用户名: 密码: 验证码:
超低碳贝氏体钢焊接接头组织的微观力学性能与EBSD分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过组织超细化可以使钢铁材料同时获得高的强度和优良的韧性,但超细组织在焊接条件下的粗化可能降低超细组织钢的性能。本文对采用驰豫-析出-控制相变工艺TMCP(Thermomechanical Control Process)-RPC (Relaxation-Precipitation-Controlled Transformation)生产的新型超细组织钢进行了焊接接头微观组织的表征及Electron Back Scattered Diffraction (EBSD)分析和微观力学性能的研究。
     利用光学显微镜,扫描电子显微镜对RPC超细组织钢的焊接接头进行观察与分析。焊接接头主要分为:焊缝,熔合区,粗晶区,细晶区和不完全重结晶区。焊缝组织为针状铁素体,熔合区主要为贝氏体组织,粗晶区主要为板条贝氏体束,由相互平行的贝氏体板条构成。细晶区主要为多边形铁素体和贝氏体组织。不完全重结晶区主要为重结晶的细小铁素体晶粒与原母材的微细贝氏体板条混合组织。
     对焊接接头组织进行扫描电子显微镜观察和能谱分析的结果表明,焊缝区域针状铁素体以夹杂物为核心多维形核呈放射状生长。研究认为,该夹杂物主要是以Al2O3为核心形成的钛氧化物,以钛复合氧化物为核心形成铁素体。可能由于夹杂物中存在阳离子空位,使Mn通过阳离子空位扩散进入Ti2O3夹杂,或者由于溶质元素在夹杂物和铁素体中溶解度有差异,形成Mn溶质贫乏区,促进晶内铁素体形核。
     利用EBSD对焊接接头组织进行晶体学取向研究的结果发现,焊缝针状铁素体晶粒取向并不完全随机分布,在某些晶体学方向上存在取向择优。各针状铁素体之间呈大角度晶界。从同一夹杂物上长出的针状铁素体,观察到沿同一方向背向生长的针状铁素体具有相同取向。粗晶区原奥氏体晶粒内从晶界向晶内有多个方向生长的板条贝氏体束,沿某一方向生长的板条贝氏体束具有明显的优势。生长方向不同的贝氏体束之间呈大角度晶界。粗晶区针状铁素体能有效分割原奥氏体晶粒,从而促进晶粒细化。观察到部分贝氏体与其邻近的针状铁素体板条取向相同或相近,本文认为,这些贝氏体可能以铁素体板条为基体在铁素体板条界面形核。
     利用维氏硬度仪和纳米硬度测定仪对焊接接头组织进行了微观力学性能的测定。整体看来,维氏硬度值与纳米硬度随组织变化具有一致性。焊缝针状铁素体硬度最高,焊接热影响区粗晶区硬度最低。对于焊接热影响区粗晶区,由于晶粒粗化以及母材的一些强化途径在焊接热过程中受到削弱或消失,导致硬度降低。细晶区由细小的多边形铁素体组成,硬度较低。
The steel with high strength and good toughness can be realized by the refinement of its microstructures. However, the properties of weld joint of the steel are tended to be deteriorated due to the coarsening of microstructures during welding of the steel. In this thesis, the characterization, Electron Back Scattered Diffraction (EBSD) analysis and micro mechanical properties of weld joint microstructures of a ultra fine-grained high strength steel were studied, which was processed by a TMCP (Thermomechanical Control Process)-RPC (Relaxation-Precipitation-Controlled transformation) technique.
     Microstructural observations of weld joint of the steel were conducted by means of optical microscopy and scanning electron microscopy. The weld joint consisted of weld metal, fusion region, coarse-grained region, fine-grained region and incomplete recrystallization region. The weld metal was mainly made up of fine acicular ferrite. The fusion region was mainly made up of bainitic ferrite. The coarse-grained region was mainly made up of bainitic ferrite packets which consisted of parallel bainitic ferrite laths or plates. The fine-grained region consisted of fine polygonal ferrite grains. The incomplete recrystallization region was made up of the mixture of fine recrystallized polygonal ferrite grains and fine lath-like or plate-like bainitic ferrite matrix.
     SEM-EDS (Scanning Electron Microscopy-Electron Dispersed Spectrum) observations and analysis of weld metal was conducted on a field emission scanning electron microscope. Results showed that several ferrite laths or plates were nucleated on one inclusion. The inclusion consisted of an Al2O3 core and an outer layer of titanium oxide. The nucleation of intragranular ferrite was promoted by the formation of Mn depleted zone, probably due to Mn diffusion into titanium oxide by means of cation vacancies, or to the solubility difference of Mn in ferrite matrix and in inclusion.
     EBSD analysis was conducted with a FE-SEM to investigate the crystallographic orientation of weld joint microstructures. Results indicated that the crystallographic orientation of acicular ferrite was not completely random. A certain crystallographic orientation was dominant for acicular ferrite. Acicular ferrite was separated by high angle boundaries. Some acicular ferrite laths or plates which were formed on one inclusion and grew in opposite directions had the same crystallographic orientation, presumably because it had some crystallographic orientation relations with the prior austenite. In coarse-grained region, some bainitic ferrite packets grew in a certain crystallographic orientation were dominant among the packets in a prior austenite. Bainitic ferrite packets grew in different directions were separated by high angle boundaries. The acicular ferrite laths or plates in coarse-grained region which was formed prior to bainitic ferrite packets sectioned the prior austenite into many small zones so that fine-grained mixed microstructures could thus be obtained. It was found that some banitic ferrite laths or plates which were adjacent to acicular ferrite laths or plates had the same or similar crystallographic orientation with them. These banitic ferrite laths or plates might be formed by sympathetic nucleation on the pre-formed acicular ferrite laths or plates.
     The Vickers hardness and nano hardness measurements were carried out on BUEHLER MICROMET 5101 and Nano Indenter II (MTS), respectively. Generally speaking, the value of Vickers hardness and nano hardness were both in agreement with microstructure change in the weld joint. The hardness of weld metal was the highest and coarse-grained region lowest among the different regions in weld joint. The hardness of coarse-grained region was reduced by grain coarsening and the weakening or disappearing of matrix strengthening approaches during welding. The hardness of fine-grained region was lower, because the microstructure in this region was made up of fine polygonal ferrite grains.
引文
[1] W. Roberts, H. Lidefelt, A. Sandberg. Mechanism of Enhanced Ferrite Nucleation from Deformed Austenite in Microalloyed Steels [C]. Proc. Sheffield Conf. On Hot-working and Forming Processes, The Metal Society, London, Edited by C. M. Sellars, G. J. Davies, 1980, 38
    [2] L. J. Cuddy. The Effect of Microalloy Concentration on the Recrystallization of Austenite during Hot Deformation [C]. Proceedings of an International Conference on the Thermo-mechanical Processing of Microalloyed Austenite. Metallurgical Society of AIME, Edited by A. J. DeArdo, G. A. Ratz, P. J. Wray, 1981, 129
    [3] H. Yada. Collected Abstracts of the 1983 Autumn Meeting of Japan Inst. Metals. JIM. Sendai, 1983,190
    [4] H. Yada, Y. Matsumura, K. Nakajima. Ferritic steel Having Ultra-fine Grains and a Method for Producing the Same. United States Patent No.4446842, 1984
    [5] P. D. Hodgson, M. R. Hickson, et al. Ultrafine Ferrite in Low Carbon Steel [J]. Scripta Materialia, 1999, 40(10): 1179-1184
    [6] Y. Iwahashi, Z. Horita, M. Nemoto, et.al. The Process of Grain Refinement in Equal-Channel Angular Pressing [J]. Acta Materialia, 1997, 45(11): 4733-4741
    [7] Y. Iwahashi, Z. Horita, M. Nemoto, et. al. An Investigation of Microstructural Evolution during Equal-Channel Angular Pressing [J]. Acta Materialia, 1998,46(9): 3317-3331
    [8] D. H. Shin, W. S. Jeong, J. Kim, et. al. Effect of Equal Angular Pressing on Structure and Mechanical Properties of a Low Carbon Steel [J]. Steel Research, 2001, 72(3): 106-110
    [9] D. H. Shin, J. J. Pak, Y. K. Kim, et.al. Effect of Pressing Temperature on Microstructure and Tensile Behavior of Low Carbon Steels Processed by Equal Channel Angular Pressing [J]. Material of Science and Engineering A, 2002, 325: 31-37
    [10] N. Tsuji, Y. Saito, H. Utsunomiya, et. al. Ultra-Fine Grained Bulk Steel Produced by Accumulative Roll-Bonding (ARB) Process [J]. Scripta Materialia, 1999, 40(7): 795-800
    [11] W. Y. Choo, J. S. Lee, C. S. Lee et. al. Strain Induced Dynamic Transformation of Austenite to Fine Ferrite and It’s Characteristics. CAMP-ISIJ, 2000, 13: 1144
    [12] J. K. Choi, K. K. Um, J. S. Lee, et. al. Characteristics of Ultrafine Ferrite Formed by Strain Induced Dynamic Transformation in Low Carbon Steels [C]. Workshop on New Generation Steel, Beijing, China, 2001, 88-91
    [13] S. W. Yang, X. M. Wang, C. J. Shang, et al. Relaxation of Deformed Austenite and Refinement of Bainite in a Nb-containing Microalloyed Steel [J]. Journal of University of Science and Technology Beijing, 2001, 8(3): 214-217
    [14] C. J. Shang, X. M. Wang, X. L. He, et al. A Special TMCP Used to Develop a 800 MPa Grade HSLA Steel [J]. Journal of University of Science and Technology Beijing, 2001, 8(3): 224-228
    [15] 翁宇庆 等著. 超细晶钢——钢的组织细化理论与控制技术[M]. 北京:冶金工业出版社,2003,9-18
    [16] 冯端 等著. 金属物理学[M]. 第三卷 金属力学性质. 北京:科学出版社,1990,373
    [17] 田志凌,屈朝霞,杜则裕 等. 超细晶粒钢 HAZ 晶粒长大的规律[J]. 焊接学报, 2000,21(4),9-12
    [18] 屈朝霞. 新一代钢铁材料焊接奥氏体晶粒长大规律的研究[D]. 天津大学博士学位论文, 2000, 76
    [19] 屈朝霞,田志凌,杜则裕. 400MPa级新一代钢铁材料焊接热影响区晶粒长大图[J]. 焊接学报,2000,23(3):29-31
    [20] 刘吉斌. RPC 超细组织钢的焊接物理冶金研究[D].华中科技大学博士学位论文,2005,40-44
    [21] Lee Jye-Long, Pan Yeong-Tsuen. Effect of Silicon Content on Microstructure and Toughness of Simulated Heat Affected Zone in Titanium Killed Steels [J]. Materials Science and Technology, 1992, 8(10):236-244
    [22] 杨平 著. 电子背散射衍射技术及其应用[M]. 北京: 冶金工业出版社, 2007, 117-120
    [23] HKL Technology Group. 2003 EBSD Applications Catalogue[C], Denmark:HKL Technology, 2003
    [24] 陈绍楷,李晴宇,苗壮,许飞. 电子背散射衍射(EBSD)及其在材料研究中的应用[J].稀有金属材料与工程,2006,35(3):500-504
    [25] 黄文长,冯继军. EBSD 分析技术及其在材料科学研究中的应用[J]. 汽车工艺与材料,2004,1:18-20
    [26] W. C. Oliver, G. M. Pharr. An Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. J Mater Res,1992,7(6):1564-1583
    [27] J. B. Pethica, W. C. Oliver. Tip surface interaction in STM and AFM [J]. Phys Scr,1987(19) :61-68
    [28] J. B. Pethica, W. C. Oliver. Mechanical properties of nanometer volumes of material: use of the elastic response of small area indentations. In: Thin Films-Stresses and Mechanical Properties, MRS Symposium Proc., Vol.130. Materials Research Society,1989,13-23
    [29] W. C. Oliver, J. B. Pethica. U. S. Patent No.4848141
    [30] G. M. Pharr, W. C. Oliver, F. R. Brotzen. On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation [J]. J MaterRes,1992,7:613-617
    [31] 张泰华,杨业敏. 纳米硬度技术的发展和应用[J].力学进展,2002,32(3):349-363
    [32] 张文钺 主编. 焊接冶金学[M]. 北京:机械工业出版社, 1996,189
    [33] M. Enomoto, K. M. Wu, Y. Inagawa, T. Murakami and S. Nanba. Three-dimensional Observation of Ferrite Plate in Low Carbon Steel Weld [J]. ISIJ International, Vol. 45 (2005), No. 5 : 756–762
    [34] K.M. Wu, Y. Inagawa, M. Enomoto. Three-dimensional morphology of ferrite formed in association with inclusions in low-carbon steel [J]. Materials Characterization,2004, 52:121– 127
    [35] K.M. Wu. Three-dimensional analysis of acicular ferrite in a low-carbon steel containing titanium [J]. Scripta Materialia, 2006,54:569–574
    [36] H. Mabuchi, R. Uemori, M. Fujioka. The Role of Mn Depletion in Intragranular Ferrite Transformation in the Heat Affected Zone of Welded Joints With Large Heat Input in Structural Steels [J]. ISIJ International, 1996, 36(12): 1406-1412
    [37] F. Ishikawa. Intragranular ferrite nucleation in medium-carbon vanadium steels [J]. Metall. Mat. Trans. A, 1994 ,25 (5) : 929-936
    [38] J. M. Gregg, H. K. D. H. Bhadeshia. Solid-state nucleation of acicular ferrite on minerals added to molten steel [J]. Acta Mater.1997,45:739
    [39] J. H. Shim, Y. J. OH, J. Y. Suh, et al. Ferrite Nucleation Potency of Non-Metallic Inclusions in Medium Carbon Steels [J]. Acta Mater, 2001,49(10): 2115-2122
    [40] J. H. Shim, Y. W. Cho, S. H. Chung. Nucleation of intragranular ferrite at Ti2O3 particle in low carbon steel [J]. Acta Mater,1999,47(9):2751-2760
    [41] K. M. Wu, M. Enmoto. Intragranular Ferrite Formed in association with Inclusions in a Vanadium Microalloyed Steel [J]. Acta Metall Sinica, 2004, 17(6): 785-789
    [42] 刘中柱. 氧化物冶金技术的最新进展及其实践[J]. 炼钢,2007,23(3):7-13
    [43] B. L. Bramfitt. Effect of carbide and nitride additions on heterogeneous nucleation behavior of liquid Iron [J]. Metall. Trans., 1970, 1 (7): 1987-1995
    [44] 潘涛,杨志刚,白秉哲,方鸿生. 钢中夹杂物与奥氏体基体因热膨胀系数不同导致的热应力和应变能研究[J]. 金属学报,2003,39(10):1037-1042
    [45] M. Enomoto. Nucleation of phase transformations at intragranular inclusions in steel [J]. Met. Mater. Int., 1998, 4(2): 115-123
    [46] Z. Zhang, R. A. Farrar. Role of Non-metallic Inclusions in Formation of Acicular Ferrite in Low Alloy Weld Metals [J]. Materials Science and Technology,1996,12(3): 237-260
    [47] G. Shigesato, M. Sugiyama, S. Aihara, R. Uemori, Preprint of Fall Meeting of the Iron and Steel Institute of Japan, 14, 2001, 1173
    [48] J.D. Watson, P.G. McDougall. Acta Metall, 1973, 21:961-973
    [49] H. I. Aaronson, G. Spanos, R. A. Masumura, R. G. Vardiman, D. W. Moon, E. S. K. Menon, M. G. Hall. Mater. Sci. Eng. B, 1995,32, 107-123
    [50] K. M. Wu, Z. G. Li, X. L. He, et al. Microstructure Evolution in a Low Carbon Nb-Ti Microalloyed Steel [J]. ISIJ Int., 2006,46(1):161-165
    [51] K. M. Wu. Three-Dimensional Analysis of Acicular Ferrite in a Low-Carbon Steel Containing Titanium [J]. Scr Mater, 2006, 54(4): 569-574.
    [52] N. T. Belaiew: J. Inst. Met., 1923, 29, 379.
    [53] R. F. Mehl, C. S. Barrett and D. W. Smith: Trans. AIME, 1935,105,215.
    [54] Y. C. Liu, H. I. Aaronson, K. R. Kinsman and M. G. Hall: Metall. Trans., 1972, 3, 1318.
    [55] J. D. Watson and P. G. McDougall: Acta Metall., 1973, 21, 961.
    [56] A. D. King and T. Bell: Met. Sci. J., 1974, 8, 253.
    [57] A. D. King and T. Bell: Metall. Trans. A, 1975, 6, 1419.
    [58] J. M. Rigsbee and H. I. Aaronson: Acta Metall., 1979,27, 351
    [59] M. Strangwood and H. K. D. H. Bhadeshia: Advances in Welding Research, ed. by S. A. David, ASM International, Metals Park, OH, 1987, 209.
    [60] Hyung-Ha Jin, Jae-Hyoek Shim, Young Whan Cho and Hu-Chul Lee. Formation of intragranular acicular ferrite grains in a Ti-containing low carbon steel [J]. ISIJ International, Vol. 2003,43, No.7,1111–1113
    [61] G. Miyamoto, T. Shinyoshi, J. Yamaguchi, T. Furuhara, T. Maki and R. Uemori. Crystallography of intragranular ferrite formed on (MnS and V(C, N)) complex precipitate in austenite [J]. Scripta Materialia, 2003,48,371-377
    [62] T. Pan, Z. G. Yang, C. Zhang, B. Z. Bai, H. S. Fang. Kinetics and mechanisms of intragranular ferrite nucleation on non-metallic inclusions in low carbon steels [J]. Materials Science and Engineering A, 2006, 1128–1132
    [63] M. Enomoto, K.M. Wu, Y. Inagawa, T. Murakami and S. Nanba. Three-dimension observation of ferrite plate in low carbon steel weld [J]. ISIJ International, 2005,45,(5), 756-762
    [64] J. R. Yang, H. K. D. H. Bhadeshia. In: Advances in Welding Science and Technology, ed by David S A, Metals Park, Ohio: ASM, 1986, 187
    [65] F. J. Barbaro, P. Krauklis, K. E. Easterling. Mater. Sci. Tech, 1989,5,1057
    [66] “Use of Fine Inclusions In Microstructure Control of Steels”, Final Report of Fine Inclusions Committee, Tokyo: The Iron and Steel Institute of Japan, 1995:1
    [67] 吴开明. 低碳微合金钢中晶内和晶界铁素体的长大动力学[J]. 金属学报,2006,42(6):572-576
    [68] V. F. Zackay and H. I. Aaronson, editors. Decomposition of austenite by diffusional processed [M]. NY, 1962. Interscience
    [69] K. M. Wu, T. Yokomizo, M. Enomoto. Three-dimensional Morphology and Growth Kinetics of Intragranular Ferrite Idiomorphs Formed in Association with Inclusions in an Fe-C-Mn Alloy [J]. ISIJ Int., 2002, 42: 1144
    [70] D. Tabor. Indentation Hardness: Fifty years on a personal view [J]. Philo Mag A,1996,74(5):1207-1212
    [71] 曲敬信,汪泓宏.表面工程手册[M].北京,化学工业出版社.1998,856-857
    [72] 戴莲瑾.力学计量技术[M].北京:中国计量出版社.1996,150

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700