用户名: 密码: 验证码:
棉田海冰水安全灌溉利用指标研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于环渤海地区海冰融水资源量丰富,盐分浓度低,作为农业灌溉水有着巨大潜力。本文在前人研究的基础上,从海冰水资源农业安全高效利用的角度进行了相关田间灌溉试验研究。于2007年4月至2008年11月,在河北省黄骅中捷农场进行海冰水灌溉棉田试验,通过海冰水不同盐分浓度、不同灌溉次数和不同灌溉方式对土壤水分及盐分在时间和空间动态变化、棉花产量品质的影响,探讨了海冰水安全高效利用指标和配套技术措施,取得以下结论。
     1、海冰水灌溉对土壤水分动态的影响:( 1)海冰水灌溉能明显提高土壤水分含量,尤其以播种前灌溉和苗期灌溉效果最佳,增幅为22.85~31.32%,可以有效缓解棉田春季旱情,土壤含水量随灌溉次数的增加而增高。(2)海冰水灌溉盐分浓度越大越有利于水分下渗,从而增加土壤中下层含水量。3g/L的处理灌溉2次与1次相比,土壤含水量增幅最大的范围为20~80cm; 5g/L增幅最大的范围为60~80cm, 7g/L增幅最大的范围为40~100cm。
     2、海冰水灌溉对土壤盐分含量的影响:( 1)海冰水灌溉主要是有利于淋洗苗期0~40cm根层土壤盐分。不同浓度海冰水灌溉处理与CK相比都明显降低了0~40cm土壤盐分含量,苗期降低百分数达20.75%~54.64%,灌溉水盐分浓度越小灌溉次数越多盐分降低效果越明显。而40cm以下则不同浓度灌溉处理都高于不灌溉处理(CK),可见,海冰水灌溉可以有效淋洗根层土壤盐分,有利于棉花的生长和发育。(2)就灌溉方式来看,相对于井水灌溉,在棉花生长前期,海冰水灌溉会明显提高土壤含盐量,尤以海冰水漫灌增加最多,而进入雨季以后,通过降雨的淋洗作用,盐分会得到充分的淋洗,进入花期海冰水灌溉与井水灌溉处理间土壤含盐量差异很小。结果表明,采用盐分浓度为3g/L海冰水灌溉,经过一个生长季漫灌和膜下滴灌均不会引起盐分累积。
     3、海冰水灌溉对土壤盐分离子组成和积盐率的影响:( 1)海冰水灌溉使Na+、Cl-、K+、Ca2+、Mg2+、SO42-等盐分离子随灌溉水进入棉田土壤。各离子含量均表现为随灌溉水盐分浓度和灌溉次数的增加而增加。在0~40cm土层呈现Na+、Cl-和K+经过一个生长季后含量高于于初始值,而Ca2+、Mg2+、SO42-则低于初始值。( 2)采用5g/L以下的海冰水灌溉均未产生较明显的表层积盐。2008年4月与2007年4月土壤含盐量比较计算土壤积盐率结果表明,经过一年灌溉和降雨淋洗作用,海冰水盐分浓度为1 g/L、3 g/L和5 g/L的灌溉处理,土壤均表现为脱盐,在0~20cm表层土壤脱盐率分别达到57.22%, 3.28%和18.34%。盐分浓度相同情况下,土壤积盐率随灌溉次数的增加而降低。从土壤垂直剖面来看,随着土层加深积盐率增高。盐分浓度大于7 g/L和9 g/L灌溉处理积盐较为严重,由此可见,采用5 g/L以下的海冰水灌溉较为安全。
     4、海冰水灌溉对棉花产量品质的影响:( 1)不同海冰水处理的棉花生长状况和产量情况表现为: 1 g/L海冰水、灌溉3次的处理产量、平均果枝数以及单颗棉桃重3项指标均为最高,籽棉产量达到4186kg/hm2,比无灌溉处理( CK)增产1166 kg/hm2,增产38.63%;其次为3 g/L海冰水、灌溉2次的处理,增产率为29.8%。随灌溉水矿化度增加产量呈现递减趋势,但与无灌溉处理(CK)相比,矿化度≤7g/L的灌溉处理并未出现减产现象,矿化度为9 g/L、灌溉3次的处理与无灌溉处理(CK)相比较出现显著减产,减产率为28.48%。不同处理间平均果枝数和单颗棉桃重也与产量变化规律相同。(2)与漫灌相比,采用膜下滴灌可以显著增加单株铃数和单颗棉桃重,因而能显著提高籽棉产量和灌溉水利用效率,其中棉籽产量提高22%。而海冰水与井水相比,井水处理产量高于海冰水处理,但各指标间均未达到显著差异。各灌溉处理棉花品质指标,除断裂比强度外,其他指标差异不显著。(3)海冰水浓度增大和灌溉次数增加会一定程度降低棉花纤维品质,但其影响不显著。当海冰水盐分浓度达到9 g/L时,各项品质指标均处于较低水平。
     5、海冰水安全高效灌溉指标和配套措施:通过本研究提出了环渤海地区海冰水棉田安全利用指标,并形成了一套海冰水安全高效利用配套技术措施。以浓度为3 g/L、灌溉2次(播种前和苗期)为宜,漫灌每次灌水量450 m3/hm2;膜下滴灌每次灌水量225 m3/ hm2,采用膜下滴灌有利于提高灌溉水利用效率,提高棉花产量、改善品质。采用海冰水灌溉必须配套灌排及耕作施肥措施,包括修台田、整地、播前施基肥、造墒、配合盐碱地土壤改良剂、覆膜播种技术、病虫害防治等措施。
As agricultural irrigation water, sea-ice water has great potential because of the richness of water resources and low salt concentration. This paper based on previous studies, the relevant field irrigation experiments have been made in terms of the safely and efficiently agricultural use of sea-ice water resources. A field experiment was conducted on the Zhongjie Farm of Hebei province to research the temporal and spatial change of soil moisture and soil salinity by different irrigation condition from April 2007 to November 2008. Discussion on the sea-ice water safe efficient utilization index system and matching technology. The main conclusions are as follows:
     1. The effect of soil water dynamics under sea-ice water irrigation: (1) Sea-ice water irrigation can obviously improve soil moisture, especially at before seedtime and seedling stage. The increase amplitude was 22.85%~31.32%. It can effectively relieve spring drought in cotton field. Soil moisture increases with increasing irrigation times. (2) High salinity density is beneficial to water infiltration, so increasing middle and lower layer soil moisture. b-3 compared with a-3 the most soil moisture increase amplitude at 20~80 cm; 5g/L and 7g/L soil moisture increase amplitude at 60~80 cm and 40~100 cm.
     2. The effect of soil salinity dynamics under sea-ice water irrigation: (1) Sea-ice water irrigation is mainly beneficial to leaching of 0~40cm root layer soil salinity at seedling stage. Different irrigation treatments compared with CK has decreased 20.75%~54.64% and 1.08%~62.16% at the 0~40 cm soil salinity at seedling stage and boll opening stage. Every sea-ice water irrigation treatments soil salinity are higher than CK under 40cm. Therefore, Sea-ice water irrigation could effectively leaching root layer soil salinity. It is beneficial to cotton growth and development. (2)Sea-ice water irrigation could obviously increase soil salinity more than well water irrigation on cotton growth prophase, especially the sea-ice water flood irrigation increased most. After rainy season, soil salinity leaching seriously by rainfall. There was little difference between Sea-ice water irrigation and well water irrigation treatments in soil salinity after flowering stage. The results showed that the salt concentration is 3 g/L sea-ice water irrigation with flood irrigation or drip irrigation under mulch can’t lead to noticeable salt accumulation after one growing season.
     3. The effect of salt ions and salt accumulation rate under sea-ice water irrigation: (1) Sea-ice water irrigation take Na+, Cl-, K+, Ca2+, Mg2+, SO42- etc. into the cotton field soil. Every salt ion increases with increasing salinity density and different irrigation number of times. Content of Na+, Cl- and K+ higher than initial value after one growing season, but Ca2+, Mg2+, SO42- lower than initial value. (2)Using the salt concentration≤5g/L sea-ice water irrigation didn’t causing salification on the soil surface. The salt concentration of 1 g/L, 3 g/L and 5 g/L sea-ice water irrigation treatments soil are desalination.The desalination rate are 57.22%, 3.28% and 18.34% respectively. On the same salt concentration situation, that salt accumulation rate reduce with increasing irrigation number of times. Looking from the soil vertical profile, salt accumulation rate increases with soil depths. Salt concentration≤7 g/L and 9g/L sea-ice water irrigation treatments salt deposit seriously. In conclusion, using the salt concentration≤5 g/L sea-ice water is safety.
     4. The effect of cotton yield and fiber quality under sea-ice water irrigation: (1) The yield, boll number per plant and cotton boll weight were the most in c-1 treatment.The seed cotton yield reached 4186 kg/hm2. It could more increase than CK yield by 1166 kg/hm2, about 38.63%.The second one is b-3, that increase yield by 29.8%. The seed cotton yield presents a decreasing trend with salinity density increasing. Salt concentration≤7 g/L treatments had not yield reduction, but c-9 treatment compare with CK had significantly yield reduction, the yield reduction rate reached 28.48%. Boll number and cotton boll weight had the same changing rule. (2) The irrigation modes of drip irrigation under mulch could significantly increased boll number per plant and cotton boll weight compared with CK,so it could significantly improve seed cotton yield and WUE. The yield increased by 22%. Well water treatment yield more than sea-ice water, but every index didn’t have significant differences. The fiber quality was no obvious difference except cotton fibre specific breaking strength. (3)Increasing irrigation number of times and salinity density could decrease cotton fiber quality,but had no significant influence. Every quality index in lower level when salt concentration 9 g/L of sea-ice water.
     5. Sea-ice water secure and efficient irrigation index and supporting measures: The study for the indexes of secure and efficient irrigation and put forward a set of sea-ice water secure and efficient irrigation supporting measures. The best sea-ice water irrigation institution is b-3(before seedtime and at seedling stage). Flood irrigation amount was 450 m3/hm2 each time, drip irrigation under mulch amount was 225 m3/hm2 each time. Adopting drip irrigation under mulch was beneficial to improve WUE, cotton yield and fiber quality. Adopting sea-ice water irrigation must matching irrigation and drainage, tillage, fertilization measures, such as construction of platform field, soil preparation, basal dressing and irrigation before seedtime, using saline soil amendment, mulch sowing technology, pest management and so on.
引文
1.陈德明,俞仁培.土壤—作物系统中的盐分运移与分布特征[J].土壤通报,1995,26 (1):3~5.
    2.曹俊杰,吴佩林.环渤海经济圈农业水资源利用与保护问题研究[J].前沿,2009,(1):99~102.
    3.陈志恺.21世纪中国水资源持续开发利用问题[J].中国工程科学,2000,2(3):7~11.
    4.丁德文.工程海冰学概论[M].北京:海洋出版社,1999.25~51.
    5.方生,陈秀玲.农业节水灌溉与咸水利用淡化[M].中国农业科学技术出版社,2008.
    6.方生,周存禄,李宏志等.黄淮海平原近滨海缺水盐渍区盐碱中低产田综合治理与土壤盐渍化监测预报的研究[M],1989.
    7.国家技术监督局,国家环境保护局.农田灌溉水质标准(GB5084-1992)[S].北京:中国标准出版社,1992.1~3.
    8.郭江.吐鲁番地区膜下滴灌节水技术效益分析[J].现代农业科技,2008(16):239~241.
    9.龚家栋.作物的耐盐性及盐水灌溉管理[J].中国沙漠,1995,15(2):158~164.
    10.顾卫,张秋义.用气候统计方法估算辽东湾海冰资源量的尝试[J].资源科学, 2003(5):9~16.
    11.郭文忠,刘声锋,李丁仁等.设施蔬菜土壤次生盐渍化发生机理的研究现状与展望[J].土壤,2004,36(1):25~29.
    12.何德功.世界水资源现状.中国网环境栏目[FSB/OL].[2008—07—281] http://www.china.corn.cn/chinese/huanjing/294668.htm.
    13.胡毓骐,李英能.华北地区节水型农业技术[M].中国农业科技出版社,1995.
    14.韩素芹.渤海海面冰情变化趋势预测[J].自然灾害学报,2008,17(4):85~90.
    15.刘昌明,何希吾.我国21世纪上半叶水资源需求分析[J].中国水利,2001(1):19~20.
    16.刘昌明,何希吾.中国21世纪水问题方略[M].北京:科学出版社, 1996.
    17.陆大道.中国环渤海地区持续发展战略研究[M].北京:科学出版社, 1994.
    18.李富先,李建喜,王保国.膜下滴灌技术应用与土壤盐碱化治理的现状及前景分析[J].新疆农垦经济,2005,(7):61~63.
    19.李文炳.山东棉花[M].上海:上海科学技术出版社, 2001:407~405.
    20.吕殿青,王全九,王文焰等.膜下滴灌水盐运移影响因素研究[J].土壤学报, 2002, 39(6): 794~801.
    21.雷廷武,肖娟,王建平等.微咸水滴灌对盐碱地西瓜产量品质及土壤盐渍度的影响[J].水利学报,2003,(4):85~89.
    22.雷廷武,肖娟,王建平等.地下咸水滴灌对内蒙古河套地区蜜瓜用水效率和产量品质影响的试验研究[J].农业工程学报,2003,19(2):80~84.
    23.李韵珠,李保国.土壤溶质运移[M].北京:科学出版社,1998.21-28.
    24.姜益娟,郑德明,翟云龙.不同灌溉方式的棉花根系在土壤中的分布特征[J].塔里木大学学报,2008,(3):1~5.
    25.康绍忠,蔡焕杰,冯绍元.现代农业与生态节水的技术创新与未来研究重点[J].农业工程学报,2004,(1):1~6.
    26.马东豪,王全九,来剑斌.膜下滴灌条件下灌水水质和流量对土壤盐分分布影响的田间试验研究[J].农业工程学报,2005,21(3):42~46.
    27.马德毅,陈伟斌.海冰资源开发利用与环渤海地区可持续发展.
    28.马丽辉,王春雨,范笑微.膜下滴灌农业节水技术的应用[J].黑龙江水利科技,2004,(4):53,54.
    29.农牧渔业部环境保护科研监测所.灌溉水质标准研究[M].北京:农业出版社,1985.
    30.钱正英,张光斗.中国可持续发展水资源战略研究综合报告及各专题报告[M].北京:中国水利水电出版社,2001.
    31.史培军,哈斯.渤海海冰作为淡水资源:脱盐机理与可利用价值[J].自然资源学报,2002(5):353~360.
    32.孙小芳,刘友良,陈泌.棉花耐盐性研究进展[J].棉花学报, 1998, 10(3): 118~124.
    33.沈振荣,贺伟程.中国农业用水的评价、存在问题及解决途径[J].自然资源学报,1996,11(3):221~230.
    34.唐华俊,逄焕成,任天志等.节水农作制度理论与技术[M].中国农业科学技术出版社,2008.
    35.王春泽.河北省农业灌溉咸水利用机理研究[J].南水北调与水利, 2009,7(1):56~60.
    36.王丹.微咸水滴灌条件下不同盐分离子在土壤中的分布特征[J].农业工程学报,2007(2):83~87.
    37.王国栋.微咸地下水滴灌对土壤次生盐渍化及棉花生理特性及产量的影响研究[N].新疆:石河子大学,2008.
    38.王静爱,苏筠,刘目兴.渤海海冰作为淡水资源的开发利用与区域可持续发展[J].北京师范大学学报(社会科学版),2003(3);85~92.
    39.万书勤.华北半湿润地区微成水滴灌番茄耗水量和土壤盐分变化[J].农业工程学报,2008,24(10):29~33.
    40.王卫光,王修贵,沈荣开等.河套灌区咸水灌溉试验研究[J].农业工程学报, 2004,20(5): 92~96.
    41.王艳娜,侯振安.咸水资源农业灌溉应用研究进展与展望[J].中国农学通报,2007(2):393~397.
    42.王振华,温新明,吕德生等.膜下滴灌条件下温度影响盐分离子运移的试验研究[J].节水灌溉,2004(3):5~7.
    43.辛承松,董合忠,唐薇.棉花盐害与耐盐性的生理和分子机理研究进展[J].棉花学报, 2005, 17(5):309~313.
    44.肖娟,雷廷武,李光永等.西瓜和蜜瓜咸水滴灌的作物系数和耗水规律[J].水利学报, 2004,(6):119~124.
    45.肖俊夫,刘祖贵,俞希根等.滴灌条件下不同供水模式对棉花产量及品质的影响[J].棉花学报,2002,12(4):194~197.
    46.肖建国,解利昕,王继忠等.渤海海冰融水盆栽小麦试验研究[J].资源科学,2003. 25(3):37~42.
    47.解利昕.海冰水灌溉对玉米产量影响的研究[J].灌溉排水学报,2007,26(5):68~70.
    48.徐学仁.海冰淡化方法研究:浸泡离心脱盐法[J].海洋科学,2003(10):50~53.
    49.许映军.控温法海冰冻融固态脱盐技术研究[J].应用基础与工程科学学报,2006(12):470~478.
    50.郑东锋,高贤彪,张玉兰等.滴灌淋洗土壤盐分效果的研究初报[J].山东农业科学,1999,(4):32~33.
    51.张国明,顾卫.海冰水不同盐含量处理对棉花、小麦和玉米种子萌发影响[J].北京师范大学学报(自然科学版),2006(4):209~212.
    52.张国明.环渤海地区海冰水农业灌溉及综合利用试验研究[N].北京:北京师范大学,2006.
    53.朱国鹏等.蔬菜设施栽培土壤的盐分累积及其调控[J].热带农业科学,2002,22(3):57~61,69.
    54.赵聚宝,徐祝龄,钟兆站等.中国北方旱地农田水分平衡[M].中国农业科学出版社,2000.
    55.张利平.中国水资源状况与水资源安全问题分析[J].长江流域资源与环境, 2009,18(2);116~120.
    56.赵骞,陈伟斌.渤海采冰增量盐分扩散的数值研究[J].海洋环境科学,2008(6):201~205.
    57.周丕东.氯化铵中氯的硝化抑制效应研究[J].植物营养与肥料学报, 2001,7(4):397~403.
    58.张薇,赵亚娟.国际水资源现状与研究热点[J].地质通报,2009,(3):177~183
    59.张永波.表层盐化土壤区咸水灌溉试验研究[J].土壤学报,1997,34(1):53~59.
    60.张裕繁,刘全义.我国棉花耐旱碱育种的进展与前景[J].中国棉花, 1988,25(2):4.
    61.张余良.长期微咸水灌溉对耕地土壤理化性状的影响[J].农业环境科学学报,2006,25(4);969~973.
    62.张余良,陆文龙.长期微咸水灌溉对耕地土壤理化性状的影响[J].农业环境科学学报2006,25(4):969~973.
    63. B.S. Naik,R.K. Panda,S.C. Nayak,et al. Hydraulics and salinity profile of pitcher irrigation in saline water condition[J]. Agricultural Water Management,2008,95(10):1129~1134.
    64. Boyko H. Saline irrigation for agriculture and forestry. Dr W.June. N.V. Publishers-The Hague.1968:325.
    65. Flowers T J,Ragab and R,Malash N,et al. Sustainable strategies for irrigation in salt-prone Mediterranean:SALTMED. Agricultural Water Management,2005, (78):3~14.
    66. Grattan S R,Grieve CM. Salinity-mineral nutrient relations in horti-cultural crops[J]. Scientia Horticulturae,1999 (78):127~157.
    67. Incrocci L,Malorgio F,Della Bartola A,et al.The influence of drip irrigation or subirrigation on tomato grown in closed-loopsubstrate culture with saline water[J].Scientia Horticulturae ,2006(107):365~372.
    68. I.Shainberg and J.D.Oster. 1978. Quality of Irrigation Water International Irrigation Center.
    69. J.W.Gowing,D.A.Rose,H.Ghamarnia. The effect of salinity on water productivity of wheat under deficit irrigation above shallow groundwater [J]. Agricultural Water Management,2009,96(3):517~524.
    70. Maggi A,Pascale S D,Angelino G,et al.Physiological response of tomato saline irrigation in long-term salinized soils[J]. Europ.J.Agronomy,2004,(21):149~159.
    71. Malash N,Flowers T J,Ragab R. Effect of irrigation systems and water management practices using saline and non-saline water on tomato production [J]. Agric Water Manage,2005,78:25~38.
    72. Moreno F,Cabrera F,Fernández-Boy E,et al. Irrigation with saline water in the reclaimed marsh soils of south-west Spain:Impact on soil properties and cotton and sugar beet crops[J].Agriculture Water Management,2001,48:133~150.
    73. Oron G,Demakach Y,Gollerman L,et al. Effect of water salinity and irrigation technology on yield and quality of pears. Biosystems Engineering[J],2002,81(2):237~247.
    74. Saline Irrigation Water[J]. World Farming,1981,23(1):24~29.
    75. Sam Geerts,Dirk Raes. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas [J]. Agricultural Water Management,2009,96(9):1275~1284.
    76. Schwertfeger P. The thermal properties of sea ice. Journal of Glaciology. 1963, 4(36)∶789~807.
    77. Serge Marlet,Fethi Bouksila,Akissa Bahri. Water and salt balance at irrigation scheme scale: A comprehensive approach for salinity assessment in a Saharan oasis [J]. Agricultural WaterManagement,2009,96(9):1311~1322.
    78. Sharma.D.P,K.V.Singh and P.S.Kumbhare. Reuse of saline drainage water for irrigation in a sand loamsoil [J]. Proccedings Symposium on Land Drainage for Salinity control in Arid and Semi-arid regions.Cairo,1990∶304~312.
    79. Shahbaz Khan,Tariq Rana,Munir A. Hanjra,et al. Water markets and soil salinity nexus:Can minimum irrigation intensities address the issue [J]. Agricultural Water Management,2009,96(3):493~503.
    80. T.B. Ramos,M.C. Gonalves,N.L. Castanheira,et al. Effect of sodium and nitrogen on yield function of irrigated maize in southern Portugal[J]. Agricultural Water Management,2009,96(4):585~594.
    81. Wang D,Shannon M C,Grieve C M,et al. Ion partitioning among soil and plant components under drip,furrow,and sprinkler irrigation regimes:field and modeling assessments[J].J Environ Quality,2002,31(5):1684~1693.
    82. W.P. de Clercq,M. Van Meirvenne,M.V. Fey. Prediction of the soil-depth salinity-trend in a vineyard after sustained irrigation with saline water [J]. Agricultural Water Management,2009,96(3):395~404.
    83. Youssef R,Mariateresa C,Elvira R,et al.Comparision of the subirrigation and drip-irrigation systems for greenhouse zucchini squash production using saline and non-saline nutrient solutions [J]. Agricultural WaterManagement, 2006,82: 99~117.
    84. Zartman.R.E. and M.Gichuru. Saline Irrigation Water; Effect on Soil Chemical and Physical Properties[J].Soil Science.1984,138(6):417~422.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700