用户名: 密码: 验证码:
多倍体鲫鲂的形成及其生物学特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
远缘杂交能有效的增加杂交后代的遗传变异,通过这种方法还能获得不同倍性的后代,包括杂交四倍体、杂交三倍体和雌核发育二倍体后代。本研究中,我们利用红鲫(♀)与团头鲂((?))进行亚科间杂交首次获得了大量不同倍性的后代,并对不同倍性鱼的形成机制和生物学特征进行了系统的研究。具体研究内容如下:
     1.利用不同亚科且染色体数目也不相同的红鲫(2n=100)(♀)与团头鲂(2n=48)((?))杂交,成功的获得不育三倍体鲫鲂(3n=124)和两性可育四倍体鲫鲂(4n=148)。三倍体鲫鲂来源于受精卵第二极体的排除被抑制,而四倍体鲫鲂则来源于受精卵的第一次有丝分裂被抑制。四倍体鲫鲂两年性成熟,性成熟后的雌性四倍体鲫鲂能产生减数(2n)和不减数(4n)的卵子,并与雄性团头鲂回交获得了五倍体鲫鲂(5n=172)。四倍体鲫鲂产生不减数配子的现象与减数分裂前核内复制或者核内有丝分裂或者生殖细胞融合有关。本研究通过染色体数目、核型、平均DNA含量以及红细胞核体积大小确定了这些多倍体鲫鲂的倍性水平和染色体组成。另外,还通过扩增出相同和不同的DNA片段并且测序来揭示杂交多倍体鲫鲂与其亲本间的遗传关系和遗传标记。
     2.F1代四倍体鲫鲂自交获得两种不同类型的鲫鲂F2代(A型、B型),分别自交后获得了F3代。A型鲫鲂F2、F3代个体都是染色体数目为148的四倍体,包含2套红鲫染色体和2套团头鲂染色体;B型鲫鲂F2、F3代个体都是染色体数目为200的四倍体,包含4套红鲫染色体;A、B型鲫鲂F2、F3代均两性可育且一年性成熟,并且能稳定的产生二倍体配子。利用B型四倍体鲫鲂((?))与红鲫(♀)杂交制备出生长速度快的不育三倍体鱼(3n=150)。
     3.用遗传灭活的团头鲂精子诱导F1代四倍体鲫鲂产生的卵子,无需染色体加倍处理,获得了存活的雌核发育后代,其中包括染色体数目为148的雌核发育四倍体和染色体数目为100的雌核发育二倍体后代。染色体数目为148的雌核发育后代只需要一年性成熟,而且能产生四倍体卵子。
     4.红鲫(2n=100)(♀)与团头鲂(2n=48)((?))杂交第一代中获得了雌、雄两性的天然雌核发育红鲫(GRCC),而且性别比例接近1:1。GRCC两性可育,自交后形成了两性可育的青色和红色两种类型的鲫鱼后代(GGCC和GRCC1)。通过染色体数目检测以及核型分析发现,GRCC、GGCC和GRCC1都为二倍体(2n=100)并且含有1—3个微小染色体。包含有雄性决定基因的微小染色体形成时父本遗传渗漏造成了雄性雌核发育鱼的形成。团头鲂精子诱导红鲫卵子之后失活并最终降解,但是会有微小染色体留在卵子中。激活的红鲫卵子拥有50条染色体,通过自然加倍后变成100条染色体,并最终发育成为雄性的二倍体雌核发育红鲫。
     5.通过FISH杂交、sox-HMG DNA标记和微卫星DNA标记来揭示天然雌核发育红鲫(GRCC)与其亲本(红鲫和团头鲂)间的遗传关系和遗传变异,并进一步从分子水平证明GRCC、GGCC和GRCC1染色体分裂相中的微小染色体来源于父本。相关结果也证明了远缘杂交能够获得由父本引起遗传变异的两性可育二倍体雌核发育鱼。
     6.对红鲫(2n=100)、团头鲂(2n=48)及其远缘杂交所获得四倍体(4n=148)、三倍体(3n=124)后代的5S rDNA的编码区序列(5S)和非转录间隔区序列(NTS)进行比较研究。母本红鲫基因组内有三种不同大小的5S rDNA结构单元,其NTS序列分别为83、220和357bp。父本团头鲂基因组内只有一种5S rDNA结构单元,NTS序列为68bp。在红鲫与团头鲂的远缘杂交多倍体后代中,四倍体鲫鲂继承了母本部分的5S rDNA结构单位,自身还形成了一种明显不同于亲本的独特5S rDNA序列,而且父本特有的5S rDNA结构单元在四倍体鲫鲂基因组中完全丢失,表现出明显的进化特征。三倍体鲫鲂不仅完全继承了亲本所特有的5S rDNA结构单元,而且核酸序列没有明显的重组和变异,稳定的保留了5S rDNA的亲本结构特征。
The distant crossing is an effective means to increase genetic variation in the hybrid progeny. With this method, it is possible to form the different ploidy offsprings including the tetraploid hybrids, triploid hybrids, and gynogenetic diploid. In this study, we first obtained many different ploidy offsprings of red crucian carp (RCC)(♀)×blunt snout bream (BSB)(♂), and their biological characteristics and the formation mechanism were studied. The major results were presented as follows:
     1. We successfully obtained the sterile triploid hybrids and bisexual fertile tetraploid hybrids of red crucian carp (2n=100)(♀)×blunt snout bream (2n=48)(♂), which belonged to a different subfamily of fish and had different chromosome numbers in the catalog. The triploid hybrids resulted from the retention of the second polar body of the fertilized eggs and the tetraploid hybrids resulted from the inhibition of the first cleavage of the fertilized eggs.The 2-year-old female tetraploid hybrids reached maturity, and produced unreduced (4n) and reduced (2n) eggs. Pentaploid hybrids were found in the progeny of 4nRB(♀)×BSB (♂). The formation of the unreduced tetraploid eggs was also due to premeiotic endoreduplication, endomitosis, or fusion of germ cells of oogonia. The ploidy levels and chromosome composition of triploid, tetraploid, and pentaploid hybrids were confirmed by counting chromosomal number, forming chromosomal karyotype, and measuring DNA content and erythrocyte nuclear volume. The similar and different DNA fragments were PCR amplified and sequenced in triploid, tetraploid hybrids, and their parents, indicating their molecular genetic relationship and genetic markers.
     2. The females and males tetraploid hybrids of red crucian carp (RCC)(♀)×blunt snout bream (BSB)(♂) mated each other to generate the two types of F2(F2-A, F2-B). F2-A and F2-B fertilized with each other to form F3-A and F3-B, respectively. F2-A and F3-A were both tetraploid hybrids with 148 chromosomes with two sets from RCC and two sets from BSB; F2-B and F3-B both were tetraploid hybrids with 200 chromosomes with four sets from RCC. F2-B, F3-B, F2-A, and F3-A matured at the age of one year, and steadily produced diploid gametes. F3-B(♂) were mated with RCC(♀) to produce sterile triple crucian carp (3n=150) with fast-growth.
     3. Following activation by UV-irradiated sperm of blunt snout bream, without the cold-shocking, tetraploid eggs of the allotetraploid hybrids (red crucian carp (♀)×blunt snout bream (♂)) developed into normal live gynogenetic offsprings. All these gynogenetic progenies were female, including diploids with 100 chromosomes and tetraploid with 148 chromosomes. The gynogenetic progenies with 148 chromosomes matured at the age of one year, which produced tetraploid eggs.
     4. The females and unexpected males of natural gynogenetic red crucian carps (GRCC) with the 1:1 sex ratio were found in the progeny of the distant crossing of red crucian carp (♀,2n=100)×blunt snout bream (♂,2n=48). The females and males of GRCC were fertile, and they mated each other to generate the red crucian carps (GRCC1) and another variational gray crucian carps (GGCC). The GRCC and their offsprings were proved to be diploids (2n=100) with one to three microchromosomes by examining the chromosomal metaphases and karyotypes. It was concluded that the formation of the male gynogenetic fish in GRCC resulted from the genetic leakage of the paternal fish in the form of the microchromosomes including the paternal male-determining gene. After being activated by the sperm of BSB, which was inactivated and finally degraded but left the microchromosomes, the egg of RCC, in which the 50 chromosomes were spontaneously doubled to 100 chromosomes, developed into the diploid male gynogenetic fish.
     5. Means of fluorescence in situ hybridization (FISH), Sox-HMG DNA markers, and microsatellite DNA markers were performed in bisexual GRCC and their parents, revealing their molecular genetic relationship and genetic variation, and further indicating the microchromosomes derived from the paternal fish. Our results proved that the distant hybridization could generate the bisexual diploid gynogenetic fish with genetic variation derived from the paternal fish
     6. Sequence analysis of the coding region (5S) and adjacent nontranscribed spacer (NTS) were conducted in red crucian carp, blunt snout bream, and their polyploid offspring. The three monomeric 5S rDNA classes of RCC were characterized by distinct NTS types with 83, 220 and 357bp, respectively. In BSB, only one monomeric 5S rDNA was observed, which was characterized by one NTS type with 68bp. In the polyploid offspring, the tetraploid hybrids partially inherited 5S rDNA classes from their female parent; however, they also possessed a unique 5S rDNA sequence with a novel NTS sequence. The characteristic paternal 5S rDNA sequences were not observed. The 5S rDNA of triploid hybrids was completely inherited from the parental species, and generally preserved the parental 5S rDNA structural organization.
引文
[1]范兆廷,沈俊宝.鱼类中的多倍体.动物学杂志,1985,24(3):52-57.
    [2]洪云汉.热休克诱导鳙鱼四倍体的研究.动物学报,1990,36(1):70-75.
    [3]陈敏容,阎康,刘汉勤,等.人工诱导白鲫(♀)×红鲫((?))异源四倍体鱼的初步研究.水生生物学报,1987,11(1):96-98.
    [4]苏泽古.草鱼三倍体及其核型的研究.鱼类学论文集,1983,3:53.
    [5]苏泽古.白鲢三倍体及其核型的研究.动物学研究(增刊),1984,5(3):15-20.
    [6]容寿柏,周泉涌,安艳芳.用热休克诱导罗非鱼四倍体.中国实验动物学杂志,1994,4(2):97-101.
    [7]尹洪滨,潘伟志,孙中武,等.静水压休克法诱导三倍体鲶鱼的研究.水产学杂志,1997,10(1):10-13.
    [8]马涛,朱才宝,朱秉仁.热休克诱导虹鳟四倍体.水生生物学报,1987,11(4):329-336.
    [9]林琪,吴建绍,曾志南.静水压休克诱导大黄鱼三倍体.海洋科学,2001,25(90):6-9.
    [10]蔡国雄.真鲷三倍体诱导初步研究.热带海洋,1997,16(4):95-98.
    [11]吴玉萍,叶玉珍,吴清江.热休克诱导斑马鱼异源三倍体的研究.海洋与湖沼,2000,31(5):466-470.
    [12]Liu S J, Liu Y, Zhou G J, et al. The formation of tetraploid stocks of red crucian carp × common carp hybrids as an effect of interspecic hybridization [J]. Aquaculture,2001,192(3-4):171-186.
    [13]吴清江,叶玉珍,陈荣德.具有天然雌核发育特征的人工复合三倍体鲤鱼.自然科学进展,1997,7(3):340-344.
    [14]Zou S M, Li S F, Cai W Q, et al. Establishment of fertile tetraploid population of blunt snout bream (Megalobrama amblycephala). Aquaculture, 2004,238:155-164.
    [15]尤锋.海产鱼类多倍体育种的研究.海洋科学,1997,(1):33-36.
    [16]Rasch E M, Darnell R M, Kallman K D, et al. Cytophotometric evidence for triploidy in hybrids of the gynogenetic fish. Poecilia formoesa, J.Exp.Zool, 1965,160(2):155-170.
    [17]Marian T, Krasznai Z. Aquaclture Hungarica,1978,I:44-50.
    [18]刘思阳.三倍体草鱼鲂杂种与双亲性腺发育的比较观察.淡水渔业,1988,(4):27-28.
    [19]吴维新,李传武,刘国安,等.鲤和草鱼杂交四倍体及其回交四倍体草鱼杂种的研究.水生生物学报,1988,12(4):355-363.
    [20]桂建芳,梁绍昌,朱蓝菲,等.人工复合四倍体异育银鲫雌核发育生殖方式的初步证明.科学通报,1992,37(9):836-836.
    [21]刘筠,周工健.红鲫(♀)×湘江野鲤((?))杂交一代生殖腺的细胞学研究[J].水生生物学报,1986,10(2):102-108.
    [22]Liu S J, Qin Q B, Xiao J, et al. The formation of the polyploid hybrids from different subfamily fish crossing and its evolutionary significance. Genetics, 2007,176(2):1023-1034.
    [23]陈敏容,杨兴棋,俞小牧,等.白鲫(♀)×红鲫((?))异源四倍体鱼的倍性操作及其生殖力的研究.水生生物学报,1997,21(3):197-283.
    [24]杨睿姣,李冰霞,冯浩,等.彭泽鲫染色体数目及倍性的细胞遗传学分析.动物学报,2003,49(1):104-109.
    [25]张纯,孙远东,刘少军,等.二倍体雌核发育鱼产生二倍体卵子的证据.遗传学报,2005,32(2):136-144.
    [26]叶玉珍,吴清江.人工复合三倍体鲤与亲本相对DNA含量及倍性分析.水生生物学报,1998,22(2):119-122.
    [27]刘少军,孙远东,黎双飞,等.三倍体湘云鲫性腺指数分析.水产学报,2002,26(2):111-114.
    [28]桂建芳,孙建民,梁绍昌,等.鱼类染色体组操作的研究.Ⅱ.静水压处理与冷休克结合处理诱导水晶彩鲫四倍体.水生生物学报,1991,15(4):333-341.
    [29]Zhang Q, Arai K. Distribution and reproductive capacity of natural triploid individuals and occurrence of unreduced eggs as a cause of polyploidization in the loach Misgurnus anguillicaudatus. Ichthyoclogial Res.1999,46: 153-161.
    [30]Borin L A, Martins-Santos I C, Oliveira C. A natural triploid in Trichomycterus davisi (Siluriformes, Trichomycteridae):mitotic and meiotic characterization by chromosome banding and synaptonemal complex analyses. Genetica,2002,115:253-258.
    [31]Zhang C, He X, Liu S J, et al. The Chromosome pairing in meiosis I in allotetraploid hybrids and allotriploid Crucian Carp. Acta Zoologica sinica, 2005,51(1):89-94.
    [32]Wu C, Ye Y, Chen R. An artificial multiple carp and its biological characteristics. Aquaculture,1993,111:255-262.
    [33]Cherfas N B, Gomelsky B I, Emelyanova O V, et al. Induced diploid gynogenesis and polyploidy in crucian carp,Carassius auratus gibelio(Bloch) × common carp, Cyprinus carpio L., hybrids. Aquacult.Fish.Mgmt,1994,25: 943-954.
    [34]Chen M R, Yang X Q, Yu X M, et al. Chromosome ploidymanipulation of allotetraploids and their fertility in japanese phytophagous crucian carp(jpcc)(♀) × red crucian carp(rcc)(♂) [J]. Acta Hydrobiologica Sinica, 1997,21(3):197-205.
    [35]孙远东,谭立军,唐新科,等.鱼类人工多倍体育种的研究进展.现在生物医学进展,2008,8(9):1778-1779.
    [36]Liu S J, Sun Y D, Zhang C, et al. Production of gynogenetic progeny from allote-traploid hybrids red crucain carpx common carp. Aquaculture.2004, 236:193-200.
    [37]Liu S J, Duan W, Tao M, et al. Establishment of the diploid gynogenetic hybrid clonal line of red crucian carp × common carp. Science in China Series C:Life Sciences,2007,50(2):186-193.
    [38]Chen S, Wang J, Qin Q B, et al. Biological characteristics of an improved triploid crucian carp. Science in China Series C:Life Sciences,2009,52(8): 733-738.
    [39]Sun Y D, Zhang C, Liu S J, et al. Induced interspecific androgenesis using diploid sperm from allotetraploid common carp × red crucian carp hybrids.
    Aquaculture,2007,264:47-53.
    [40]Duan W, Qin Q B, Chen S, et al. The formation of improved tetraploid population of red crucian carp × common carp hybrids by androgenesis. Science in China Series C:Life Sciences,2007,50(6):753-761.
    [41]Hubbs C L. Apparent parthenogenesis in nature, in a form of fish of hybrid origin [J]. Science,1932,76 (1983):628-630.
    [42]楼允东.鱼类育种学[M].北京:中国农业出版社,1999,153-190.
    [43]Fan Z, Shen J. Studies on the evolution of bisexual reproduction in crucian carp (Carassius auratus gibelio Bloch) [J]. Aquaculture,1990,84:235-244.
    [44]Gui J F. A unique study system:Gynogenetic fish Carassius auratus gibelio[J]. Science Foundation in China,1996,4:44-46.
    [45]刘良国,赵俊,陈湘麟.鱼类雌核发育的研究进展.水产养殖,2002,6:39-43.
    [46]吴清江,桂建芳.鱼类遗传育种工程.上海科学技术出版社,1999,73-85.
    [47]沈俊宝,范兆廷,李素文,等.方正银鲫与扎龙湖鲫体细胞、精子的DNA含量及倍性的比较研究[J].动物学报,1984,30(1):7-13.
    [48]刘良国,赵俊,陈湘麟,等.彭泽鲫两个雌核发育克隆的染色体组型分析.遗传学报,2004,31(8):780-786.
    [49]俞豪祥.银鲫雌核发育的细胞学观察[J].水生生物学集刊,1982,7(4):481-487
    [50]丁军等.雌核发育银鲫和两性融合发育红鲤卵母细胞成熟的细胞学比较研究[J].水生生物学报,1991,15(2):97-102.
    [51]周嘉申,沈俊宝,刘明华.黑龙江方正银卿雌核发育的细胞学初步探讨.动物学报,1983,29(1):11-16.
    [52]Schultz R J. Gynogenesis and triploidy in the viviparous fish porciliopsis. Science,1967,157:1564-1567.
    [53]葛伟,蒋一珪.雌核发育银鲫卵抑制异源精子原核化的作用模式初探[J].水生生物学报,1985,9(3):203-207.
    [54]楼允东.人工雌核发育及其在遗传学和水产养殖上的应用[J].水产学报,1986,10(1):111-123.
    [55]吴清江,叶玉珍,阵德荣,等.鲤鱼人工雌核发育作为建立近交系新途径的研究[J].遗传学报,1981,8(1):50-55.
    [56]Lou Y D, Purdom C E. Diploid gynogenesis induced by hydrosatic pressure in rainbow trout, Salmo gairdneri [J]. J Fish Biol,1984,24:665-670.
    [57]刘筠.我国淡水养殖鱼类育种的实践和思考.生命科学研究,1997,1(1):1-8.
    [58]邓岳松,罗琛.草鱼人工雌核发育的细胞学观察[J].激光生物学报,1989,7(3):207-211.
    [59]Yamamoto E. Studies on sex-manipulation and production of cloned populations in hirame, Paalichthys olivaceus (Temminck et Schlegel). Aquaculture,1999(173):235-246.
    [60]Sun Y D, Tao M, Liu S J, et al. Induction of gynogenesis in red crucian carp using spermatozoa of blunt snout bream. Progress in Natural Science,2007, 17(2):163-167.
    [61]Liu S J, Qin Q B, Wang Y Q, et al. Evidence for the Formation of the Male Gynogenetic Fish. Marine Biotechnology,2010,12:160-172.
    [62]Dinman J D, Wickner R B.5S rRNA is involved in fidelity of translational reading frame. Genetics,1995,141:95-105.
    [63]Yi Q M, Liu G P. Spacer Length Varation in Rice 5S rRNA Genes Revealed by Polymerase Chain Reaction.Wuhan J.(Natrual Science Edit). 1997,2(1):124-126.
    [64]Pasolini P, Costagliola D, Rocco L, et al. Molecular organization of 5S rDNA in Rajidae (Chondrichthyes):structural features and evolution of
    piscine 5S rRNA genes and nontranscribed intergenicspacers. Journal of Molecular Evolution,2006,62:564-574.
    [65]Robles F, de la Herran R, Ludwig A, et al. Genomic organization and evolutionof the 5S ribosomal DNA in the ancient fish sturgeon. Genome, 2005,48:18-28.
    [66]Sajdak S L, Reed K M, Phillips R B. Intraindividual and interspecies variation in the 5S rDNA of coregonid fish. J Mol Evol,1998,6:680-688.
    [67]Murakami M, Yamashita Y, Fujitani H. Characterization of repetitive DNA sequences carrying 5S rDNA of the triploid ginbuna. Genes Genet Syst, 1998,73:9-20.
    [68]孙颖,王洪振.荧光原位杂交技术在染色体生物学中的应用[J].吉林师范大学学报(自然科学版),2005,2(1):70-72.
    [69]Kitamura S, Tanaka A, Masayoshi I. Genomic relationship among Nicotiana species with different ploidy levels revealed by 5s rDNA spacer sequences and FISH/GISH. Genes Genet.Syst,2005,80,p.251-260.
    [70]Bernard R, Baum L, Grant B, et al. The utility of the nontranscribed spacer of 5S rDNA units grouped into unit classes assigned to haplomes-a test on cultivated wheat andwheat progenitors. Genome,2004,47:590-599.
    [71]Marian T, Kraszai Z. Karyological investigation on Ctenopharyngodon idella and Hypophthalmichthys nobilis and their crossing-breeding. Aquac. Hungarica,1978,1:44-50.
    [72]Beck M L, Biggers C J, Barker C J. Chromosomal and electrophoretic analyses of hybrids between grass carp and bighead carp. Copeia,1984,81: 337-342.
    [73]楼允东,李小勤.中国鱼类远缘杂交研究及其在水产养殖上的应用.中国水产科学,2006,13(1):151-157.
    [74]刘少军,孙远东,周工建,等.异源四倍体鲫鲤成熟性腺和红细胞超微 结构观察.自然科学进展,2003,13(2):194-197.
    [75]Cherfas N B, Gomelsky B L, Emelyanova O V, et al. Induced diploid gynogenesis and polyploidy in crucian carp, Carassius auratus gibelio (Bloch) × common carp, Cyprinus carpio L., hybrids. Aquac. Fish. Manage., 1994,25:943-945.
    [76]Shimizu Y, Shibata N, Sakaizumi M, et al. Production of diploid eggs through premeiotic endomitosis in the hybrid medaka between Oryzias latipes and O. ourvinatus. Zool. Sci.2000,17:951-958.
    [77]Alves M J, Coelho M M, Prospero M I, et al. Production of fertile unreduced sperm by hybrid males of the Rutilus alburoides complex (Teleost, Cyprinidae):an alternative route to genome tetraploidization in unisexuals. Genetics,1999,151:227-283.
    [78]Sun Y D, Liu S J, Zhang C, et al. The chromosome number and gonadal structure of F9-F11 allotetraploid crucian carp. Chin. J. Genet.,2003,30: 37-41 (in Chinese).
    [79]Liu S J, Sun Y D, Zhang C, et al. Production of gynogenetic progeny from allotetraploid hybrids red crucian carp × common carp. Aquaculture,2004, 236:193-200.
    [80]刘少军,孙远东,张纯,等.三倍体鲫鱼—异源四倍体鲫鲤((?)×金鱼(♀).遗传学报,2004,31(1):31-38.
    [81]Shen J M, Liu S J, Sun Y D, et al. A new type of triploid crucian crap-red crucian carp (♀) × allotetraploid (♂). Progress in Natural Science,2006, 16(12):1348-1352.
    [82]Mallet J. Hybrid speciation. Nature,2007,446:279-283.
    [83]LIU S J. Distant Hybridization Leads to Different Ploidy Fishes. Science in China Series C:Life Sciences,2009, accepted, in press
    [84]Liu S J, Sun Y D, Lou K K, et al. Evidence of Different Ploidy Eggs Produced by Diploid F2 Hybrids of Carassius auratus (♀) × Cyprinus carpio
    ((?)).遗传学报,2006,33(4):304-311.
    [85]Chen M, Yang X, Yu X, et al. Chromosome ploidy manipulation of allotetraploids and their fertility in Japanese phytophageous crucian carp(JPCC)(♀) × red crucian carp (RBC)(♀). Acta Hydrobiologica Sinica, 1997,21(3):197-206 (in Chinese with English abstract).
    [86]Cherfas N B. Gynogenesis in fish. In Genetic Basis of Fish Selection.1981, 255-273. Berlin-verlag.
    [87]Yamazali F. Chromosome variations in salmonids.Chromosomal aberration by overriping and irradiation [J]. Kaiyo Kagaku,1981,13(1):71-83.
    [88]Oshiro. T. Cytological studies on diploid gynogenesis induced in the loach Misgurmus anguillicaudatus. Bulletin of the Japanese Society for Scientific Fisheries.,1987,53:933-942.
    [89]Hubbs C, Drewry G E. Occurrence and morphology of a phenotypic male of a gynogenetic fish. Science,1959,129:1227-1229.
    [90]Lamatsch D K, Nanda I, Schlupp I, et al. Distribution and stability of supernumerary microchromosomes in natural populations of the Amazon molly, Poecilia formosa. Cytogenet Genome Res.,2004,106:189-198.
    [91]Schartl M, Nanda I, Schlupp I, et al. Incorporation of subgenomic amounts of DNA as compensation for mutational load in a gynogenetic fish. Nature (London),1995,373:68-71.
    [92]Nanda I, Schlupp I, Lamatsch D K, et al. Stable inheritance of host species-derived microchromosomes in the gynogenetic fish Poecilia formosa. Genetics,2007,177:917-926.
    [93]Levan A, Fredga K, Sandburg A. Nomenclature for centromeric positions on chromosomes. Hereditas,1964,52:201-220.
    [94]Camacho J P M, Sharbel T F, Beukeboom L W. B-chromosome evolution. Phil Trans R Soc Lond B.,2000,355:163-174.
    [95]Mallet J. Hybrid speciation. Nature.2007,446:279-283.
    [96]Sapre A B, Deshpande D S. Origin of B chromosomes in Coix L. through spontaneous interspecific hybridization. J. Hered,1989,78:191-196.
    [97]Bogenhagen D F, Brown D D. Nucleotide sequences in Xenopus 5S DNA required for transcription terminator. Cell,1981,14:261-270.
    [98]Nederby-Nielsen J, Hallenberg G, Frederiksen S, et al. Transcription of human 5S rRNA genes is influenced by an upstream DNA sequence. Nucleic Acid Res.,1993,26:3631-3636.
    [99]Pasolini P, Costagliola D, Rocco L, et al. Molecular Organization of 5S rDNAs in Rajidae (Chondrichthyes):Structural Features and Evolution of Piscine 5S rRNA Genes and Nontranscribed Intergenic Spacers. J. Mol. Evol.,2006,62:564-574.
    [100]Suzuki H, Moriwaki K, Sakurai S. Sequences and evolutionary analysis of mouse 5S rDNAs. Mol. Biol. Evol.,1994,11:704-710.
    [101]Pendas A M, Moran P, Martinez J L, et al. Applications of 5S rDNA in Atlantic salmon, brow trout, and in Atlantic salmon x brown trout hybrid identification. Mol. Ecol.,1995,4:275-276.
    [102]Nelson D W, Honda B M. Genes coding for 5S ribosomal RNA of the nematode Caenorhabditis elegans. Gene (Amst.),1985,38:245-251.
    [103]Leah R, Frederiksen S, Engberg J, et al. Nucleotide sequence of a mouse 5S rRNA variant gene. Nucl. Acids Res.,1990,18:7441.
    [104]Sajdak S L, Reed K M, Phillips R B. Intraindividual and interspecies variation in the 5S rDNA of coregonid fish. J. Mol.Evol.,1998,46:680-688.
    [105]Sambrook J, Fritsch E F, Maniatis T. Molecular cloning:a laboratory manual.2nd ed. Cold Spring Harbor Laboratory Press, Plainsview, N.Y. 1989.
    [106]Southern E M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol.,1975,98:503-517.
    [107]Hallenberg C, Nederby-Nielsen J, Frederiksen S. Characte-rization of 5S rRNA genes from mouse. Gene,1994,142:291-295.
    [108]Frederiksen S, Cao H, Lomholt B, et al. The rat 5S rRNA bona fide gene repeat maps to chromosome 19q12-qter and the pseudogene repeat maps to 12q12. Cytogenet. Cell Genet.,1997,76:101-106.
    [109]Martins C, Galetii Jr P M. Organization of 5S in Leporinus fish species:two different genomic locations are characterized by distinct non-transcribed spacers (NTSs). Genome,2001,44:903-910.
    [110]Wasko A P, Martins C, Jonathan M W, et al. Molecular organization of 5S rDNA in fishes of the genus Brycon. Genome,2001,44(5):893-902.
    [111]Martins C, Wasko A P, Oliveira C, et al. Nucleotide sequence of 5S rDNA and localization of the ribosomal RNA genes to metaphase chromosomes of the tilapiine cichlid fish, Oreochromis niloticus. Hereditas,2000,133: 39-46.
    [112]Qin Q B, He W G, Liu S J, et al. Analysis of 5S rDNA organization and variation in polyploid hybrids from crosses of different fish subfamilies. Journal of Experimental Zoology Part B,2010, accepted, in press.
    [113]Pendas A M, Moran P, Freije J P, et al. Chromosomal location and nucleotide sequence of two tandem repeats of the Atlantic salmon 5S rDNA. Cytogenet. Cell Genet.,1994,67:31-36.
    [114]Moran P, Martinez J L, Garcia-Vasquez E, et al. Sex linkage of 5S rDNA in rainbow trout (Oncorhynchusmykiss). Cytogenet. Cell Genet.,1996,75: 145-150.
    [115]Delseny M, McGrath J M, This P, et al. Ribosomal RNA genes in diploid and amphiploid Brassica and related species:organization, polymorphism and evolution. Genome,1990,33:733-744.
    [116]Soltis P S, Soltis D E. Multiple origin of the allotetraploid Tragopogon mirus (Compositae):rDNA evidence. Syst. Bot.,1991,16:407-413.
    [117]Badaeva E D, Amosova A V, Muravenko OV, et al. Genome differentiation in Aegilops.3. Evolution of the Dgenome cluster. Plant Syst. Evol.,2002, 231:163-190.
    [118]Kashkush K, Feldman M, Levy A S. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics,2002,160:1651-1659.
    [119]Kotseruba V, Gernand D, Meister A, et al. Uniparental loss of ribosomal DNA in the allotetraploid grass Zingeria trichopoda (2n=8). Genome,2003, 46:156-163.
    [120]Han F, Fedak G, Guo W, et al. Rapid and repeatable elmination of a parental genome specific DNA repeat (pGclRla) in newly synthesized wheat allopolyloids. Genetics,2005,170:1239-1245.
    [121]Volkov R A, Borisjuk N V, Panchuk I I, et al. Elimination and rearrangement of parental rDNA in the allotetraploid Nicotiana tabacum. Mol. Biol. Evol.,1999,16:311-320.
    [122]Chen L, Li W, Liu S J, et al. Novel genetic markers derived from the DNA fragments of sox genes. Molecular and Cellular Probes,2009,23:157-165.
    [123]Rieseberg L H. Polyploid evolution:Keeping the peace at genomic reunions. Current Biology,2001,11:R925-R928.
    [124]Ozkan H, Levy A A, Feldman M. Allopolyploidyinduced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell,2001,13: 1735-1747.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700