用户名: 密码: 验证码:
胶体作用下Zn/Cd在不同质地土壤中的运移实验及其数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤的重金属污染越来越受到人们的关注,重金属能通过多种途径进入土壤,并不断积累,由于土壤对重金属离子的强吸附性,传统上把土壤中的重金属看作是不动的。但是在环境条件变化时,土壤中富集的重金属离子会释放到土壤溶液中,并随之运移到地下水中,对地下环境造成污染。胶体是土壤中最活跃的组分,它在土壤中是普遍存在的,胶体的存在严重影响着重金属在土壤中的积累与迁移。因此,研究重金属在土壤中的吸附、解吸和迁移转化规律及胶体对其运移的影响,对防治环境污染和修复已污染土壤具有重要的理论意义。定量预测胶体在污染物运移中的作用,可以比较准确地掌控污染的趋势,以便做出更加有效的防治措施。本文以较为常见的锌、镉两种重金属和SiO2胶体以及取自辽宁沈阳地区的砂壤土、粉壤土和壤砂土作为研究对象,首先研究了静态情况下,胶体存在与否,这两种重金属在三种不同质地土壤中的吸附、竞争吸附规律,比较了不同重金属、不同土壤的吸附能力及胶体对不同重金属吸附的影响;然后探讨了胶体存在与否条件下两种重金属在不同质地土壤中的迁移、竞争迁移规律,并应用美国盐土实验室开发的CXTFIT 2.1软件分析了Zn、Cd及胶体在土壤中的穿透曲线(Breakthrough curves, BTCs),获得运移参数,进而运用这些模型参数对重金属及胶体在土壤中的迁移行为进行了预测。得出以下结论:
     1)静态等温吸附实验中,无论胶体存在与否,随着平衡液中Zn、Cd浓度的增加,土壤对Zn、Cd的吸附量逐渐增大;三种质地土壤对Zn、Cd吸附量顺序均为砂壤土>粉壤土>壤砂土;Zn2+、Cd2+共存时,土壤对这两种离子的吸附量比单一离子存在的情况下明显下降;胶体的存在抑制了土壤对Zn的吸附,促进了土壤对Cd的吸附;就本实验来讲,Freundlich方程拟合效果优于Langmuir方程。
     2)与Br-的BTCs相比,重金属的BTCs左半部分陡峭而右半部分的变化相对平缓且有“拖尾”现象。这表明存在一个持续缓慢的解吸过程,同时也说明离子在迁移过程中存在着速率限制的吸附解吸的化学非平衡现象。Zn、Cd在三种不同质地土壤中运移时,在壤砂土中运移得最快,砂壤土中运移得最慢。这是因为砂壤土pH、有机质含量以及粘粒含量较高,使得Zn、Cd迁移受阻,出流量减少。出流液pH的变化在开始都是下降的(<1 PV(孔隙体积)时),之后上升最后趋于平缓。相同孔隙体积时,pH均表现为砂壤土>粉壤土>壤砂土。
     3)胶体的存在明显促进了Zn的迁移,这是因为胶体比土壤表面对Zn显示出更高的亲和性,从而减少了土壤对Zn的吸附;而Cd的迁移受到一定程度的抑制,穿透曲线拐点出现时间延后,相对浓度峰值变小。这是因为Cd2+影响了胶体的稳定性,部分胶体及其吸附的Cd从流动相中分离出来聚沉于土壤表面,从而使得Cd出流量减少。在三种土壤中,加胶体时Zn出流液pH高于不加胶体的;加胶体时Cd出流液的pH低于不加胶体的。
     4)在三种不同质地土壤的淋滤实验中,对比单一重金属离子的出流特点发现,不加胶体时Cd的相对浓度峰值高于Zn的;加胶体时Zn的相对浓度峰值高于Cd的。这主要是由胶体吸附Zn、Cd的能力不同以及Zn、Cd对胶体的稳定性作用不同引起的。在竞争实验中,无论胶体存在与否,Zn、Cd开始出流的时间比非竞争时的提前,峰值也要高。这是因为二者共存时相互竞争结合点位使吸附受到彼此的牵制。其中竞争时Cd的出流量较Zn少,Cd的竞争吸附能力大于Zn,这与其本身的性质有关。不加胶体时,单一Cd出流液pH高于单一Zn的;加胶体时,单一Zn出流液pH'高于单一Cd的;无论胶体存在与否,竞争迁移出流液pH都最低。
     5)不同重金属对胶体运移的影响有较大差异,Zn单独存在的溶液中胶体运移最快,表现为出流峰值最高,其次是单一Cd溶液,Zn、Cd共存条件下出流液中胶体峰值最低。这主要是由重金属离子类型的不同引起的,不同阳离子由于聚沉能力的差异对胶体的稳定性影响不同。土壤质地不同对胶体的出流量的影响结果是,壤砂土出流液中胶体峰值最高,其次是粉壤,砂壤土出流液中峰值最低,这主要是受土壤粘粒含量不同的影响。
     6)在将静态吸附的数据用Langmuir、Freundlich方程求得阻滞因子Rd (retardation factor)用于拟合Zn、Cd的过程中,发现除壤砂土不加胶体时Zn的BTC需用Langmuir方法求得的'Rd值拟合外,其余情况均用Freundlich方法拟合得更好。这可能是因为:①各个吸附位点的能量不完全相同;②有可能存在吸附质在表面的反应。而Freundlich考虑了不均匀表面的情况,尤其是在适中浓度时,能够很好的符合。
     7)采用非平衡两区模型(Two-region Model, TRM)拟合Br-的BTCs得到的可动水体所占的比例接近于1,表明研究重金属在土柱中迁移时可忽略物理非平衡的影响。由非平衡两点模型(Two-site Model, TSM)对Zn、Cd及胶体的迁移行为进行模拟可以看出,拟合BTCs的r2>0.801,MSE<0.0098,这说明应用TSM能较好地描述Zn、Cd及胶体的迁移行为。TSM拟合Zn、Cd及胶体得出的ω值均远小于100,α值变化趋势相同,但f值则无明显的规律性。本文还应用TSM预测了砂壤土不同深度处Zn、Cd及胶体浓度的动态变化,随着深度由5cm增加到15cm,它们的相对浓度对孔隙体积的响应越来越滞后。
Heavy metal ions are the most toxic inorganic pollutants which occur in soils. The heavy metals which are introduced into the soils either accumulate in the surface layer or transport into the groundwater. Colloid is the most active component of soils which is ubiquitous in soils, and it has a critical impact on the accumulation and migration of heavy metals in soils. Therefore the study of transport processes is of utmost importance for the evaluation of environmental risks. First of all, the present study evaluates the adsorption and competitive adsorption of two heavy metals (Zn, Cd) in three types of soils in Shenyang, Liaoning Province by means of sorption isotherms, evaluates the capacity of these soils to sorb these metals, establishs the selectivity sequences of the metals (Zn, Cd) in these soils, and investigates the effect of colloid on the adsorption of these metals by soils. And then, we are to evaluate the transport and competitive transport of the metals (Zn, Cd) in these soils based on miscible displacement experiments when colloid is present or absent and CXTFIT2.1 package is used to determine model parameters and predict the outflow dynamics. The conclusions have been drawn as followed:
     The adsorption amounts of zinc and cadmium in soils are increased with its increasing equilibrium concentration; the sequence of their adsorption amounts by three soils is sandy loam> silty loam> loamy sand; the adsorption amounts of two ions in the competitive experiment are less than that in single system; and the adsorption amount of zinc is decreased because of the colloid, on the contrary, the adsorption amount of cadmium is increased. In this paper, the Freundlich equation is more accurately than the Langmuir equqtion to describe adsorption behavior of two heavy metals.
     The BTCs (Breakthrough curves) of heavy metals from the transport experiment are exceedingly asymmetric. That indicates that there is a continuous slowly desorption process, and shows the existence of chemical non-equilibrium phenomena in the migration of ions. The soil textures can obviously influence the shape and peak values of the BTCs of heavy metals in soil column because of the difference of soil pH, organic matter content and clay content. The change of the leachate pH is degressive, then leveling off. When the pore volume is same, the sequence of pH is sandy loam> silty loam> loamy sand.
     In this paper, the colloid can advance the transport of zinc and restrain the transport of cadmium. Because the colloid has higher affinity than the soil for zinc, and cadmium affects the stability of colloid. The pH of zinc adding colloid is higher than that without colloid in three soils, whereas that of cadmium is the opposite.
     In the single system, when there is no colloid, the peak value of cadmium is higher than that of zinc, the pH of cadmium is higher than that of zinc; when colloid is present, the peak value of cadmium is lower than that of zinc, the pH of zinc is higher than that of cadmium. In the competitive experiment, the resident concentration of heavy metals is higher than that in the single system regardless of the presence or absence of colloid, the competitive capacity of cadmium is higher than that of zinc, and the pH is the lowest.
     The BTCs of colloid from the transport experiment are affected by the different types of heavy metals. The sequence of the migration velocity of colloid of different solutions is the single Zn solution> the single Cd solution> their competitive solution. And the sequence of its migration velocity in three soils is loamy sand> silty loam> sandy loam.
     When we use the retardation factor to fit the BTCs, we find the retardation factors from Freundlich are suitable in most cases. Because the energy of each adsorption site is not exactly the same, and there may be the reaction of adsorbate on the surface. The Freundlich considers the surface irregularity, and it can be a very good fit especially in moderate concentrations.
     The proportions of the movable water are close to 1 which are gotten through fitting the BTCs of Br- by TRM (Two-region Model). It suggests that we can neglect the effect of the physical non-equilibrium in the migration of heavy metals. The BTCs of heavy metals and colliod in soil column can all be fitted by model TSM (Two-site Model) with high goodness of fit (r2>0.801, MSE<0.0098). Through these model parameters acquired by the model TSM, we can predict the BTCs of heavy metals and colliod at different depth of soil columns. As the depth of soil column increased from 5cm to 15cm, the hysterestic effect of response of relative concentration of heavy metals and colliod to the pore volumes will be more and more obvious.
引文
[1]Li Q, Jiang Y, Liang W J. Influence of Heavy Metals on Soil Nematode Communities in the Vicinity of a Metallurgical Factory [J]. Journal of Environmental Sciences,2006,18(2):323-328
    [2]Jiang Y, Zhang Y G,Chen L J. Status of Fertilizer Input and It's Influence on the Qualities of Farm Produce and Environment in Shenyang, China[C]. Ji L Z, et al. Fertilizer, Food Security and Environmental Protection-Fertilizer in the Third Millennium,12th World Fertilizer Congress. Shenyang: Liaoning Science and Technology Publishing House,2003:515-522
    [3]姜勇,梁文举,张玉革.污灌对土壤重金属环境容量及水稻生长的影响研究[J].中国生态农业学报,2004,12(3):124-127
    [4]王凯荣.25年引灌含Cd污水对酸性农田土壤的污染及其危害评价[J].农业环境科学学报,2007,26(2):658-661
    [5]Jiang Y, Liang W J, Wen D Z, et al. Spatial Heterogeneity of DTPA-extractable Zinc in Cultivated Soils Induced by City Pollution and Land Use[J]. Science in China Seric,2005,48(Supp Ⅰ):82-91
    [6]姜勇,梁文举,闻大中.沈阳郊区农业土壤中微量元素[M].北京:中国农业科技出版社,2003
    [7]黄勇,郭庆荣,任海.城市土壤重金属污染研究综述[J].热带地理,2005,25(1):14-18
    [8]王新,陈涛,梁仁禄.污泥土地利用对农作物及土壤的影响研究[J].应用生态学报,2002,13(2):163-166
    [9]王祖伟,张辉.天津污灌区土壤重金属污染环境质量与环境效应[J].生态环境,2005,14(2):211-213
    [10]周启星,程云,张倩茹.复合污染生态毒理效应的定量关系分析[J].中国科学·C辑,2003,33(6):566-573
    [11]Gomes P C, Fontes M P F, da Silva A G, Mendonca E de S, Netto R A. Selectivity sequence and competitive adsorption of heavy metals by Brazilian soils. Soil Sci. Soc. Am. J.,2001,65:1115-1121
    [12]Covelo E F, Andrade M L, Vega F A.2004a. Simultaneous adsorption of Cd, Cr, Cu, Ni, Pb and Zn by different soils[J]. Food Agric. Environ.,2004,2:244-250
    [13]武玫玲.土壤矿质胶体的可变电荷表面对重金属离子的专性吸附[J].土壤通报,1985,2:89-94
    [14]郭清海,王焰新,郭华明.地下水系统中胶体的形成机理及其对污染物迁移的影响[J].地质科技情报,2001,20(3):69-74
    [15]Grolimund D, Borkovec M, Barmettler K. Colloid-facilitated transport of strongly sorbing contaminants in natural porous media:A laboratory column study. Environ. Sci. Technol.,1996,30: 3118-3123
    [16]林青,徐绍辉.土壤中重金属Cu、Cd、Zn、Pb吸附及迁移的实验研究[D].青岛大学,2008
    [17]杨崇洁.几种重金属元素进入土壤后的迁移转化规律及吸附机理的研究[J].环境科学,1989,10(3):2-8
    [18]McBride M B. Environmental Chemistry of Soils [M]. New York:Oxford University,1994
    [19]徐明岗.土壤离子吸附1.离子吸附的类型及研究方法[J].土壤肥料,1997,5:3-7
    [20]邹献中,徐建民,赵安珍,季国亮.可变电荷土壤中铜离子的解吸.土壤学报,2004,41(1):68-73
    [21]Bradl H B. Adsorption of heavy metal ions on soils and soils constituents [J]. J. Colloid Interface Sci. 2004,277:1-18
    [22]Naidu R, Bolan NS, Kookana R S, et al. Ionic-strength and pH effects on the sorption of cadmium and the surface charge of soils[J]. Euro. J. Soil Sci.1994,45:419-429
    [23]Gerriste R G, Van Driel W. The relationship between adsorption of trace metals, organic matter and pHin temperate soils [J]. J. Environ. Qual.1984,13:197-204
    [24]Elliott HA, Liberati M R, Huang C P. Effects of iron oxide removal on heavy metal sorption by acid subsoils [J]. Water, Air Soil Pollut.1985,27:379-389
    [25]Elliott H A. Adsorption behaviour of cadmium in response to soil surface charge [J]. Soil Sci.1983, 136:317-321
    [26]Bolton K A, Evans L J. Cadmium adsorption capacity of selected Ontario soils [J]. Can. J. Soil Sci. 1996,76:183-189
    [27]Temminghoff E J M, Vander Zee S E A T M, DeHaan F A M. Copper mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter[J]. Environ. Sci.Technol. 1997,31:1109-1115
    [28]许第发,钟天祥,徐冬梅.酸沉降对土壤地球化学过程的影响[J].地质地球化学,2002,30(4):86-92
    [29]杨亚提,张一平,白锦鳞.土壤胡敏酸与铜离子络合反应及吸附过程热力学特征研究[J].土壤学报,1997,34(4):375-381
    [30]廖敏,黄昌勇,谢正苗.pH对镉在土水系统中的迁移和形态的影响[J].环境科学学报,1999,19(1):81-86
    [31]Bruemmer G W, Gerth J, Herms U. Heavy metal species, mobility and availability in soils. Z Pflanzenernaehr Bodenkd,1986,149:382-398
    [32]Sauve S, McBride M B, Hendershot W H. Soil solution speciation of lead(II):Effects of organic matter and pH. Soil Sci. Soc. Am. J.,1998,62:618-621
    [33]Sauve S, McBride M B, Norvell W A, Hendershot W H. Copper solubility and speciation of in situ contaminated soils:Effect of copper level, pH and organic matter. Water Air and Soil Pollution,1997,100: 133-149
    [34]Markiewicz-Patkowska J, Hursthouse A, Przybyla-Kij H. The interaction of heavy metals with urban soils:sorption behaviour of Cd, Cu, Cr, Pb and Zn with a typical mixed brownfield deposit. Environment International,2005,31:513-521
    [35]Chip Appel, Lena Ma. Concentration, pH, and Surface Charge Effects on Cadmium and Lead Sorption in Three Tropical Soils. J. Environ. Qual.,2002,31:581-589
    [36]Ephraim J H. Heterogeneity as a concept in the interpretation of metal ion binding by humic substances. The binding of zinc by an aquatic fulvic acid [J]. Anal. Chim. Acta.1992,267:39-45
    [37]Backstr mM, DarioM, Karlsson S, et al. Effects of fulvic acid on the adsorption of mercury and cadmium on goethite [J]. Sci. Total Environ.2003,304:257-268
    [38]Ephraim J H, Xu H. The binding of cadmium by an aquatic fulvic acid:a comparison of ultrafiltrationwith ion-exchange distribution and ion-selective electrode techniques [J]. Sci. Total Environ. 1989,81/82:625-634
    [39]Kinniburgh D G, Milne C J, Benndutti MF, et al. Metal ion binding by humic acid:application of the NICA-Donnan model [J]. Environ. Sci. Technol.1996,30 (5):1687-1698
    [40]Swift R S, Rate A W, McLaren R G Interactions of copper and cadmium with soil humic substances [M]. Abstract, International Society of Soil Science Working Group MO, First Workshop, Edmonton, Alberta, Canada,1992
    [41]Yuan G, Lvkulich L M. Sorption behavior of copper, zinc, and cadmium in response to simulated changes in soil properties [J]. Commun. Soil Sci. Plant Anal.1997,28:571-587
    [42]Neal RH, Sposito G. Effects of soluble organic matter and sewage sludge amendments on cadmium sorption by soils at low cadmium concentrations [J]. Soil Sci.1986,142:164-172
    [43]焦文涛,蒋新.土壤有机质对镉在土壤中吸附-解吸行为的影响[J].环境化学,2005,24(5):545-549
    [44]白庆中,宋燕光,王晖.有机物对重金属在粘土中吸附行为的影响[J].环境科学,2000,5:64-67
    [45]陈同斌,黄泽春,陈煌.废弃物中水溶性有机质对土壤吸附Cd的影响及其机制[J].环境科学学报,2002,22(2):150-155
    [46]R.E.格里姆.粘土矿物学[M].北京:地质出版社.1960,2,第一版
    [47]王燕萍.Cu和Zn在表层沉积物中粘土及粘土矿物上的吸附[D].吉林大学,2007
    [48]宋和付,陈安国,夏畅斌.膨润土吸附去除Zn2+、Cd2+的研究[J].材料保护,2001,34(9):40-42
    [49]刘珺,秦善.层状硅酸盐矿物对重金属污染的防治[J].岩石矿物学杂志,2001,12(4):461-466
    [50]Stadler M, Schindler P W, Modeling of H+and Cu2+adsorption on calcium-montmorillonite[J]. Clays and Clay Minerals,1993,41:288-296
    [51]Heller-Kallai L, Mosser C. Migration of Cu ions in Cu montmorillonite heated with and without alkali halides[J]. Clays and Clay Minerals,1995,43:738-743
    [52]Bahranowski K, Dula R, Labanowska M et al. ESR study of Cu centers supported on Al-, Ti-, and Zr-pillared montmorillonite clays[J]. Applied Spectroscopy,1996,50:1439-1445
    [53]Madejova J, bujdak J, Gates W P et al. Preparation and infrared spectroscopic characterization of reduced charge montmorillonite with various Li contents[J]. Clay Minerals,1996,31:233-241
    [54]Mosser C, Michot L J, Villieras F et al. Migration of cations in copper exchanged montmorillonite and laponite upon heating[J]. Clays and Clay Minerals,1997,45:789-802
    [55]吴平霄.黏土矿物材料与环境修复[M].化学工业出版社,2004
    [56]王维君,邵宗臣,何群.红壤粘粒对Co、Cu、Pb和Zn吸附亲和力的研究[J].土壤学报,1995,32(2):167-177
    [57]Chip Apple, Lena M A. Concentration, pH, and surface charge effects on Cadmium and Lead sorption in three tropical soils[J]. J Environ Qual,2002,31(4):581-589
    [58]Basta N T, Tabatabai M A. Path-analysis of heavy metal adsorption by soil[J]. Agron J,1993,85(5): 1054-1057
    [59]Appel C, Ma L. Concentration, pH, and surface charge effects on cadmium and lead soprtion in three tropical soils[J]. Journal of Enviornmental Quality,2002,31(2):581-589
    [60]Bittell J E, Miller R F. Lead, cadmium and calcium selectivity coefficients on montmorillonite, illite, and kaolinite [J]. Journal of Environmental Quality,1974,3:250-253
    [61]Elrashidi M A, O'Connor G A. Influence of solution composition on sorption of zinc by soils[J]. Soil Science Society of America Journal,1982,46:1153-1158
    [62]邹献中,徐建民,赵安珍.离子强度和pH对可变电荷土壤与铜离子相互作用的影响[J].土壤学报,2003,40(6):845-851
    [63]Shuman LM. Effect of ionic strength and anions on zinc adsorption by two soils. Soil Sci. Soc. Am. J.,1986,50:1438-1442
    [64]Boekhold AE, Temminghoff EJM, Van der Zee SEATM. Influence of electrolyte composition and pH on cadmium sorption by an acid soil. J. Soil Sci.,1993,44:85-96
    [65]王亚平,潘小菲,许春雪.土壤对镉离子的竞争吸附研究-以北京城近郊为例[J].岩矿测试, 2007,26(4):251-256
    [66]余国营,吴燕玉.土壤环境中重金属元素的相互作用及其对吸持特性的影响[J].环境化学,1997,16(1):30-36
    [67]朱波,汪涛,王艳强.锌、镉在紫色土中的竞争吸附[J].中国环境科学,2006,26, (Suppl.):73-77
    [68]Echeverria J C, Morera M T, Mazkiaran C, et al. Competitive sorption of heavy metal by soils, is otherms and fractional factorial experiments[J]. Envir onmental Pollution,1998,101:275-284
    [69]Naidu R, Bolan N S, Kookana R S, Ionic sertngth and pH effects on the surface charge and soprtion of cadmium by soil. European Journal of Soil Science,1994,45:419-429
    [70]Mustafa G, Sing B, Kookana R S. Cadmium adsoprtion and desoprtion behaviour on geothite at low equilibrium concentrations:effect of pH and index cations. ChemosPheer,2004,57:1325-1333
    [71]邱少敏,薛家华.竞争性阳离子对红壤中镉吸附性动力学影响.环境化学,1999,(2):1-6
    [72]戴树桂.土壤多介质环境污染研究进展[J].土壤与环境,2001,2
    [73]赵玉安,王玉.娄土不同层次钾运移研究.西北农林科技大学学报,2003,11:37-39
    [74]Guisquiani P L, Concezzi L, Businelli M and Maochioni A. Fate of pig sludges liquid fraction in calcareous soil:Agricultural environmental implications. J. Environ. Qual.,1998,27,364-371
    [75]李香真.污泥中水溶性Cu,Zn的形态及水溶性有机物与Cu~(2+)的复合特性[J].中国农业大学学报,1999,3
    [761王亚平,王岚,许春雪.土壤中Cd、Pb、Hg离子的地球化学行为模拟实验[J].地质通报,2009,28(5):659-666
    [77]Lindsey G, Cindy M C, Fiona A, et al. Movement of water and heavy metals (Zn, Cu, Pb and Ni) though sand and sandy loam amended with biosolid under steady-state hydrological conditions. Bioresour. Techn.,2001,78:171-179
    [78]刘兆昌,聂永丰,张兰生.重金属污染物在下包气带饱水条件下迁移转化的研究[J].环境科学学报,1990,10(2):160-172
    [79]冯绍元,齐志明,王亚平.排水条件下饱和土壤中镉运移实验及其数值模拟[J].水利学报,2004,10:89-94
    [80]段永惠.污水灌区汞、镉在土壤中的纵向迁移及影响因素研究[J].环境保护,2004.12:35-37
    [81]王芳,蒋新,王代长.模拟酸雨作用下红壤中Cu2+的释放动力学[J].环境化学,2003,22(4):340-344
    [82]Kookana R S, Naidu R. Effect of soil solution composition on cadmium transport through variable charge soils. Geoderma,1998,84:235-248
    [83]Brusseau M L, Rao P S C. Modeling solute transport in structured soils:A review. Geoderma,1990, 46(2):169-192
    [84]徐绍辉,张佳宝.土壤中优势流的几个基本问题研究[J].土壤侵蚀与水土保持学报,1999,5(4):85-90
    [85]章明奎.污染土壤中重金属的优势流迁移[J].环境科学学报,2005,25(2):192-197
    [86]Flury M et al. Pesticide transport through unsaturated field soils:Preferential flow (a research report). 1994
    [87]Richards B K, Steenhuis T S, Deverly J H, et al. Metal mobility at an old heavily loaded sludge application site. J. Environ. Pollution,1998,99(3):365-377
    [88]冯杰,张佳宝,郝振纯.水及溶质在有大孔隙土壤中运移的研究(Ⅰ):田间实验[J].水文地质工程地质,2004,3:20-24
    [89]Gschwend P M, Reynolds M D. Monodisperse ferrous phosphate colloids in an anoxic groundwater plume. Journal of Contaminant Hydrology,1987,1:309-327
    [90]Backhus D A, Ryan J N, Groher D M, MacFarlane J K, Gschwend P M. Sampling colloids and colloid-associated contaminants in ground water. Ground Water,1993,31:466-479
    [91]白瑛.胶体吸附与土壤重金属容量[J].农业环境科学学报,1985
    [92]黄巧云,吴剑媚,付永清.根瘤菌与土壤胶体、氧化铁对重金属的吸附:Ⅰ.铜的吸附[J].华中农业大学学报,1998,17(1):29-34
    [93]张平,杨亚提.离子强度对恒电荷士壤胶体吸附和的影响[J].环境化学,2001,20(6):566-571
    [94]秦学样,张振生.亚铁氰化铜一硅胶对钴、锌、铯和钵吸附性能的研究[J].海洋环境科学,1993,12(1):10-13
    [95]杨亚提,张一平.陪伴离子对土壤胶体吸附Cu2+和Pb2+的影响[J].土壤学报,2003,40(2):218-224
    [96]翟莹雪,魏世强.土壤富里酸对铅的吸附作用与影响因素的研究.第三届全国农业环境科学学术研讨会论文集,2009
    [97]Boy S B, Dzombak D A. Colloid Facilitated Transport of Hydrophobic Compounds in Sandy Soils[M]. N ew Yo rk:American Society of Civil Engineers,1995
    [98]Karathanasis AD. Subsurface migration of copper and zinc mediated by soil colloids[J]. Soil Sci. Soc. Am. J.,1999,63:830-8381
    [99]McGechan M B, Lewis D R. Transport of particulate and colloid-sorbed contaminants through soil: General principles[J]. Biosystems Engineering,2002,83:255-2731
    [100]肖广全,温华.魏世强三峡水库消落区土壤胶体对Cd 在土壤中迁移的影响[J].水土保持学报,2007,21(4):16-20
    [101]Grolimund D, Borkovec M, Barmettler K, Sticher H. Colloid-facilitated transport of strongly sorbing contaminants in natural porous media:A laboratory column study. Environmental Science and Technology,1996,30 (10):3118-3123
    [102]Faure M H, Sardin M, Vitorge P. Transport of clay particles and radioelements in a salinity gradient: Experiments and simulations. Journal of Contaminant Hydrology,1996,21:255-267
    [103]Roy S B, Dzombak D A. Chemical factors influencing colloid-facilitated transport of contaminants in porous media. Environmental Science and Technology,1997,31(3):658-664
    [104]Kaplan D I, Bertsch P M, Adriano D C. Facilitated transport of contaminant metals through an acidified aquifer [J]. Ground Water,1995,33:708-717
    [105]郭清海,王焰新,郭华明.地下水系统中胶体的形成机理及其对污染物迁移的影响[J].地质科技情报,2001,20(3):69-74
    [106]董文明,杜金州,陶祖贻.核素迁移与胶体[J].原子能科学技术,2000,34(1):92-96
    [107]郭亮天,史英霞.锕系元素的胶体迁移行为[J].辐射防护通讯,2000,20(1):14-21
    [108]Dmckay L, Sanford W E, Strong J M. Fieldscale migration of colloidal tracers in a fractured shale saprolite[J]. Ground Water,2000,38 (1):139-147
    [109]马东豪,王全九.土壤溶质迁移的两区模型与两流区模型对比分析[J].水利学报,2004,6:92-97
    [110]冯绍元,齐志明,王亚平.排水条件下饱和十壤中镉运移实验及其数值模拟[J].水利学报,2004,10:89-94
    [111]Daniel C W Tsang, Weihua Zhang, Irene MCLo. Modeling Cadmium transport in soils using sequential extraction, batch, and miscible displacement experiments. Soil Physics,2007,71(3):674-681
    [112]Toride N, Leji F J, van Genuchten, M Th. The CXTFIT Code for Estimating Transport Parameters from Laboratory or Field Tracer Experiments. Version 2.1. U.S. Salinity Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Riverside, CA. Research Report No.137, April 1999.
    [113]Padilla I Y,Yeh T C J,Conklin M H. The effect of water contenton solute transport in unsaturated porous media.Water Resour. Res.,1999,35 (11):3303-3313
    [114]Bond W J, Wierenga P J. Immobile water during solute transport in unsaturated sand columns. WaterResour.Res.,1990,26 (10):2475-2481
    [115]Li L, Barry D A, Culligan-Hensley P J, et al. Mass transfer in soils with local stratification of hydraulic conductivity. WaterResour.Res.,1994,30 (11):2891-2900
    [116]Kookana R S, Naidu R, Tiller K G. Sorption non-equilibrium during cadmium transport through soils. Aust[J]. Soil Res.1994,32:635-651
    [117]Gerritse R G. Dispersion of cadmium in columns of saturated sandy soils[J]. Environ. Qual.,1996, 25:1344-1349
    [118]高光耀,冯绍元,黄冠华.饱和非均质土壤中溶质大尺度运移的两区模型模拟[J].土壤学报,2008,45(3):398-404
    [119]Corapcioglu M Y, Jiang S. Colloid-facilitated groundwater contaminant transport. Water Resources Research,1993,29(7):2215-2226
    [120]Corapcioglu M Y, Kim S. Modeling facilitated contaminant transport by mobile bacteria. Water Resources Research,1995,31 (11):2639-2647
    [121]Roy S B, Dzombak D A. Sorption non-equilibrium effects on colloid-enhanced transport of hydrophobic organic compounds in porous media. Journal of Contaminant Hydrology,1998,30:179-200
    [122]李学垣.土壤化学[M].北京:高等教育出版社,2001
    [123]James R O, Healy T W. Adsorption of hydrolyzable metals at the oxide-water interface. Ⅲ. A thermodynamic model of adsorption[J]. Colloid Interface Sci.,1972,40:65-80
    [124]Ephraim J H. Heterogeneity as a concept in the interpretation of metal ion binding by humic substances. The binding of zinc by an aquatic fulvic acid [J]. Anal. Chim. Acta.1992,267:39-45
    [125]Backstrm M, Dario M, Karlsson S, et al. Effects of fulvic acid on the adsorption of mercury and cadmium on goethite [J]. Sci. Total Environ.2003,304:257-268
    [126]Ephraim J H, Xu H. The binding of cadmium by an aquatic fulvic acid:a comparison of ultrafiltration with ion-exchange distribution and ion-selective electrode techniques [J]. Sci. Total Environ. 1989,81/82:625-634
    [127]Kinniburgh D G, Milne C J, Benndutti MF, et al. Metal ion binding by humic acid:application of the NICA-Donnan model [J].Environ. Sci. Technol.1996,30 (5):1687-1698
    [128]Amellal N, Portal J M, Berthelin J. Effect of soil structure on the bioavailability of polycyclic aromatic hydrocarbons within aggregates of acontaminated soil[J]. Applied Geochemistry,2001,16: 1611-1619
    [129]Jungk A O. Dynamics of nutrient movement at the soil-root interface[A]. Plant Roots-The Hidden Half [C]. Paris:Marcel Dekker Inc.,1996:529-557
    [130]王辉.降雨条件下黄土坡地养分迁移机理及模拟模型[D].西北农林科技大学,2006
    [131]沈钟,赵振国,王果庭.胶体与表面化学(第三版)[M].北京:化学工业出版社,2004
    [132]朱波,汪涛,王艳强.锌、镉在紫色十中的竞争吸附[J].中国环境科学,2006,26, (Suppl.):73-77
    [133]McBride M B. Environmental Chemistry of Soils. New York:Oxford Univ. Press,1994
    [134]Flogeac K, Guillon E, Aplincourt M. Competitive sorption of metal ions onto a north-eastern France soil:Isotherms and XAFS studies. Geoderma,2007,139:180-189
    [135]王玉军等.土壤中铜、铅离子的竞争吸附动力学[J].中国环境科学,2006,26(5):555-559
    [136]杨金燕,杨肖娥,何振立.土壤中铅的吸附-解吸行为研究[J].生态环境,2005,14(1):102-107
    [137]侯万国,于耀芹,张春光.pH和电解质对氢氧化铝镁溶胶稳定性的影响[J].应用化学,1996,13(2):33-36
    [138]陈宗淇,戴闽光.胶体化学[M].北京:高等教育出版社,1984
    [139]董耀雄.离子交换法制备酸性硅溶胶的研究[J].化工进展,1989,(3):45-49
    [140]林青,徐绍辉.土壤中重金属离子竞争吸附的研究进展[J].土壤,2008,40(5):706-711
    [141]Piccolo A. Distribution of heavy metals in profiles of a hydromorphic soil system resenius. Environmental Bulletin,1992,1(1):16-21
    [142]Rothbaum, H. P. et al. Cadmium accumulation in soil from long-continued application of super phosphate. J.Soil Sci.1986,37:99-107
    [143]王俊有.太原市地下水水质现状及污染防治措施.环境科学动态,2002,(4):19-21
    [144]Leij F J, Toride N. Analytical solutions for solute t ransport in finite soil columns with arbitrary initial distributions[J]. Soil Sci. Soc. Am.,1998,62:855-864
    [145]邓建才.典型地区饱和土壤中硝态氮垂直运移及拟合[J].环境科学,2005,2(26):200-205
    [146]Brusseau M L, Hu Q, Srivastava R. Using flow interruption to identify factors causing nonideal contaminant transport. J. Contam. Hydrol.,1997,24:205-219
    [147]刘和平等.铅和镉在粘土衬层中渗透、迁移、转化的研究[J].环境科学研究,1997,4(10):56-60
    [148]张增强.重金属镉在土壤中吸持/释放及运移特征的研究[D].西北农业大学,1998
    [149]McBride M B. Toxic metal accumulation from agricultural use of sludge:are USEPA regulations protective[J]. Environ. Qual.,1995,24:5-18
    [150]徐明岗,张青,李菊梅.不同pH下黄棕壤镉的吸附-解吸特征[J].土壤肥料,2004,5:3-5
    [151]刘庆玲,徐绍辉.离子强度和pH对高岭石胶体运移影响的实验研究[J].土壤学报,2007,44(3):425-429
    [152]Amrhein C, Mosher P A, Strong J E. Colloid-assisted transport of trace metals in road side soils receiving deicing salts. Soil Sci. Soc.Am.J.,1993,57:1212-1217
    [153]deJonge H, Jacobsen O H, deJonge L W, et al. Particle-facilitated transport of rochloraz in undisturbed sandy loam soil columns. Soil Sci.Soc.Am.J.,1998,27:1495-1503
    [154]Ryan J N, Illangasekare T H, Litaor M I, et al. Particle and plutoniumo bilization in macroporous soils during rainfall simulations. Environ. Sci. Technol.,1998,32:476-482
    [155]张丛志,张佳宝,徐绍辉.反应性溶质在不同质地饱和土柱中运移的数值模拟[J].水科学进展,2008,19(4):552-558
    [156]Toride N, Leji F J, van Genuchten, M Th. The CXTFIT Code for Estimating Transport Parameters from Laboratory or Field Tracer Experiments. Version 2.1. U.S. Salinity Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Riverside, CA. Research Report No.137, April 1999
    [157]Inoue M, Simunek J, Shiozawa S, et al. Simultaneous estimation of soil hydraulic and solute transport parameters from transient infiltration infiltration experiment. Adv. Water Resour.,2000,23: 677-688
    [158]Das B S, Kluitenberg G J. Moment analysis to estimate degradation rate constants from leaching experiments. Soil Sci. Soc. Am. J.,1996,60:1724-1731
    [159]van Genuchten, M.Th., Wagenet R J. Two-site/two-region models for pesticide transport and degration:Theoretical development and analytical solutions. Soil Sci. Soc. Am. J.,1989,51:1303-1310
    [160]Liping Pang, Mark Goltz, Murray Close. Application of the method of temporal moments to interpret solute transport with sorption and degradation. Journal of Contaminant Hydrology 2003,60: 123-134
    [161]Liping Pang, Murray Close, Daniela Schneider, Greg Stanton. Effect of pore-water velocity on chemical nonequilibrium transport of Cd, Zn, and Pb in alluvial gravel columns. Journal of Contaminant Hydrology,2002,57:241-258
    [162]Anderson P R, Christensen T H. Distribution coefficients of Cd, Co, Ni and Zn in soils. Soil Sci. 1988,39:15-22
    [163]雷志栋,杨诗秀,谢森传.土壤水动力学.北京:清华大学出版社,1988
    [164]Van Genuchten M Th. Non-equilibrium transport parameters from miscible displacement experiments.U.S. Dep. Agric., Res. Rep.1981, No.119,88 pp
    [165]Langmuir I. The constitution and fundamental properties of solids and liquids [J]. Am Chem Soc, 1916,38(11):2267
    [166]Bellot J C, Condoret J S. Modelling of liquid chromatography equilibria [J]. Process Biochem,1993, 28(2):365-371
    [167]Zhang Hua, Selim H M. Modeling the Transport and Retention of Arsenic (V) in Soils. Soil Sci. Soc. Am. J.,2006,70:1677-1687
    [168]J. C. Montoya, J.L. Costa, R. Liedl. Effects of soil type and tillage practice on atrazine transport through intact soil cores[J]. Geoderma,2006, (137) 161-173
    [169]Song L, Johnson P R, Elimelech M. Kinetics of colloid deposition onto heterogeneously charged surfaces in porous media. Environmental Science and Technology,1994,28 (6):1164-1171
    [170]Johnson W P, Blue K A, Logn B E, Arnold R G. Modeling bacterial detachment during transport through porous media as a residence-time-dependent process. Water Resources Research,1995,31 (11): 2649-2658
    [171]Grolimund D, Borkovec M. Release and transport of colloidal particles in natural porous media:1. Modeling. Water Resources Research,2001,37 (3):559-570
    [172]Grolimund D, Borkovec M. Release and transport of colloidal particles in natural porous media:2. Experimental results and effects of ligands. Water Resources Research,2001,37 (3):571-582
    [173]Sun N, Sun N Z, Elimelech M, Ryan J N. Sensitivity analysis and parameter identifiability for colloid transport in geochemically heterogeneous porous media. Water Resources Research,2001,37 (2): 209-222

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700