用户名: 密码: 验证码:
硼镍添加低温用低合金高强度H型钢的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低合金高强度(HSLA)H型钢作为一种典型的低碳、低合金结构钢,具有较高的强度、韧性和优良的焊接性能。在高层建筑、桥梁、大型船舶以及海上石油平台等领域有着广泛的应用。近年来,随着高寒、高海拔地区的开发,具有良好低温韧性的高等级H型钢受到广泛的关注。但是,目前生产的低合金高强度H型钢的韧脆转变温度普遍偏高,低温下易发生脆性断裂,难以满足在低温地区使用的要求。因此,提高低合金高强度H型钢的低温韧性,降低其韧脆转变温度,具有重要的现实意义和理论价值。
     本文在添加痕量硼元素的低合金高强度H型钢的基础上,进行了合金成分设计,确定了硼镍复合添加的工艺方案。利用热模拟试验、常温拉伸试验、系列温度冲击试验、淬透性试验、显微硬度试验、光学显微镜和扫描电镜、高分辨透射电镜以及X射线衍射等试验方法和手段,系统研究了试验钢在不同状态下的组织和性能,获得了在-50℃下具有良好冲击韧性的热轧H型钢;并在此基础上,研究了该试验钢的热处理工艺,获得了最佳的淬火、回火工艺参数,利用淬火回火处理,进一步将试验钢的韧脆转变温度降低到-96℃,使其具备了优异的低温韧性。
     热物理模拟试验显示,试验钢在10℃/s加热时,其Ac1和Ac3温度分别为770℃和906℃,在接近平衡条件下冷却时,其Ar3和Ar1温度为775℃和560℃。随冷却速度由0.1℃/s增加到50℃/s时,试验钢的组织逐渐由多边形铁素体+珠光体转变为仿晶界铁素体+板条贝氏体、板条贝氏体+板条马氏体以及全部马氏体结构;其硬度由50HRA增加到73HRA。随变形量由0%增加到40%,试样中的铁素体含量逐渐增加,形变诱导相变作用逐渐加强,相变开始温度增加了55℃。
     对现场试生产的硼镍复合添加低温用H型钢进行了力学性能和微观组织分析。结果发现,所有样品的强度、塑性指标均满足国标要求,其-50℃低温冲击韧性达到80J左右,达到国标要求的2倍多。试样断口上较深的孔洞表明试样发生了韧窝断裂,从而使冲击韧性获得提高。镍元素对试验钢的夹杂物、组织以及二相粒子影响不明显,其细化珠光体片层以及对铁原子晶格结构的影响是提高低温韧性的主要原因。
     硼镍复合添加的HSLA钢在不同温度下进行的淬透性试验发现,在870到1000℃范围淬火时,试验钢的淬透性不随温度的增加而持续增加,950℃时淬透性最高;经1070℃高温处理后,试验钢的淬透性不升反降,铁素体含量增加。通过与只加硼不加镍以及硼、镍均不添加的试样对比,发现上述现象是由于硼促进淬透性的作用因高温处理而消失以及硼细化碳氮化铌颗粒所致。根据端淬曲线换算的950℃时试验钢浸水冷却最大可淬透板厚达19.34mm。
     通过对不同工艺热处理后试验钢的组织、性能研究发现,试验钢淬火后的抗拉强度最高可达到1000MPa。高温回火后抗拉强度仍保持在500-600MPa之间,较热轧试样的抗拉强度提高100MPa以上,伸长率下降约10%,但试样的韧性大幅提高到200J以上,韧脆转变温度最低达到-96℃。使调质0.5Ni钢的最低许用温度降低20℃以上。低温韧性的大幅升高是基体回复再结晶与碳化物球化共同作用带来的。颗粒状碳化物依赖晶界获得长大,但并非沿晶界析出,而是钉扎晶界,有利于细化晶粒,未对韧性造成破坏。
     通过对热处理参数对试验钢韧性的影响研究发现,淬火温度主要影响淬火回火后试样的韧脆转变温度,对韧性影响不大,而回火温度主要影响韧性的高低,对韧脆转变温度影响不大。这说明,淬火后残余铁素体的含量是影响韧脆转变温度的主要因素,而影响韧性高低的主要因素是淬火组织的再结晶程度。
High strength low alloy H-beam, as a typical low-carbon low-alloy structural steel, exhibits an outstanding combination of high strength, resistance to brittle fracture and good weldability. It has been extensively applied to high-rise buildings, bridges, construction of large ships and offshore oil drilling platforms. Recently, with exploration of high latitude and cold regions, significant attention has been focused on high-grade H-beam with good toughness at low temperature. However, ductile-brittle transition temperature (DBTT) of existing hot-rolled H-beam product is too high, products have a tendency to brittle fracture, which does not meet the request for utilization in cold areas. Therefore, improving low-temperature toughness and reducing DBTT of HSLA H-beams are not only of remarkable realistic significance but also of theoretical value.
     Based on chemical composition of boron-added HSLA H-beam, composition of the new H-beam was designed, and0.5%nickel was added in new H-beams together with trace of boron so as to reduce its DBTT further. Mechanical properties and microstructures of experimental steels were investigated by means of thermomechanical simulation, room temperature uniaxial tensile tests, instrumented Charpy impact test, Jominy test, micro-hardness test, optical microscopy (OM), scanning electronic microscopy (SEM), high resolution transmission electronic microscopy (HRTEM) and X-ray diffraction (XRD). The H-beam with good impact toughness at-50℃was producted. Optimal heat treatment process of this steel was studied. Ductile to brittle transition temperature (DBTT) of the steel reduced to-96℃by quenching and tempering. Its low temperature impact toughenss is excellent.
     Thermomechanical simulation results show that Ac1temperature and AC3temperature of experimental steel are770℃and906℃respectively, when heating rate is10℃/s. In phase equilibrium conditions, the Ar3temperature and Ar1temperature are775℃and560℃respectively. When cooling rate increases from0.1℃/s to50℃/s, microstructures of this new type of steel gradually transform from polygonal ferrite and pearlite, grain-boundary ferrite and lath bainite, lath bainite and martensite to single martensite. Accordingly, its hardness increases from50HRA to73HRA. When deformation increases from0%to40%, more ferrite is found in specimens and Ar3temperature increases by55℃, due to effect of deformation induced phase transformation.
     Mechanical properties and microstructures of boron-nickel added cryogenic H-beam, produced by Laiwu Iron and Steel Company, were investigated. The results show that strength and plasticity of all producets meet requirements, especially, the toughness tested at-50℃reaches80J, which is twice more than requirement of national standard. Deep hole in fracture surface means dimple fracture that increases impact toughness significantly. Addition of nickel has little influence on inclusions, microstructures and second-phase particles. Refining pearlite and transformation of lattice structures are main causes of increasing low temperature toughness by nickel.
     Results of Jominy tests show that hardenability of boron-nickel added HSLA steel does not increase linearly when quenching temperature increases from870℃to1000℃. Its hardenability peaks at950℃. After heated at1070℃, the hardenability does not increase but decrease and volume fraction of ferrite increase. Compared with boron added steel and no boron or nickel steel, decreasing of hardenability is due to disappearance of anxo-action of boron and refined carbonitride niobium. Maximum quenching thickness equivalent through Jominy test reaches19.34mm.
     Mechanical properties and microstructures of experimental steel through different heat treatments were investigatied. The results show that tensile strength of quenched specimens reaches1000MPa. After high temperature tempering, the tensile strength remains from500MPa to600MPa, which is100MPa higher than that of hot-rolled steel. Compared with hot-rolled steel, elongation of quenched and tempered specimens decreases by10%but its impact toughenss reaches as high as above200J. Ductile brittle transition temperature decreases to-96℃. The allowable temperature of steel contents0.5%nickel decreases by20℃. Increasing of low temperature toughness is due to recrystallization and spheroidization of carbides. Carbides precipitated along grain boundaries do not harm to toughness, on the contrary, they prevent grain coarsening during recrystallization.
     Effect of heat treatment parameters on toughness was studied. Results show that quenching temperature has great influence on ductile brittle transition temperature but has little influence on toughness. Tempering temperature has great influence on toughness but has little influence on ductile brittle transition temperature. Residual ferrite after quenching is major influence of ductile brittle transition temperature. Recrystallization is the main factor of toughness.
引文
[1]苏世怀,孙维,潘国平,等.热轧H型钢[M].北京:冶金工业出版社,2009:2-15.
    [2]董志洪.世界H型钢与钢轨生产技术[M].北京:冶金工业出版社,1999:18-24.
    [3]曲成平,卢文静.多层H型钢钢结构住宅的性能分析[J].建筑技术,2005,36(7):546-547.
    [4]贺庆强.H型钢热轧工艺过程数值分析及其仿真技术研究[D].济南:山东大学机械学院,2007.
    [5]吴结才,奚铁.国内热轧H型钢生产及应用现状[J].安徽冶金,2001,4:4-9.
    [6]Shun-ichi Nakama, Yoshiyuki Momiyama, Tetsuya Hosaka, et al. New technologies of steel/concrete composite bridges[J]. Journal of Constructional Steel Research,2002,58(1): 99-130.
    [7]中华人民共和国国家质量监督检验检疫总局.GB/T 11263热轧H型钢和剖分T型钢[S].2005.
    [8]袁鑫.中国热轧H型钢将主导亚洲市场[J].钢结构,2007,22(1):114-115.
    [9]董鹏程,武春亭.H型钢供需形势及市场分析[J].中国冶金,2007,7(8):55-58.
    [10]邹家祥.轧钢机械[M].北京:冶金工业出版社,2004:2.
    [11]G. Malakondaiah, M. Srinivas, P. Rama Rao. Ultrahigh-strength low-alloy steels with enhanced fracture toughness[J].1997, Progress in Materials Science,42(1-4):209-242.
    [12]J. Y. Richard Liew, L. K. Tang, T. Holmaas, et al. Advanced analysis for the assessment of steel frames in fire[J]. Journal of Constructional Steel Research,1998,47(1):19-45.
    [13]刘志勇,杨才福,张永权,等.建筑用耐火H型钢性能与组织的研究[J].金属热处理,2005,30(6):45-50.
    [14]F. S Kelly, W. Sha. A comparison of the mechanical properties of fire-resistant and S275 structural steel[J]. Journal of Constructional Steel Research,1999,50(3):223-233.
    [15]程鼎,杨俊.高强度H型钢的研究与开发[J].中国冶金,2008,18(4):39-42.
    [16]C. J. Earls. On the inelastic failure of high strength steel I-shaped beams[J]. Journal of Constructional Steel Research,1999,49(1):1-24.
    [17]Christopher J. Earls. Constant moment behavior of high-performance steel I-shaped beams[J]. Journal of Constructional Steel Research,2001,57(7):711-728.
    [18]李元齐,孙思,沈祖炎,等.高建钢厚壁H型钢残余应力测试研究[J].建筑钢结构进展,2010,12(5):19-24.
    [19]肖大恒,吴清明,李曲全,等.HYE36海洋石油钻井平台钢的试制[J].材料与冶金学报,2009,8(2):84-87.
    [20]Wang Xiao, Wang Zuo-cheng, Wang Xie-bin, et al. Effect of quenching temperature on microstructures and mechanical properties of boron-nickel-added Nb-treated HSLA H-beams[J]. Advanced Materials Research,2011,194-196:165-168.
    [21]郭华.V-N微合金化海洋石油平台用钢实验室研究[J].钢铁钒钛,2007,28(4):17-21.
    [22]S. K. Dhua, Amitava Ray, D. S. Sarma. Effect of tempering temperatures on the mechanical properties and microstructures of HSLA-100 type copper-bearing steels[J]. Materials Science and Engineering A,2001,318(1-2):197-210.
    [23]姚泽雄,成光祜.微合金化低碳高强度钢[M].北京:冶金工业出版社,1985:2-8.
    [24]Fernandez J, Illescas S, Guilemany J M. Effect of micro-alloying elements on the austenitic grain growth in a low carbon HSLA steel [J]. Materials Letters,2007,61(11-12):2389.
    [25]Byoungchul Hwang, Chang Gil Lee. Influence of thermomechanical processing and heat treatments on tensile and Charpy impact properties of B and Cu bearing high-strength low-alloy steels[J]. Materials Science and Engineering A,2010,527(16-17):4341-4346.
    [26]I. B. Timokhina, P. D. Hodgson, S. P. Ringer, et al. Precipitate characterization of an advanced high-strength low-alloy (HSLA) steel using atom probe tomography [J]. Scripta Materialia,2007,56(7):601-604.
    [27]S. K. Mishra, S. Ranganathan, S. K. Das, et al. Investigations on precipitation characteristics in a high strength low alloy (HSLA) steel[J]. Scripta Materialia,1998,39(2): 253-259.
    [28]S. K. Mishra, S. Das, S. Ranganathan. Precipitation in high strength low alloy (HSLA) steel: a TEM study[J]. Materials Science and Engineering A,2002,323(1-2):285-292.
    [29]S. G. Hong, H. J. Jun, K. B. Kang, et al. Evolution of precipitates in the Nb-Ti-V microalloyed HSLA steels during reheating[J].2003,48(8):1201-1206.
    [30]刘嘉禾.钒钛铌等微合金元素在低合金钢中应用基础的研究[M].北京:北京科学技术出版社,1992:90-102.
    [31]王有铭,李曼云,韦光.钢材的控制轧制和控制冷却[M].北京:冶金工业出版社,2009:52-56.
    [32]B. K. Show, R. Veerababu, R. Balamuralikrishnan, et al. Effect of vanadium and titanium modification on the microstructure and mechanical properties of a microalloyed HSLA steel[J]. Materials Science and Engineering A,2010,527(6):1595-1604.
    [33]上田修三著,荆洪阳译.结构钢的焊接:低合金钢的性能及冶金学[M].北京:冶金工业出版社,2004:16-17.
    [34]Sang Yong Shin, Seung Youb Han, Byoungchul Hwang, et al. Effect of Cu and B addition on microstructure and mechanical properties of high-strength bainitic steels[J]. Materials Science and Engineering A,2009,517(1-2):212-218.
    [35]王国栋.以超快速冷却为核心的新一代TMCP技术[J].上海金属,2008,30(2):1-5.
    [36]王国栋.新一代控制轧制和控制冷却技术与创新的热轧过程[J].东北大学学报(自然科学版),2009,30(7):913-922.
    [37]Wang Lei, Gao Cai-ru, Liu Xiang-hua, et al. Effect of TMCP parameters on microstructure and properties of Q460q NH steel[J]. Journal of Wuhan University of Technology(Materials Science Edition),2009,24(6):917-922.
    [38]Li Zhuang. Effect of Thermomechanical controlled processing on mechanical properties of 490 MPa grade low carbon cold heading steel[J]. Journal of Iron and Steel Research International,2009,16(3):43-48.
    [39]Xiao-Huai Xue, Yi-Yin Shan, Lei Zheng, et al. Microstructural characteristic of low carbon microalloyed steels produced by thermo-mechanical controlled process[J]. Materials Science and Engineering A,2006,438-440:285-287.
    [40]Nie Yi, Shang Cheng-jia, You Yang, et al.960 MPa grade high performance weldable structural steel plate processed by using TMCP[J]. Journal of Iron and Steel Research International,2010,17(2):63-66.
    [41]Yu Wei, Qian Ya-jun, Wu Hui-bin, et al. Effect of heat treatment process on properties of 1000 MPa ultra-high strength steel[J]. Journal of Iron and Steel Research International, 2011,18(2):64-69.
    [42]A. A. Gorni, P. R. Mei. Effect of controlled-rolling parameters on the ageing response of HSLA-80 steel[J]. Journal of Materials Processing Technology,2008,197(1-3):374-378.
    [43]P. K. Ray, R. I. Ganguly, A. K. Panda. Optimization of mechanical properties of an HSLA-100 steel through control of heat treatment variables[J]. Materials Science and Engineering A,2003,346(1-2):122-131.
    [44]Guen Chul Hwang, Sunghak Lee, Jang Yong Yoo, et al. Effect of direct quenching on microstructure and mechanical properties of copper-bearing high-strength alloy steels[J]. Materials Science and Engineering A,1998,252(2):256-268.
    [45]中华人民共和国国家质量监督检验检疫总局.GB/T 1591低合金高强度结构钢[S].2008.
    [46]Niu Tao, Kang Yong-lin, Gu Hong-wei, et al. Precipitation behavior and its strengthening effect of X100 pipeline steel[J]. Journal of iron and steel research, international,2010, 17(11):73-78.
    [47]Zhou Min, Du Lin-xiu, Liu Xiang-hua. Relationship among microstructure and properties and heat treatment process of ultra-high strength X120 pipeline steel[J]. Journal of iron and steel research, international,2011,18(3):59-64.
    [48]辛彬楠,刘国权,王安东.C和N含量对V微合金非调质钢静态再结晶量的影响[J].北京科技大学学报,2008,30(3):244-248.
    [49]S. Vervynckt, K. Verbeken, P. Thibaux, et al. Recrystallization-precipitation interaction during austensite hot deformation of a Nb microalloyed steel[J]. Materials Science and Engineering A.2011,528(16-17):5519-5528.
    [50]陈思联,林军.晶内铁素体型高强韧性微合金非调质钢的进展[J].特殊钢,2005,26(3):35-38.
    [51]侯晓英,许云波,吴迪.热轧钒微合金TRIP钢的微观组织和力学性能[J].材料研究学报,2011,25(2):158-164.
    [52]曾伟明,韩坤,张梅,等.超高强度Ti微合金复相钢再结晶行为的研究[J].材料科学与工艺,2011,19(3):112-117.
    [53]Zheng-you Tang, Hua Ding, Liu-xiu Du, et al. Microstructures and mechanical properties of Si-Al-Mn TRIP steel with niobium[J]. Journal of Materials Science and Technology,2007, 23(6):790-794.
    [54]张迎晖,康永林.薄板坯连铸连轧Nb-Mo微合金TRIP钢的研究[J].金属热处理,2009,34(5):21-24.
    [55]孟繁茂,付俊岩.现代含铌不锈钢[M].北京:冶金工业出版社,2004:1-10.
    [56]刘静,罗兴宏,胡小强,等.Ti和Nb微合金化对超纯11%Cr铁素体不锈钢组织的影响[J].金属学报,2011,47(6):688-696.
    [57]Haitao Yan, Hongyun Bi, Xin Li, et al. Microstructure and texture of Nb+Ti stabilized ferritic stainless steel[J]. Materials Characterization,2008,59(12):1741-1746.
    [58]Ahmed Ismail Zaky Farahat, T. A. El-Bitar. Effect of Nb, Ti and cold deformation on microstructure and mechanical properties of austenitic stainless steels [J]. Materials Science and Engineering A,2010,527(16-17):3662-3669.
    [59]齐俊杰,黄运华,张跃.微合金化钢[M].北京:冶金工业出版社,2006:5.
    [60]Peter Mullner. On the ductile to brittle transition in austenitic steel[J]. Materials Science and Engineering A,1997,234-236:94-97.
    [61]Y. Tomota, Y. Xia, K. Inoue. Mechanism of low temperature brittle fracture in high nitrogen bearing austenitic steels[J]. Acta Materialia,1998,46(5):1577-1587.
    [62]中华人民共和国国家质量监督检验检疫总局.GB/T 229金属材料夏比摆锤冲击试验方法[S].2007.
    [63]黄克智,肖纪美.材料的损伤断裂机理和宏微观力学理论[M].北京:清华大学出版社,1999:1.
    [64]李永东.理论与应用断裂力学[M].北京:兵器工业出版社,2005:3.
    [65]丁遂栋,孙利民.断裂力学[M].北京:机械工业出版社,1997:1-3.
    [66]B. R. Lawn著,陈颙,尹祥础译.脆性固体断裂力学[M].北京:高等教育出版社,1985:2.
    [67]G. R. Irwin. Linear fracture mechanics, fracture transition and fracture control[J]. Engineering Fracture Mechanics,1968,1(2):241-257.
    [68]G. R. Irwin. Fracture strength of relatively brittle structures and materials[J]. Journal of the Franklin Institute,1970,290(6):513-521.
    [69]赵建生.断裂力学及断裂物理[M].武汉:华中科技大学出版社,2003:164-180.
    [70]X. K. Zhu, S. K. Jang. J-R curves corrected by load-independent constraint parameter in ductile crack growth[J]. Engineering Fracture Mechanics,2002,68(3):285-301.
    [71]李庆芬.断裂力学及其工程应用[M].哈尔滨:哈尔滨工程大学出版社,1998:69-91.
    [72]A.H. Cottrell. Theory of dislocations[J]. Progress in Metal Physics,1949,1:77-96.
    [73]A.H. Cottrell. Theory of dislocations[J]. Progress in Metal Physics,1953,5:209-248.
    [74]G R. Piercy, R.W. Cahn, A. H. Cottrell. A study of primary and conjugate slip in crystals of alpha-brass[J]. Acta Metallurgica, 1955,3(4):331-338.
    [75]P. Bowen, S.G. Druce, J.F. Knott. Micromechanical modeling of fracture toughness[J]. Acta Metallurgica,1987,35(7):1735-1746.
    [76]Q. Z. Chen, H. Q. Li, W. Y. Chu. Thinning processes and strains in the thinned areas ahead of loaded crack tips during in situ tension in the TEM[J]. Materials Letters,1999,38(5): 367-371.
    [77]Hongtao Wang, Anmin Nie, Jiabin Liu, et al. In situ TEM study on crack propagation in nanoscale Au thin films[J]. Scripta Materialia,2011,65(5):377-379.
    [78]K. Hajlaoui, A. R. Yavari, B. Doisneau, et al. Shear delocalization and crack blunting of a metallic glass containing nanoparticles:In situ deformation in TEM analysis[J]. Scripta Materialia,2006,54(11):1829-1834.
    [79]Rice J. R., Thomson R. Ductile versus brittle behavior of crystals[J]. Philosophical Magazine A,1974,29(1):73.
    [80]J. R. Rice, G. F. Rosengren. Plane strain deformation near a crack tip in a power-law hardening material [J]. Journal of the Mechanics and Physics of Solids,1968,16(1):1-12.
    [81]Thomson R. Brittle fracture in a ductile material with application to hydrogen embrittlement [J]. Journal of Materials Science,1978,26(11):1731-1738.
    [82]Weertman J. Fracture mechanics:a unified view for Griffith-Irwin-Orowan cracks[J]. Acta Metallurgica 1978,26(11):1731-1738.
    [83]S. M. Ohr. J. Narayan. Electron microscope observation of shear cracks in stainless steel single crystals[J]. Philosophical Magazine A.1980,41(1):81-89.
    [84]S. M. Ohr. An electron microscopic study of crack tip deformation and its impact on the dislocation theory of fracture[J]. Materials Science and Engineering A.1985,72(1):1-35
    [85]S. M. Ohr. Electron microscope studies of dislocation emission from cracks[J]. Scripta Metallurgica,1986,20(11):1501-1505.
    [86]Xia Lin, Wang Zi-qiang. Higher-order analysis of crack-tip fields in power law hardening materials[J]. Science in China (Series A).1994,37(6):704-717.
    [87]Lin Xia, C. Fong Shih. Ductile crack growth-Ⅰ. A numerical study using computational cells with microstructurally-based length scales[J]. Journal of the Mechanics and Physics of Solids,1995,43(2):233-259.
    [88]Lin Xia, C. Fong Shih. Ductile crack growth—Ⅱ. Void nucleation and geometry effects on macroscopic fracture behavior[J]. Journal of the Mechanics and Physics of Solids,1995, 43(12):1953-1981.
    [89]陈奇志,褚武扬,乔利杰,等.氢致脆断的TEM原位拉伸观察.金属学报,1994,30(6):248-256.
    [90]K. W. Gao, L. J. Qiao, W. Y. Chu. In situ TEM Observation of crack healing in α-Fe[J]. Scripta Materialia,2001,37(2):1055-1059.
    [91]张跃,褚武扬,王燕斌,等.金属间化合物脆性微裂纹形核的TEM观察[J].中国科学(A辑),1994,24(5):551-560.
    [92]Zhang Yue, Wang Yan-bin, Chu Wu-yang, et al. In-situ TEM observation of brittle micro-crack Nucleation[J]. Chinese Science Bulletin.1994,39(12):980-982.
    [93]俞德刚.铁基马氏体时效——回火转变理论及其强韧性[M].上海:上海交通大学出版社,2008:170-172.
    [94]杨德庄.位错与金属强化机制[M].哈尔滨:哈尔滨工业大学出版社,1990:41-42.
    [95]石德珂.位错与材料强度[M].西安:西安交通大学出版社,1988:
    [96]肖纪美.金属的韧性与韧化[J].上海:上海科学技术出版社[M].1980:365.
    [97]祖荣祥12CrNi3MoV钢低温韧性与硼含量的关系[J].钢铁研究总院学报,1988,8(3):31-35.
    [98]LEE S H, LEE S U, MOON K I, et al. A study on the improvement of the fracture toughness of L12-type Cu-added zirconium trialuminide intermetallics synthesized by mechanical alloying[J]. Materials Science and Engineering A,2004,382(1-2):209-216.
    [99]Z. C. Wang, G. T. Cui, S. Tao, et al. Effect of boron on microstructure and mechanical properties of hot-rolled Nb-added HSLA H-section steel[J]. International Journal of modern physics B,2009,23(6-7):1885-1890.
    [100]涂铭旌,鄢文彬.低合金钢低温脆性断裂论文集[M].西安:西安交通大学出版社,1985:3.
    [101]赵燕青,吴辉,王学敏.690MPa级低碳贝氏体钢回火后的组织与性能[J].金属热处理,2010,35(10):40-43.
    [102]杨跃辉,武会宾,蔡庆伍,等.9Ni钢中回转奥氏体的形成规律及其稳定性[J].材料热处理学报,2010,31(3):73-77.
    [103]Y J. Chao, J. D. Ward Jr., R. G. Sands. Charpy impact energy, fracture toughness and ductile-brittle transition temperature of dual-phase 590 Steel[J]. Materials and Design, 2007,28(2):551-557.
    [104]钟群鹏,李洁.金属韧-脆转移温度的定量研究[J].兵器科学与工程,1983,(3):39-51.
    [105]束德林.金属力学性能[M].北京:机械工业出版社,1987:91-93.
    [106]P. Fassina, F. Bolzoni, G. Fumagalli, et al. Influence of hydrogen and low temperature on pipeline steels mechanical behavior[J]. Procedia Engineering,2011,10:3226-3234.
    [107]周顺深.钢脆性和工程结构脆性断裂[M].上海:上海科学技术出版社,1983:12-16.
    [108]F.B.皮克林著;刘培华等译.物理冶金学及钢的设计[M].杭州:浙江大学出版社, 1984.
    [109]赵振业.合金钢设计[M].北京:国防工业出版社,1999:1-20.
    [110]You Wei, Liu Ya-xiu, Bai Bing-zhe, et al. RBF-Type artificial neural network model applied in alloy design of steels[J]. Journal of Iron and Steel Research, International,2008,15(2): 87-90.
    [111]Qian Zhang, Mahdi Mahfouf. A nature-inspired multi-objective optimisation strategy based on a new reduced space searching algorithm for the design of alloy steels[J]. Engineering Applications of Artificial Intelligence,2010,23(5):660-675.
    [112]Qian Zhang, Mahdi Mahfouf. A hierarchical Mamdani-type fuzzy modelling approach with new training data selection and multi-objective optimisation mechanisms:A special application for the prediction of mechanical properties of alloy steels[J]. Applied Soft Computing,2011,11(2):2419-2443.
    [113]第一机械工业部情报所编.低温用钢汇编[M].北京:机械工业出版社,1972.
    [114]梁鹏跃,董汉雄,陈宇,等.0.5Ni低温用钢的研制[J].压力容器,1992,9(5):372-380.
    [115]中华人民共和国国家质量监督检验检疫总局.GB 3531低温压力容器用低合金钢板[S].2008.
    [116]中华人民共和国国家质量监督检验检疫总局.GB 6479高压化肥设备用无缝钢管[S].2000.
    [117]杨跃辉,蔡庆伍,武会宾,等.两相区热处理工艺对9Ni钢性能的影响[J].材料热处理学报,2009,30(3):92-95.
    [118]谢章龙,陈俊,刘振宇,等.直接双相区热处理工艺参数对9Ni钢组织性能的影响[J].材料热处理学报,2011,32(5):68-73.
    [119]庞辉勇,谢良法,李经涛.提高3.5Ni厚钢板低温冲击韧性的研究[J].压力容器,2009,26(10):5-9.
    [120]邱正华,张桂红,吴忠宪.低温钢及其应用[J].石油化工设备技术,2004,25(2):43-47.
    [121]日本工业标准.JIS G3127低温压力容器用含镍钢板[S].2005.
    [122]Xiao Chen, Aimin Guo, Hanxiong Dong, et al. The properties of high toughness low-temperature -70℃ steel 09MnNiDR[J]. International Journal of Pressure Vessels and Piping,1999,76(1):13-17.
    [123]Taher El-Bitara, Mohammed Gamil, Ibrahim Mousa, et al. Development of carbon—low alloy steel grades for low temperature applications[J]. Materials Science and Engineering A, 2011,528(18):6039-6044.
    [124]B. S. Lee, M. C. Kim, J. H. Yoon, et al. Characterization of high strength and high toughness Ni-Mo-Cr low alloy steels for nuclear application[J]. International Journal of Pressure Vessels and Piping,2010,87(1):47-80.
    [125]薛钢,杨澍,张俊旭.含铜热轧低合金钢的韧脆转变研究[J].材料开发与应用,2006,21(3):13-15.
    [126]牛济泰.材料和热加工领域的物理模拟技术[M].北京:国防工业出版社,1999:144-170.
    [127]徐光,等.金属材料CCT曲线测定及绘制[M].北京:化学工业出版社,2009:142-154.
    [128]崔国涛,王作成,郭卫民,等.一种新型高强韧性H型钢的试验研究[J].2012,15(1):111-114.
    [129]Jun H J, Kang J S, Seo D H, et al. Effects of Deformation and Boron on Microstructure and Continuous Cooling Transformation in Low Carbon HSLA steels [J]. Materials Science and Engineering A,2006,422(1-2):157.
    [130]Garlipp W, Cilense M, Novaes G S I. Austenite Decomposition of C-Mn Steel Containing Boron by Continuous Cooling [J]. Journal of Materials Processing Technology,2001, 114(1):71.
    [131]贺信莱,褚幼义,柯俊.硼钢淬透性与硼向奥氏体晶界的偏聚[J].金属学报,1983,19(6):459-470.
    [132]廖家欣,李西南,刘小兵.奥氏体晶界的硼偏聚对合金钢淬透性的影响[J].长沙电力学院学报(自然科学版),2002,17(1):71-73.
    [133](日)大和久重雄著,赵之昌,才鸿年译.淬透性测定方法和应用[M].北京:新时代出版社,1984:88-120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700