颜景义等.小麦群体结构及光能利用分析[J].中国农业气象,1995,16(6):5-9.
    [7]张艳敏,李晋生,钱维朴,黄德明.小麦冠层结构与光分布研究[J].华北农学报,1996,11(1):54-58.
    [8]董振国,刘瑞文.黄淮平原高产田作物群体结构特征[J].应用生态学报,1992,3 (3) :240一246.
    [9]朱云集,崔金梅,郭天财等,温麦六号生育规律及其超高产栽培关键技术研究.作物学报,1998,24 (6) :947-951.
    [10]王之杰,郭天财,朱云集,王纪华,赵明.超高产小麦冠层光辐射特征的研究[J].西北植物学报,2003,23 (10) :1657-1662.
    [11]董树亭.高产麦田群体结构与光合作用的关系[J].山东农业大学学报,1992,23 (1) :27-30.
    [12]颜景义,郑有义,张海珍等,小麦群体结构及光能利用分析[J].中国农业气象,1995,16 (6) :5-9.
    [13] Gardner,F.R.,Pearce,R.B.,Mitchell,R.L.,etal著,于振文,王振林,崔德才译.作物生理学[M].北京农业出版社,1993.
    [14]董振国著.高产栽培理论与技术[M].北京:气象出版,1997,52-62.
    [15]董振国.冬小麦夏玉米高产田群体结构参数[J].中国农业气象,1995,16 (1) .
    [16]康祥波等.冬小麦群体叶层结构的研究[J].河南职技师院学报,1990,18 (3-4) :13-24.
    [17]董振国,于沪宁.冬小麦田作物层光合有效辐射特征及干物质生产[J].农业气象,1984, 12 (4) :11-13.
    [18]杜宝华,刘明孝,洪佳华.冬小麦群体光照条件及其光合特征.中国农业气象,1990,11 (3) :27-30.
    [19] Durcan,W.G.,Leaf angles,leaf area,and Canopy photo synthesis.Crop.Sci.,1971,11 (4) :482-485.
    [20] Bingham,J.,Physiological objectives in breeding for grain yield in wheat,”The way ahead in plant breeding”,1972:15-29.
    [21] Ledent,J.F.et al,Factors determining flag ]eaf curvature in wheat. Crop Sci.,1982 (22) :617-622.
    [22]赵双宁,李培等.北京地区冬小麦品种冠层结构的研究.作物学报,1986,12 (4) :217-224.
    [23] Austin.R.B.,Crop characteristics and potential yield of wheat.J.Agric.Sci.,1982.98:447-453.
    [24] Ford,M.A,Austin,R.S.,Angus,W.J, and Sage,G.C.M.,Relationship between the responses of spring wheat genotypes to temperature and photoperiodic treatment and their performance in the field.Journal of Agricultural Sci., 1981 (96) :623-634.
    [25]魏燮中等.小麦子粒灌桨期中光能供求关系模拟与南京地区辐射条件下合理株型的探讨.南京农业大学学报, 1988.
    [26]陈荣振.淮北地区小麦超高产育种问题的探讨.国外农学一麦类作物,1995,2:45-47.
    [27].Borojevie, S.,Canopy Structure of different wheat genotypes in relation to the yield of grains.Proc.4th Wheat Genet.Symp.,1973,773-780.
    [28]王谦,陈景玲,孙治强.LAI—2000冠层分析仪在不同植物群体光分布特征研究中的应用.中国农业科学,2006,39(5):922-927.
    [29] McIntyre B D, Riha S J, Ong C K. Light interception and evapotranspiration in hedgerow agroforestry systems. Agricultural and Forest Meteorology, 1996, 81: 31-40.
    [30] Sinoquet H, Thanisawanyangkura S, Mabrouk H, Kasemsap P. Characterization of the light environment in canopies using 3D digitizing and image processing. Annals of Botany, 1998, 82:203-212.
    [31] Vesala T, Markkanen T, Palva L, Siivola E, Palmroth S, Hari P. Effect of variations of PAR on CO2 exchange estimation for Scots pine. Agricultural Forest Meteorology, 2000, 100:337-347.
    [32] Choudhury Bhaskar J. Modeling radiation -and carbon- use efficiencies of maize, sorghum and rice. Agricultural and Forest Meteorology, 2001, 106:317-330.
    [33]曾浙荣,赵双宁,李青.北京地区高产小麦品种的冠层形成、光截获和产量[J].作物学报,1991,17(3): 161-170.
    [34]平井八十二著.新编农业气象手册[M].侯宏森译,北京:农业出版社,1985.
    [35]黄高宝.作物群体受光结构与作物生产力研究[J].生态学杂志,1999,18 (l) :59-63.
    [36] Phillips I.D.,Annu Rew Plant Physiol[J].1975,26:9-45.
    [37]胡延吉,兰进好.不同时期小麦主栽品种冠层结构研究[J].中国农业气象,1999,20(1):11-14.
    [38] Monsi M and Seaki T. Uber den lichtfakeor in den pflanzen gesellsc hefen and seine bedutung far die stoffproduktion.Jpn J Bot,1953,14:22-52.
    [39]门司正三,佐伯敏郎.植物群体中光的因素及其对植物生产的作用[A].朱健人译.光合作用与作物生产译丛(2)[D]北京:农业出版社,1980.
    [40]唐微等,小麦在全光照和反光周期条件下的光合速率日变化[J].湖北农业科学,2001,6:24-25.
    [41]项月琴,周允华,崔景芳.见中国科学院北京农业生态系统实验站编.农田作物环境试验研究[C].北京:气象出版社,1990,104-115.
    [42]赵会杰,邹琦,郭天财,于振文,王永华.密度和追肥时期对重穗型冬小麦品种L906群体辐射和光合特性的调控效应[J].作物学报,2002,28 (2) :270-277.
    [43] Jones H.J.,Plants and microclimate[M].Cambridge University press,1992,215-230.
    [44] Monsi M and Saeki T,Uber den lichtfactor in den pflanz engesellsc hafen and seine bedutung fur die stoffproduction[J].Jpn J Bot,1953,14:22-52.
    [45]董中强,王荣堂编著.作物气象,武汉:武汉大学出版社,1993,31-35.
    [46]张维成,李春喜,杨永光.论冬小麦产量构成因素的制约关系.见:中国小麦栽培研究新进展,北京:农业出版社,1993,511-517.
    [47]王绍中等.河南省小麦栽培技术的发展与展望.见:中国小麦栽培研究新进展,北京:农业出版社,1993,59-70.
    [48]王绍中,章练红,徐雪林,等.环境生态条件对小麦品质的影响研究进展.[J]华北农学报,1994,9(增刊):141-144.
    [49]范仲学,王璞,M. Boening-Zilkens,梁振兴,W. Claupein,优化灌溉和施肥对冬小麦产量的影响[J].麦类作物学报,2003,23(4):99-103.
    [50]杨艳生.土壤退化指标体系研究.土壤侵蚀与水土保持学报,1998,4(4):44-46.
    [51]沈善敏.长期土壤肥力试验的科学价值.植物营养和肥料学报1995,1(1):1-9.
    [52]徐兆飞,张惠叶,张定一.小麦品质及其改良。北京:气象出版社,1999.
    [53] MARY J G,REUBEN M L,JEFFREY C S,et al.Managing irrigation and nitrogen fertility of hard spring wheats for optimum bread and noodle quality[J].Crop Science,2005,45(5):2049-2059.
    [54] BOEHM D J,BERZONSKY W A,BHATTACHARYA M.Influence of nitrogen fertilizer treatments on spring wheat (Triticum aestivum L.) flour characteristics and effect on fresh and frozen dough quality[J].Cereal chemistry.2004,81(1):51-54.
    [55] ROBERT J K,MICHAEL R H,JUSTIN T P, etal.Nitrogen Management for Mid-Atlantic Hard Red Winter Wheat Production[J].Agronomy.J.,2005,97(1):257-264.
    [56]朱红勋,张翔,孙春河.不同施肥结构的增产效应和对小麦籽粒品质的影响[J].华北农学报,1995,10(2):100-105.
    [57]张翔,朱洪勋,孙春河,崔转玲.轮作制下长期施肥对小麦籽粒品质的影响[J].干旱地区农业研究,1997,15(4):26-29.
    [58]吕凤荣,刘康峰,刘媛媛,宋保谦.有机肥对小麦产量及品质的影响[J].中国农学通报,2000,16(3):39-40.
    [59]姜东,戴廷波,荆奇,曹卫星,周琴,赵辉,范雪梅,陈荣振,冯国华,刘东涛,张爱君.有机无机肥长期配合施用对冬小麦籽粒品质的影响[J].生态学报,2004,24(7):1548-1555.
    [60]樊虎玲,郝明德,李志西.黄土高原旱地化肥和有机肥配施对小麦品质的影响[J].干旱地区农业研究,2005,23(5):72-76.
    [61] Edwards D, Hamson M. Guide to Mathematical Modeling. Boca Raton, Florida, US: CRC Press, Inc., 1990.
    [62] Curry R B. Dynamic simulation of plant growth, I. Development of a model. Transactions of the ASAE, 1971, 14(5): 946-959.
    [63] Sinclair T R, Seligman N G. Crop modeling: from infancy to maturity. Agronomy Journal, 1996, 88: 698-704.
    [64] Montieth J L. The quest for balance in modeling. Agronomy Journal, 1996, 88: 695-697.
    [65]曹卫星,罗卫红.作物系统模拟及智能管理.北京:高等教育出版社,2003.
    [66] de Wit C T. Photosynthesis of leaf canopies. Wageningen, Netherlands: Inst Biol Chem Res Field Crops Herb. Agric Res Rep, 1965. 663.
    [67] Duncan W G, Loomis R S, Williams W A, et al. A model for simulating photosynthesis in plant communities. Hilgardia, 1967,38:181-205.
    [68] de Wit C T. Dynamic concepts in biology. In: Prediction and Management of Photosynthetic Productivity. Proceedings International Biological Program Plant Production Technical Meeting. Wageningen, Netherlands: PUDOC, 1970. 17-23.
    [69] Penning de Vries F W T, van Laar H H. Simulation of plant growth and crop production. In: Penning de Vries F W T, van Laar H H eds. Simulation Monographs. Wageningen, Netherlands: PUDOC, 1982. 114-136.
    [70] van Keulen H. Simulation of water use and herbage growth in arid regions. In: Penning de Vries F W T, van Laar H H eds. Simulation Monographs. Wageningen, Netherlands: PUDOC, 1982. 176.
    [71] Penning de Vries F W T, Jansen D M, tenBerge H F Metal. Simulation of ecophysiological processes of growth in several annual crops. Simulation Monographs. Wageningen, Netherlands: PUDOC, 1989. 271.
    [72] Hijmans R J, Guiking-Lens I M, van Diepen C A. WOFOST, user guide for the WOFOST 6.0 crop growth simulation model. Wageningen, Netherlands: Technical document 12, DLO Winand Staring Centre, 1994,145.
    [73] Driessen P M, Konijn N T. Land-use System Analysis. Wageningen, the Netherlands: Wageninge Agricultural University, 1992.
    [74] Baker, D. N., Lambert, J. R. & McKinion, J. M., GOSSYM: A simulator of cotton crop growth and yield, S. C. Expt. Bull. Technical Bulletin No.1089, S. C. Agricultural Experiment Station, December, 1983.
    [75] Stepleton, H. N. et al, COTTON: A computer simultion of cotton growth, Arizona Agr.Exp. Station Tech. Bull., 1973, 206:124.
    [76] Duncan, W. G., SIMCOT: A simulation of cotton growth and yield,in Proc. worshop on tree growth dynamics and modelling, Duke University, Oct.,1972, 115-118.
    [77] Ritchie J T, Otter S. Description and performance of CERES-Wheat: A user-oriented wheat yield model, USDA-ARS, ARS-38, 1985. 159-175.
    [78] Ritchie J T, Alocijia E C, Uehara G. IBSNAT/CERES Rice Model. Agrotechnology Transfer, 1986. 3:1-5.
    [79] Jones C A, Kiniry J R. CERES-Maize: A Simulation Model of Maize Growth and Development. Texas A&M University Press, College Station, TX. 1986.
    [80] Carberry P S, Muchow R C, Mc Cown R L. Testing the CERES-Maize simulation model in a semi-arid tropical environment. Field Crops Res, 1989, 20: 297-302.
    [81] Hodges T, Bother D, Sakomoto C, Haug J H. Using the CERES-Maize model to estimate production for the U.S. Corn belt. Agric and Forest Meteorol, 1987, 40: 293-303.
    [82] Larrabee J, Hodges T. NOAA-AISC user′s guide for implementing CERES-maize model for large area yield estimation. Agrostars Software Documentation, 1985. 20.
    [83] Wu Y, Sakamoto C M, Bother D M. On the application of the CERES-Maize model to the North China Plain. Agric and Forest Meteorol, 1989, 499~513.
    [84] Pisani A L Du. The CERES-Maize model as a potential tool for drought assessment in South Africa. Water South Africa, 1987, 13: 59-163.
    [85] Liu W T H, Bother D M, Sakamoto C M. Application of CERES-Maize to yield prediction of a Brazilian maize hybrid. Agric and Forest Meteorol, 1989, 45: 99-304.
    [86] Wilkerson G G, Jones J W, Boote K J, et al. Modeling soybean growth for crop management. Transactions of the ASAE, 1983, 26: 63-73.
    [87] Boote K J, Jones J W, Hoogenboom G, et al. PNUTGROV 1.02, Penut Crop Growth Simulation Model, User.s Guide. Fl. Agric. ExSta, Journal No.8420. Univ. of Florida, Gainesville,1989.
    [88] Hoogenboom G, Jones J W, Boote K J. Modeling growth, development and yield of grainlegumes using SOYGRO, PNUTGRO, and BEAN- GRO: A review. Transactions of the ASAE, 1992, 35 (6) : 2043- 2056.
    [89] Gijzen H, Dayan E. HORTISM: a model for greenhouse crops and greenhouse climate. Acta Hort. , 1998,456: 441-450.
    [90] Jones JW, Dayan E, Allen LH, et al. A dynamic tomato growth and yield model (TOMGRO). Transactions of the ASAE, 1991, 34 (2) :663~672.
    [91]高亮之,金之庆.中国不同类型水稻生育期的农业气象生态模式及其应用.农业气象,1982,8 (2) : 1-8.
    [92]高亮之,金之庆,黄耀等.水稻计算机模拟模型及其应用之一:水稻钟模型-水稻发育的计算机模型.中国农业气象,1989,10 (2) :3-10.
    [93]戚昌瀚,殷新佑,刘桃菊等.水稻生长日历模拟模型(RICAM)的调控决策系统(RICOS)研究.江西农业大学学报,1994,16 (4) :323-327.
    [94]殷新佑,戚昌瀚.水稻生长日历模拟模型及应用研究.作物学报,1994,20 (3) :339-346.
    [95]潘学标,石元春.COTGROW棉花生长发育模拟模型.棉花学报. 1996, 8(4):180-188.
    [96]冯利平.小麦生长发育模拟模型(WheatSM)的研究.南京:南京农业大学,1995.
    [97]倪纪恒,罗卫红,李永秀等.温室番茄发育模拟模型研究.中国农业科学2005, 38 (6) : 1219-1225.
    [98]李娟,郭世荣,罗卫红.温室黄瓜光合生产与干物质积累模拟模型.农业工程学报,2003,19(4):241-244.
    [99]孙忠富,陈晴,王迎春.不同光照条件下温室黄瓜干物质生产模拟与试验研究.农业工程学报,2005,21:50-52.
    [100]陈国庆,朱艳,曹卫星.小麦叶鞘和节间生长过程的模拟研究.麦类作物学报,2005,25(1):71-74.
    [101]侯加林,王一鸣,丛晓燕等.番茄叶序发育动态模拟模型.农业机械学报,2006,37(7):101-103.
    [102]张立桢,曹卫星,张思平.棉花蕾铃生长发育和脱落的模拟研究.作物学报,2005,31(1):70-76.
    [103]谭子辉,朱艳,姚霞等.冬小麦麦穗生长过程的模拟研究.麦类作物学报,2006,26 (4) :93-97.
    [104]李卫国,朱艳,戴廷波等.水稻籽粒直链淀粉含量的生态模型研究.应用生态学报,2005,16:491-495.
    [105]郭焱,李保国虚拟植物的研究进展,科学通报,2001年第4期。P273-280.
    [106]宋有洪,贾文涛,郭焱,李保国虚拟作物研究进展,计算机与农业,2000年(6):P6-8.
    [107] Ivanov, N, Boissard P, Chapron M, et al. Computer stereo plotting for 3D reconstruction of amaize canopy [J]. Agric For Meteorol, 1995, 75:85-102.
    [108] Andrieu B, Ivanov N, Boissard P. Simulation of light interception from a maize canopy model constructed by stereo plotting [J]. Agric for Meteorol, 1995, 75: 103-119.
    [109] Smith G S, Curtis J P, Edwards C M. A method for analysing plant architecture as it relates to fruit quality using three-dimensional computer graphics. Annals of Botany, 1992, 70: 265-269.
    [110] Chen S G, Impens I, Ceulemans R, et al. Measurement of gap fraction of fractal generated canopies using digitalized image analysis. Agric For Meteorol, 1993, 65: 245-259.
    [111]郭焱、李保国.玉米冠层三维结构研究[J].作物学报,1998,24 (6) : 1006-1009.
    [112]郭焱、李保国.玉米冠层的数学描述与三维重建研究[J].应用生态学报, 1999,10(1): 39-41.
    [113]赵星.忠实于植物学的虚拟植物生长研究.合肥:中国科学技术大学,2001.
    [114]石春林,金之庆,曹卫星.水稻植株的虚拟生长.江苏农业学报,2006,22 (2) :105-108.
    [115]杨娟,赵明,潘学标.基于NURBS和VC++6.0的棉花生长可视化研究.农业工程学报,2006,22(10):159-162.
    [116]严美春,曹卫星,罗卫红等.小麦地上部器官建成模拟模型的研究.作物学报,2001,27:222-229.
    [117]董乔雪,王一鸣,Jean Francois BARCZI.番茄的结构-功能模型:基于有限态自动机的3D形态构建.中国生态农业学报,2006,14(4):195-199.
    [118] Diggle A J. ROOTMAP─a model in three-dimensional coordinates of the growth and structure of fibrous root systems [J]. Plant and Soil, 1988, 105: 169-178.
    [119] Pages L, Jordan M O, Picard D. A simulation model of the three-dimensional architecture of the maize root system [J]. Pl ant and Soil, 1989,119:147-154.
    [120] Fitter A H, Stickland T R, Harvey M L, Wilson G W. Architectural analysis of plant root systems.Ⅰ. Architectural correlates of exploitation efficiency. New Phytol,1991,118:375-382.
    [121]. Clausnitzer V, Hopmans J W. Simultaneous modeling of transient three-dimensional root growth and soil water flow [J]. Plant and Soil, 1994, 164: 299-314.
    [122] Lynch J P, Nielsen K L, Davis R D, et al. SimRoot: Modeling and visualization of root system. Plant and Soil, 1997,188: 139-151.
    [123]冯斌,杨培岭.植物根系的分形及计算机模拟[J].中国农业大学学报,2000,5 (2) : 96-99.
    [124]金明观,王天铎.玉米根系生长及向水性的模拟[J].植物学报,1996,38 (5) : 384-390.
    [125]陈德清.冬小麦根系的分形分析和生长模拟[学位论文],中国农业大学,1996.
    [126]陈晓远,高志红,罗远培.考虑土壤水分影响的小麦根、冠干物质积累及其相互关系模型.生态学报,2005,25(8):1921-1927.
    [127]马新明,杨娟,熊淑萍等.烟草根系生长发育模拟模型的建立.中国农业科学,2005,38(2):2421-2427.
    [128]张吴平,李保国.棉花根系生长发育的虚拟研究.系统仿真学报,2006,18:283-286.
    [129]殷毓芬,张存良,姚凤霞.冬小麦不同品种叶片光合速率与气孔导度等性状之间关系的研究[J].作物学报,1995,21(5):561-567.
    [130]杜宝华,曹永华,洪佳华.冬小麦群体CO2同化速率与日净光合生产力[J].作物学报,1995,21(5):598-604.
    [131] WARREN W J.Stand structure and light penetration[J].J.Appl.Ecol.,1965,2(2):383-389.
    [132]王志芬,范仲学,张凤云等.鸡粪对高产冬小麦根系活力和光合性能的影响[J].核农学报,2003,17(5):379-382.
    [133]梁银丽.有机肥对旱地农业持续发展的重要性及机理探讨.水土保持通报,1998,18 (7): 67-70.
    [134]姜东,于振文,许玉敏,余松烈.有机无机肥料配合施用对冬小麦根系和旗叶衰老的影响.土壤学报,1999,36(4):440-447.
    [135]田蕴德.有机肥与氮磷化肥配施对豌豆长势及根腐病的影响.中国农业科学,1994,27(3):56-62.
    [136]李絮花,杨守祥,于振文,余松烈.有机肥对小麦根系生长及根系衰老进程的影响.植物营养与肥料学报,2005,11(4):467-472.
    [137]邹国元,刘宝存,王美菊,吴静,孙明德.施肥对蕹菜生长及品质的影响.华北农学报,2002,17(2):97-101.
    [138]赖涛,沈其荣,茆泽圣,胡恩华.几种有机和无机氮肥对草莓生长及其氮素吸收分配影响的差异.植物营养与肥料学报,2006,12(6):850-857.
    [139]王昌全,谢德体,李冰,周娅,李焕秀,李廷轩,张锡洲.不同有机肥种类及用量对芹菜产量和品质的影响.中国农学通报,2005,21(1):192-195.
    [140]韩晓日,郑国砥,刘晓燕,孙振涛,杨劲峰,战秀梅.有机肥与化肥配合施用土壤微生物量氮动态、来源和供氮特征.中国农业科学,2007,40(4):765-772.
    [141]王林权,周春菊,王俊儒,李生秀,邵明安.鸡粪中的有机酸及其对土壤速效养分的影响.土壤学报,2002,39(2):268-275.
    [142]罗安程,T.B.Subedi,章永松,林咸永,柴容明.有机肥对水稻根际土壤中微生物和酶活性的影响.植物营养与肥料学报,1999,5(4):321-327.
    [143]周卫军,王凯荣,张光远,谢小立.有机与无机肥配合对红壤稻田系统生产力及其土壤肥力的影响.中国农业科学,2002,35(9):1109-1113.
    [144]王旭东,张一平,吕家珑.不同施肥条件对土壤有机质及胡敏酸特性的影响.中国农业科学,2000,33(2):75-81.
    [145]史泽艳,高晓飞,谢云. SUNSCAN冠层分析系统在农田生态系统观测中的应用[J].干旱地区农业研究,2005,23 (4) :78-82.
    [146]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    [147]姜丽芬,石福臣,王化田,祖元刚.叶绿素计SPAD-502在林业上应用.生态学杂志,2005,24 (12):1543-1548.
    [148]张银锁,宇振荣,P.M.Driessen.夏玉米植株及叶片生长发育热量需求的试验与模拟研究[J].应用生态学报.2001,12 (4):561-565.
    [149].刁操铨.作物栽培学各论[M].中国农业出版社.1998,108-116.
    [150].孟亚利,曹卫星,刘新伟.水稻地上部干物质分配动态模拟的初步研究[J].作物学报,2004,30 (4) :376-381.
    [151]高晓飞,谢云,王晓岚.冬小麦冠层消光系数日变化的实验研究[J].资源科学,2004,26 (1) :137-140.
    [152]司纪升,王法宏,李升东,冯波,孔令安,不同种植方式对小麦群体质量和产量结构的影响[J],麦类作物学报,2006,26 (6) :136-139.
    [153]周焱,罗安程.有机肥处理对小麦根系生长、活力和磷吸收的影响.植物营养与肥料学报,1997,3(3):243-248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700