盐胁迫对欧洲赤松光合作用的影响及耐盐性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究所用的欧洲赤松(Pinus silvestris L.)适应性非常强,常常生长在盐碱土上(Cl- 0.213%, SO42- 0.606%, Na+0.419%),是非常珍贵的耐盐树种。为了进一步丰富我国欧洲赤松种质资源,为盐碱地区选择优良树种,为杂交选育提供优良种源,有必要开展欧洲赤松的引种研究。
     本研究以引进的7个欧洲赤松种源和两个国内樟子松种源2年生幼苗为材料,采用大棚盆栽的方法,选取生长指标(苗高、基径)、光合指标,进行耐盐性分析。9个种源分2批种植在不同盐度处理下:(1)哈一、哈二、754、17330、N8、11、17274、大兴安岭、红花尔基,盐处理为0.5%和CK。于胁迫后第10、30、45、60天测量2个生长指标(苗高和基径),第2、20、50天测净光合速率(Pn),第5、30、50天测Fv/Fm;(2)哈一和哈二盐处理梯度为0.25%,0.5%,1%和CK。胁迫后第2、20、50天测净光合速率(Pn)等光合生理指标,胁迫后第25天测光合日变化,第2、20、50天时测光响应曲线,第5、30、60天测PSⅡ叶绿素荧光参数。
     主要结果为:
     1.选取了苗高、基径、相净光合速率、Fv/Fm相对变化率这4个指标,对引进的7个欧洲赤松种源和两个国内樟子松种源进行耐盐性评价,评价结果为:哈一>哈二>17330、11>754>N8>17274>红花尔基>大兴安岭。引进的7个种源的耐盐性都高于国内红花尔基和大兴安岭两个种源的耐盐性,哈一和哈二两个种源的耐盐性排在前两位。
     2.根据Pn、Gs、Ci、Tr、Vpdl、Ls、WUE、CE测量结果表明:盐胁迫导致哈一、哈二的Pn的降低既有浓度效应又有时间效应;盐胁迫导致Pn降低的因素,哈一为气孔限制因素;哈二对短期的盐胁迫表现为气孔限制因素,而对长期的盐胁迫表现为气孔限制因素和非气孔限制因素共同作用。通过回归分析,结果显示盐处理后,影响哈一Pn的光合生态因子排列顺序为CE>Ci>Gs>WUE>Ls>Vpdl,影响哈二Pn的光合生态因子的排列顺序为,Ci>CE>Ls>Gs>Tr>WUE。
     3.根据Pn、GS、Ci、Tr、Vpdl、Ls、WUE、LUE、CE的日变化结果表明:哈一在0.25%盐处理时Pn日变化为单峰曲线,CK、0.5%盐处理时Pn日变化为为双峰曲线,1%盐处理时Pn日变化为波浪形曲线;影响哈-CK Pn日变化的生态因子排序为RH>Ci>Ca >Ta>Gs>Vpdl; 0.25%盐处理影响Pn日变化的生态因子排序为RH>Tr>Ci>Ca>Ta>PAR:0.5%盐处理影响Pn日变化的生态因子排序为Ta>RH>Vpdl>Ci>PAR;1%盐处理影响Pn日变化的生态因子排序为Ci>Ca>Gs。哈二CK和0.25%盐处理时Pn日变化为单峰曲线,0.5%和1%盐处理时Pn日变化为双峰曲线;影响哈二CK Pn日变化的生态因子排序为Ci>Vpdl>RH>Tr>Ca>Gs; 0.25%盐处理影响P。日变化的生态因子排序为Vpdl>Ta> RH>Ci>PAR>Tr; 0.5%盐处理影响Pn日变化的生态因子排序为Ca>Ci>PAR>Tr>Ta;1%盐处理影响Pn日变化的生态因子排序为Tr>Ci>PAR>Ca>Ta>RHo
     4.光响应曲线拟合结果表明:模型5对欧洲赤松哈一和哈二ck、0.25%、0.5%、1%的拟合结果要好于其他模型。哈一和哈二在盐处理后AQY和LSP降低,可能是造成P。降低的原因。
     5.Fv/Fm、Fv'/Fm'、ΦPSⅡ、PhiCO2、qP、qN、ETR测量结果表明:哈一盐处理后Fv/Fm、Fv'/Fm'、ΦPSⅡ、ETR、PhiCO2与盐胁迫强度呈极显著负相关,qN与盐胁迫强度呈极显著正向相关,qP与盐胁迫强度呈不显著负相关,盐胁下PSⅡ光合反应中心受到损害、表观电子传递速率降低以及光合电子传递受阻是导致哈一Pn降低的一个重要原因。哈二在盐处理后Fv/Fm、Fv'/Fm'、ΦPSⅡ、qP、ETR、PhiCO2与盐胁迫都出极显著负相关,qN与盐胁迫强度呈极显著正相关,盐胁迫下PSⅡ光合反应中心受到损害以及CO2同化速率相对应的量子产量降低是导致哈二Pn降低的一个重要原因。
     盐胁迫下,哈一和哈二的光合作用都受到不同程度抑制,哈二P。降低幅度,Pmax降低的幅度,WUE、LUE、CE日平均值降低幅度,日碳同化量降低的幅度、PSⅡ光合反应中心受到损害程度都大于哈一,说明哈一的耐盐性优于哈二。
Pinus silvestris L., an adaptability precious salt-tolerance variety, could grow on the saline-alkali soil (Cl- 0.213%, SO42- 0.606%, Na+ 0.419%). A study on introduction of Pinus silvestris L. is necessary to be carried out in order to enriching genetic resources of Pinus silvestris L., selecting excellent species, and providing crossing parents in China.
     In a pot experiment made by saline-alkali soil, this paper studied the salt-tolerance of 7 introduced Pinus silvestris L. provenances and 2 Pinus sylvestris var. mongolica domestic ones. The 9 kind of 2-year-old seedlings were divide into 2 batches to plant:(1) Hal, Ha2,754, 17330, N8,11,17274, DAXINGANLING, HONGHUAERJI, the salt stress level is 0.5% and control. After salt treatment,2 grow indicators, height growth and stem basal diameter, were determined on the 10th,30th,45th,60th day. Net photosynthetic rate (Pn) measured on the 2nd, 20th,50th day and Fv/Fm measured on the 5th,30th,50th day. (2) Hal, Ha2, the salt stress level is 0.25%,0.5%,1.0% and control. After salt treatment, diurnal variation of 9 photosynthesis indexes was measured on the 25th day. Photosynthesis physiological indexes and Light responsive curve measured on the 2nd,20th,50th day and chlorophyll fluorescence parameters measured on the 5th,30th,60th day. The mainly conclusions as follow:
     1. Four indexes, relative variable ratio of height growth, basal diameter, Pn and Fv/Fm were used to evaluate the salt tolerance of 7 introduced Pinus silvestris L. provenances and 2 Pinus sylvestris var. mongolica domestic ones, its order is:Hal>Ha2>17330 and 11>754>N8> 17274>HONGHUAERJI>DAXINGANLING.7 introduced Pinus silvestris L. provenances have stronger tolerance to salt stress than those of 2 domestic ones (HONGHUAERJI and DAXINGANLING), tolerance to salt stress of Hal and Ha2 was superior.
     2. According to the results of Pn, Gs, Ci, Tr, Vpdl, Ls, WUE and CE, descended Pn under salt stress of Hal and Ha2 has both concentration effects and time effects. It denoted the main factor inhibiting Pn of Hal is stomatal control. The factor inhibiting Pn of Ha2 to short-time salt stress is stomatal control, and that to long-time salt stress is stomata and non-stomatal control. Regression analysis results showed that effects of salt stress on photosynthetic ecological factors of Hal order is CE>Ci>Gs> WUE>Ls> Vpdl, and that of Ha2 is Ci>CE >LS>GS>Tr>WUE.
     3. According to the results of diurnal variation of Pn, Gs, Ci, Tr, Vpdl, Ls, WUE, LUE and CE, the Pn diurnal variation curves of Hal under 0.25%, CK together with 0.5%,1% salt stress is single-peak, two-peak and waves respectively. Ecological factors orders of Hal under CK, 0.25%,0.5% and 1% salt treatments respectively is RH>Ci>Ca>Ta>Gs>Vpdl, RH>Tr>Ci >Ca>Ta>PAR, Ta>RH>Vpdl>Ci>PAR, Ci>Ca>GS. The Pn diurnal variation curves of Hal under CK together with 0.25%,0.5% together with 1% salt stress is single-peak and two-peak respectively. Ecological factors orders of Hal under CK,0.25%,0.5% and 1% salt treatments respectively is Ci>Vpdl>RH>Tr>Ca>Gs, Vpdl>Ta>RH>Ci>PAR>T, Ca>Ci >PAR>Tr>Ta, Tr>Ci>PAR>Ca>Ta>RH.
     4. The light response curves fitting results showed that model 5 were better than the others. Descended AQYand LSP might be important factors resulting in the decrease of Pn.
     5. According to the results of Fv/Fm, Fv'/Fm',ΦPSⅡ, PhiCO2, qP, qN, ETR, under salt stress, the statistics analysis of Hal showed a significant negative correlation between salinity and Fv/Fm, Fv'/Fm',ΦPSⅡ, ETR, PhiCO2, a significant positive correlation between salinity and qN, but a non-significant negative correlation between salinity and qP. The reaction center inactivation, reducing electrons transport rate and hampering photosynthetic electron transfer might be important factors resulting in the decrease Pn of Hal. The statistics analysis of Ha2 showed a significant negative correlation between salinity and Fv/Fm, Fv'/Fm',ΦPSⅡ, ETR, qp, PhiCO2, a significant positive correlation between salinity and qN. The reaction center inactivation, reducing quantum yield corresponding to CO2 assimilation rate might be important factors resulting in the decrease Pn of Ha2.
     Under salt stress, photosynthesis was inhibited in varying degrees. The Ha2 value of decreased Pn and Pmax, daily average of WUE, LUE, CE, damage of the reaction center were greater than those of Hal. Overall, the salt tolerance of Hal is superior to Ha2.
引文
1. Parida AK, Das AB. Salt tolerance and salinity effects on Plants:a review. Ecotoxicology and Environmental safety.2005,60(3):324-349
    2. Xiong L, Schumaker KS, Zhu JK. Cell signalling during cold, drough, and salt stress. Plant Cell.2002,14(S):165-183
    3. Ashraf M. Some important physiological selection criteria for salt tolerance in plants. Flora,2004,199(5):361-376
    4. Xiong L, Zhu JK. Molecular and genetic aspects of Plant response to osmotic stress. Plant, Cell and Environment.2002,25(2):131-139
    5. Munns R, James RA, Lauchli A. Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany.2006,57(5):1025-1043
    6. Xiong L, Zhu JK. Salt Tolerance. The Arabidopsis Book.2002,1:1-22
    7. Tonon G, Kevers C, Faivre-Rampant O, Grazianil M, Gaspar T. Effect of NaCl and mannitol iso-osmotic stresses on proline and free polyamine levels in embryogenic Fraxinus angustifolia callus. Journal of Plant Physiology.2004,161(6):701-708
    8. Zhu JK. Salt and drought stress signal transductiong in plants. Annu. Rev. Plant Biol. 2002,53:247-273
    9. Zhu JK. Regulation of ion homeostasis under salt sress. Current Opinion in Plant Biolgy. 2003,6(5):441-445
    10. Zhu JK. Plant salt tolerance. Trends in Plant Science.2001,6(2):66-71
    11. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol.2000,51:463-499
    12. Mansour MMF, Salama KHA. Cellular basis of salinity tolerance in plants. Environmental and Experimental Botany.2004,52(2):113-122
    13. Gupta NK, Meena SK, Gupta S, Khandelwal SK. Gas exchang, membrane permeability, and ion uptake in two species of Indian jujube differing in salt tolerance. Photosynthetica. 2002,40(4):535-539
    14. Santos CV. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves Scientia. Horticulturae.2004,103(1):93-99
    15. Koyro HW. Effect of salinity on growth, photosynthesis, water relations and solute composition or the potential cash crop halophyte Plantago coronopus. Environmental and Experimental Botany.2006,56(2):136-146
    16. Munns R. Comparative physiology of salt and water sress. Plant, Cell and Environment. 2002,25(2):239-250
    17. Kao WY, Tsai TT, Shih CN. Photosynthetic gas exchange and chlorophyll a fluorescence of three wild soybean species in response to NaCl treatments. Photosynthetica.2003, 41(3):415-419
    18. Sayed OH. Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica. 2003,41(3):321-330
    19. Iyengar ERR, Reddy MP. Photosynthesis in highly salt tolerant Plants.//pesserkali, M.(Ed.), Handbook of Photosynthesis. Marshal Dekar, Baten Rose, USA, Plant Physiology. 1996,897-909
    20. Khan M A, Sheith K H. Effects of different levels of salinity on seed germination and growth of Capsicum annuum. Biologia.1996,22:15-16
    21.罗庆云,於丙军.大豆苗期耐盐性鉴定指标的检验.大豆科学.2001,20(3):177-182
    22.解秀娟,胡晋.沙引发对紫花苜蓿种子盐逆境下发芽及幼苗生理生化变化的影响.种子.2003,(4):5-6
    23. Khan MA, Ungar I A. Seed polymorphism and germination responses to salinity stress in Atriplex triangularis Willd. Bot. Gaz.1984,145(4):487-494
    24. Zekri M. Effects of NaCl on growth and physiology of sour orange and Cleopatra mandarin seedlings.Sci Hortic.1991,47(3-4):305-315
    25.李海云,赵可夫,王秀峰.盐对盐生植物种子萌发的抑制.山东农业大学学报(自然科学版).2002,33(2):170-173
    26. Ungar I A. Halophyte seed germination. Bot. Rev.1978,44(2):233-264
    27. Salman Gulzar, Ajmal Khan M. Seed germination of a halophytic grass Aeluropus lagopoides. Annals of Botany.2001,87(3):319-324
    28.段德玉,刘小京,李存桢.不同盐分与水分胁迫对灰绿藜种子萌发效应研究.中国生态农业学报.2005,13(2):79-81
    29.程大友,张义,陈丽.氯化钠胁迫下甜菜种子的萌发.中国糖料.1996,(2):21-23
    30.谢德意,王惠萍,王付欣,冯复全.盐胁迫对棉花种子萌发及幼苗生长的影响.中国棉花.2000,27(9):12-13
    31.卢静君,李强,多立安.盐胁迫对金牌美达丽和猎狗种子萌发的影响.植物研究.2002,22(3):328-332
    32.王庆亚,刘敏,张守栋,刘俊,刘友良.盐胁迫对盐角草种子萌发与幼苗生长效应的研究.江苏农业科学.2002,(2):69-71
    33.梁云媚,李燕,多立安,刘捷.不同盐分胁迫对苜蓿种子萌发的影响.草业科学.1998,15(6):21-25
    34.安守芹,于卓,孙丽娟,陈晓荣.花棒等四种豆科植物种子萌发及苗期耐盐性的研究.中国草地.1995,(6):29-32
    35. Strogonov BP. Physiological basis of salt tolerance of plants. Akad. Nauk. USSR. (translation by Israel Progr.Sci. Trans., Jerusalem).1964.135-140
    36. Ungar IA. Germination ecology of halophytes. In:Sen DN, Rajpurchit KS.(Eds.), Contributions to the Ecology of Halophytes. Junk, The Hague.1982,4:143-154
    37. Ungar IA. Eco-physiology of vascular halophytes. CRC Press, Boca Raton, FL.1991
    38. Nanawati GL, Maliwal GL. Note on the effect of salts on the growth, mineral nutrition and quality of tomato (Lycopersicone sculentum Mill). Indian J. Agric. Sci.1974,43:612-614
    39. Papadopoulos L, Rendig VV. Tomato plant response to salinity. J. Agric.1983,75:696-700
    40. Snapp SS, Shennan C. Salinity effects on root growth and senescence in tomato and the consequences for severity of phytophthora root rot infection. American Society for Horticultural Science.1994,119(3):458-463
    41. Tattini M, Bertoni P, Caselli S. Genotypic responses of olive plant to sodium chloride. J. Plant. Nutr.1992,15(9):1467-1485
    42. Storey E. Salt tolerance, ion relations and the effects of root medium on the response of Citrus to salinity. Australian Journal of Plant Physiology.1995,22(1):101-114
    43. Therios N, Misopolinos ND. Genotypic response to sodium chloride salinity of four major olive cultivars(Olea europaea L.). Plant Soil.1988,106(1):105-111
    44. Bongi G, Loreto F. Gas-exchange properties of salt stressed olive (Olea europaea L.) leaves. Plant Physiol.1989,90(4):533-545
    45. Bartolini G, Mazuelos C, Troncoso A. Influence of Na2SO4 and NaCl salts on survival, growth and mineral composition of young olive plants in inert sound culture. Adv. Hort. Sci.1991,5:73-76
    46. Tattini M.et al. Growth, gas exchange and ion content in Olea europaea plant during salinity stress and subsequent relief. Physiologia Plantarum,1995,95(2):203-210
    47. Van Ieperen W. Effects of different day and night salinity levels on vegetative growth, yield and quality of tomato. J. Hort. Sci.1996,71:99-111
    48. Franco J A, et al. Relationship between the effects of salinity on seedling leaf area and fruit of six muskmelons cultivars. Horticultural Science.1997,32:642-647
    49. Yeo AR, Lee λS, Izard P, Boursier PJ, Flowers TJ. Short and long-term effects of salinity on leaf growth in rice (Oryza sativa L.). J. Exp. Bot.1991,42(7):881-889
    50. Jarrell WM, Virginia RA. Response of mesquite to nitrate and salinity in a simulated phreatic environment:water use, dry matter and mineral nutrient accumulation. Plant and Soil.1990,125(2):185-196
    51. Chartzoulakis KS. Photosynthesis, water relations and leaf growth of cucumber exposed to salt stress. Scientia Horticulturae.1994,59(1):27-35
    52. Fung LE, Wang SS, Altman A, Hutterman A. Effect of NaCl on growth, photosynthesis, ion and water relations of four poplar genotypes. Forest Ecology and Management.1998, 107(1-3):135-146
    53.汪贵斌,曹福亮.土壤盐分及水分含量对落羽杉幼苗生长的影响.应用生态学报.2004,15(12):2396-2400
    54.杨敏生,李艳华,梁海永,王进茂.盐胁迫下白杨无性系苗木体内离子分配及比较研究.生态学报.2003,23(2):271-278
    55. Chartzoulakis K, Loupassaki M, Bertaki M, Androulakis I. Effects of NaCl salinity on growth, ion content and CO2 assimilation rate of six olive cultivars. Scientia Horticulturae. 2002,96(1):235-247
    56. Garcia-Sanchez F, Jifon J L, Carvajal M, Syvertsen JP. Gas exchange, chlorophyll and nutrient contents in relation to Na+ and Cl- accumulation in'Sunburst' mandarin grafted on different rootstocks. Plant Science.2002,162(5):705-712
    57. Seemann JR, Critchley C. Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of salt-sensitive species, Phaseolus vulgaris L. Planta.1985,164(2):151-162
    58.牟永花,张德威.NaCI胁迫下番茄苗的生长和营养元素积累.植物生理学通讯.1998,34(1):14-16
    59.杨秀玲,郁继华,李雅佳,李建建,张韵.NaCI胁迫对黄瓜种子萌发及幼苗生长的影响.甘肃农业大学学报.2004,39(1):6-17
    60.陶晶,陈士刚,秦彩云,李岩,李铁,娄树生.东北西部主要杨树品种对盐碱胁迫的生长反应.吉林林业科技.2004,33(4):13-16
    61. Munns R, Greenway H, Kirst GO. Halotolerant eukaryotes, In:Lange OL, Nobel PS, Osmond CB, Zeigler H (eds), Physiological Plant Ecology II:Responses to the Chemical and Biological Environment, Encyclopedia of Plant Physiology, New Series. Springer, Berlin.1983,12:59-135
    62. Munns R. Physiological processes limiting plant growth in saline soil:some dogmas and hypotheses. Plant, Cell and Environment.1993,16(1):15-24
    63. Kuiper D, Schuit J, Kuiper PJC. Actual cytokine in concentrations in plant tissue as an indicator for salt resistance in cereals. Plant and Soil.1990,123:243-250
    64.章文华,刘友良.盐胁迫对小麦种子萌发的两种酶活性的影响.南京农业大学学报.1991,14(4):18-22
    65. Neumann PM. Salinity resistance and plant growth revisited. Plant, Cell and Environ. 1997,20(9):1193-1198
    66.张福锁.环境胁迫与植物育种.北京:农业出版社.1993
    67.赵建平,谢虎.佛手瓜耐盐性的研究.中国蔬菜.1995,(2):19-21
    68.王新伟.不同盐浓度对马铃薯试管苗的胁迫效应.马铃薯杂志.1998,12(4):203-207
    69.戴伟民,蔡润,潘俊松,何欢乐.盐胁迫对番茄幼苗生长发育的影响.上海农业学报.2002,18(1):58-62
    70.魏国强,朱祝军,方学智,李娟,程俊. NaCl胁迫对不同品种黄瓜幼苗生长、叶绿素荧光特性和活性氧代谢的影响.中国农业科学.2004,37(11):1754-1759
    71.张教方,刘晓东,刘宏伟.毛百合繁殖生物学研究(Ⅳ):种子萌发的动态形态解剖.东北林业大学学报.1994,22(5):49-53
    72. Bressan RA, Nelson DE, Iraki NM, et al. Reduced cell expansion and changes in cell walls of plant cells adapted to NaCl. In:Katterman F.(ed):Environmental Injury to Plants. San Diego:Academic Press Inc.1990,137-171
    73.龚明,丁念诚,贺子义,刘友良.盐胁迫下大麦和小麦叶片脂质过氧化伤害与超微结构变化的关系.植物学报.1989,31(11):841-846
    74. Cramer GR, Lauchli A, Polito VS. Displacement of Ca2+ by Na+ from the plasmalemma of root cell. Plant Physiol.1985,79(1):207-211
    75. Pareek AS, Singla SLATA, Grover A. Short-term salinity and high temperature stress-associated ultras-tructural alterations in young leaf cells of Oryza sativa L.. Annals Botany. 1997,80(5):629-639
    76. Chang PFI, et al.. Alterations in cell membrane structure and expression of a membrane-associated protein after adaptation to osmotic-stress. Physiologia Plantarum.1996, 98(3):505-516
    77. Keiper FJ, Chen DM, De Filippis LF. Respiratory, photosynthetic and ultra-structural changes accompanying salt adaptation in culture of Eucalyptus microcorys. Journa of Plant Physiology.1998,152(4-5):564-573
    78.柯玉琴,潘廷国. NaCl胁迫对甘薯叶片叶绿体超微结构及一些酶活性的影响.植物生理学报.1999,25(3):229-233
    79. Piqueras A, Olmos E, Hellin E. Cytological changes related with salt tolerance in embryogenic callus of Citrus limon. Plant Cell, Tissue and Organ Culture.1994,39(1): 13-18
    80. Morales MA, Sanchez-Blanco MJ, Olmos E, et al.. Changes in the growth, leaf water relations and cell ultra-structure in Argyranthemum coronopifoium plants under saline conditions. Journal of Plant Physiology.1998,153(1-2):174-180
    81.冯立田,赵可夫,邓振旭. NaCl对菜豆叶片光合C02和水分交换效应的研究.山东师范大学学报.1999,14(2):180-183
    82.郭书奎,赵可夫.NaCl胁迫抑制玉米光合作用的可能机理.植物生理学报.2001,27(6): 461-466
    83.刘会超,孙振元,彭振华. NaCl胁迫对五叶地锦生长及某些生理特性的影响.林业科学.2004,40(6):63-67
    84. Locy RD, Chang CC, Nielsen BL, Singh NK. Photosynthesis in salt-adapted heterotrophic tobacco cells and regenerated plants. Plant Physiol.1996,110(1):321-328
    85. Salama S, Trivedi S, Busheva M, ARafa AA, Garab GY, Erdei L. Effects of NaCl salinity on growth, cation accumulation, chloroplast structure and function in wheat cultivars differing in salt tolerance. Journal Plant Physiology.1994,144:241-247
    86. Ott T, Clarke J, Johnson G. Regulation of the photosynthetic electron transport chain. Planta.1999,209(2):250-258
    87. Wang YM, Meng YL, Ishikawa H, Hibino T, Tanaka Y, Nii N, Takabe T. Photosynthetic adaption to salt stress in three color leaves of a C4 plant Amaranthus tricolor. Plant Cell Physiology.1999,40(7):668-674
    88.刘宛,胡文玉,谢甫缔等. NaCl胁迫对离体小麦叶片膜过氧化脂类物质的影响.植物生理学通讯.1995,31(1):26-29
    89. Munns R. Physiological processes limiting plant growth in saline soils:some dogmas and hypotheses. Plant, Cell and Environment.1993,16(1):15-24
    90. Allakaberdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N. Ionic and osmotic effects of NaCl-induced inactivation of photosystems Ⅰ and Ⅱ in Synechococcus sp. Plant Physiology.2000,123(3):1047-1056
    91. Rajesh A, Arumugam R, Venkatesalu V. Growth and Photosynthetic characterics of Ceriops roxburghiana under NaCl stress. Photosynthetica,1998.35(2):285-287
    92. Kurban H, Saneoka H, Nehira K, Adilla R, Premachandra GS, Fujita K. Effect of salinity on growth, Photosynthesis and mineral composition in leguminous plant Alhagi pseudoalhagi (Bieb.). Soil Seience and Plant Nutrition.1999,45(4):851-862
    93. Parida AK, Das AB, Mittra B. Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees-Structure and Function. 2004,18(2):167-174
    94. Chaudhuri K, Choudhuri MA. Effect of short-term NaCl stress on water relations and gas exchange of two jute species. Biologia Plantarum.1997,40(3):373-380
    95. Soussi M, Ocana A, Lluch C. Effects of salt stress on growth, photosynthesis and nitrogen fixation in chick-pea (Cicer arietinum L.). Journal of Experimental Botany. 1998,49(325):1329-1337
    96. Romeroaranda R, Soria T, Cuartero J. Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Science.2001,160(2):265-272
    97. Kao WY, Tsai HC, Tsai TT. Effect of NaCl and nitrogen availability on growth and photosynthesis of seedlings of a mangrove species, Kandelia candel (L.) Druce. Journal of Plant Physiology.2001,158(7):841-846
    98. Kao WY, Tsai TT, Tsai HC, Shih CN. Response of three Glycine species to saltstress. Environmental and Experimental Botany.2006,56(1):120-125
    99. Munns R, Termatt A. Whole plant responses to salinity. Australian Journal of Plant Physiology.1986,13(1):143-160
    100.Parida AK, Das AB. Salt tolerance and salinity effects on plants:a review. Ecotoxicology and Environmental safety.2005,60(3):324-349
    101.许大全.光合作用效率.上海:上海科学技术出版社.2002,39-98
    102.Ortiz-Lopez A, Ort DR, Boyer JS. Photophosphorylation in attached leaves of Helianthus annuus at low water potentials. Plant Physiology.1991,96(4):1018-1025
    103.Everard JD, Gucci R, Kann SC, Flore JA, Loeseher WH. Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity. Plant Physiology.1994,106(1):281-292
    104.Heuer B. Photosynthetic carbon metabolism of crops under salt stress. In:Pessarakli, M.(Ed.), Handbook of Photosynthesis. Marcel Dekker Inc. NewYork.1997,887-896
    105.Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology.1982,33:317-345
    106.Brugnoli E, Lauteri M.. Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3non-halophytes. Plant Physiology.1991,95(2): 628-635
    107.Burman U, Garg BK, Kathju S. Water relations, photosynthesis and nitrogen metabolism of Indian mustard (Brassica juncea Czern.& Coss.) grown under salt and water stress. Journal of Plant Biology.2003,30:55-60
    108.Gibberd MR, Turner NC, Storey R. Influence of saline irrigation on growth, ion accumulation and partitioning, and leaf gas exchange of carrot (Daucus carota L.). Annals of Botany.2002,90(6):715-724
    109.Tezara W, Mitchell V, Driscoll SP, Lawlor DW. Effects of water deficit and its interaction with CO2 supply on the biochemistry and physiology of photosynthesis in sunflower. Journal of Experimental Botany.2002,53(375):1781-1791
    110.Qiu N, Lu C. Enhanced tolerance of photosynthesis against high temperature damage in salt-adapted halophyte Atriplex centralasiatica plants. Plant and Cell Environment. 2003,26(7):1137-1145
    111.Brugnoli E, Bjorkman O. Growth of cotton under continuous salinity stress:influence on alloeation pattern, stomatal and nonstomatal components of photosynthesis and dissipation of excess light energy. Planta.1992,187(3):335-47
    112.Agastian P, Kingsley SJ, Vivekanandan M. Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica.2000,38(2):287-90
    113.Ziska LH, Seemann JR, Dejong TM. Salinity induced limitations on photosynthesis in Prunus salicina, a deciduous tree species. Plant physiology.1990,93(3):864-870
    114.Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes. Annual Review of Plant Physiology.1980,31:149-190
    115.HernAndez JA, Campillo A, Jimenez A, Alacon JJ, Sevilla F. Response of antioxidant systems and leaf water relations to NaCl stress in pea plants. New Phytologist.1999, 141(2):241-251
    116.Gadallah MAA. Effects of proline and glycinebetaine on Vicia faba response to salt stress. Biologia Plantarum.1999,42(2):249-257
    117.Parida A, Das AB, Das P. NaCl stress causes changes in Photosynthetic Pigments, proteins and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic ecultures. Journal of Plant Biology,2002,45(1):28-36
    118.Stepien P, Klobus G. Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biologia Plantarum.2006,50(4):610-616
    119.Yang XH, Lu CM. Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize Plants.Physiologia Plantarum.2005,124(3):343-352
    120.Khavari-Nejad RA, Chaparzadeh N. The effects of NaCl and CaCl2 on photosynthesis and growth of alfalfa plants. Photosynthetica.1998,35(3):461-466
    121.Santos CV. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Seientia Horticulturae.2004,103(1):93-99
    122.Kennedy BF, De Fillippis. Physiological and oxidative response to NaCl of the salt tolerant Grevillea ilicifolia and the salt sensitive Grevillea arenaria. Journal of Plant Physiology.1999,155(6):746-754
    123.Lu CM, Qiu NW, Lu QT, Wang BS, Kuang TY. Does salt stress lead to increased susceptibility of photosystem Ⅱ to photoinhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsa grown out doors. Plant Scienee,2002,163(5): 1063-1068
    124.Qiu NW, Lu QT, Lu CM. Photosynthesis, photosystemⅡ efficiency and the xanthophyll cycle in the salt-adapted halophyte Atriplex centralasiatica. New Phytologist.2003, 159(2):479-486
    125.Winicov I, Button JD. Accumulation of photosynthesis gene transcripts in response to sodium chloride by salt tolerant alfalfa cells. Planta.1991,183(4):478-483
    126.Wang Y, Nil N. Changes in chlorophyll, ribulose biphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress.The Journal of Horticultural Science and Biotechnology.2000,75: 623-627
    127.Everard JD, Gucci R, Kann SC, Flore JA, Loeseher WH. Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity. Plant Physiol.1994,106(1):281-292
    128.Anderson JM, Park YI, Chow WS. Unifying model for the photoinaetivation of PhotosystemⅡ in vivo under steady-state photosynthesis. Photosynthesis Research.1998, 56(1):1-13
    129.Baker NR. A possible role for photosystem II in environmental perturbations of Photosynthesis. Physiologia Plantarum.1991,81(4):563-570
    130.Huner NPA, Ogist G, Sarhan F. Energy balance and acclimation to light and cold. Trends in Plant Science.1998,3(6):224-230
    131. Allen DJ, Ort DR. Impact of chilling temperatures on photosynthesis in warm-climate Plants. Trendes in Plant Science.2001,6:36-42
    132.张守仁.叶绿素荧光动力学参数的意义及讨论.植物学通报.1999,16(4):444-448
    133.Masojidek J, Hall DO. Salinity and drought stresses are amplified by high irradiance in sorghum. Photosyntherica.1992,27:159-171
    134.Smillie RM, Nott R. Salt tolerance in crop plants monitored by chlorophyll fluorescence in vivo. Plant Physiology.1982,70(4):1049-1054
    135.Netondo GW, Onyango JC, Beck E. Sorghum and salinity:Ⅱ. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Science.2004,44:806-822
    136.Tiwari BS, Bose A, Ghosh B. Photosynthesis in rice under a salt stress. Photosynthetica. 1997,34(2):303-306
    137.Lu CM, Vonshak A. Characterization of PSII Photochemistry in salt-adapted cells of cyanobacterium Spirulina platensis. New Phytologist.1999,141 (2):231-239
    138.Papageorgiou GC. Alygizaki-Zobra A, Ladas N, Murata N. A method to probe the cytoplasmic osmolarity and osmotic water and solute fluxes across the cell membrane of cyanobacteria wirh chlorophyll a florescence:experiments with Synechococcus sp. PCC7942. Physiology Plantarum.1998,103(2):215-224
    139.Allakhverdiev SI, Nishiyama Y, Suzuki I, Tasaka Y, Murata N. Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proceedings of of the National Aeademy of science.1999,96(10):5862-5867
    140.Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N. Inactivation of photosystems I and II in response to osmotic stress in Synechococcus. contribution of water channels. Plant Physiology.2000,122(4):1201-1208
    141.Allakhverdiev SI, Nishiyama Y, Miyairi S, Yamamoto H, Inagaki N, Kanesaki Y, Murata N. Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis. Plant Physiology.2002, 130(3):1443-1453
    142.Parida AK, Das AB, Mittra B. Effects of NaCl stress on the structure, pigment complex composition and photosynthetic activity of mangrove Bruguiera parviflora chloroplasts. Photosynthetica.2003,41(2):191-200
    143.Mishra SK, Subrahmanyam D, Singhal GS. Interrelationship between salt and light stress on primary processes of photosynthesis. Journal of Plant Physiology.1991,138:92-96
    144.Dionisio-Sese ML, Tobita S. Effects of salinity on sodium content and photosynthetic responses of rice seedlings differing in salt tolerance. Journal of Plant Physiolgy.2000, 157(1):54-58
    145.Flexas J, Ribas-Carbo M, Bota J, Galmes J, Henkle M, Martinez-Canellas S, Medrano H. Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. New Phytologist.2006,172(1):73-82
    146.Jiang CZ, Rodermel SR, Shibles RM. Photosynthesis, Rubisco Activity and Amount, and Their Regulation by Transcription in Senescing Soybean Leaves. PlanrPhysiologyogy. 1993,101(1):105-112
    147.Parry MAJ, Andralojc PJ, Khan S, Lea PJ, Keys AJ. Rubisco activity:effects of drought stress. Annals of Botany.2002,89(7):833-839
    148.Delfine S, Alvino A, Zacchini M, Loreto F. Consequences of salt stress on conductance to CO2 diffusion, Rubisco characteristics and anatomy of spinach leaves. Australian Journal Plant Physiology.1998,25:395-402
    149.Martino CD, Delfine S, Pizzuto R, Loreto F, Fuggi A. Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress. New phytologist.2003,158(3):455-463
    150.Reddy MP, Sanish S, Iyengar ERR. Photosynthetic studies and compartmentation of ions in different tissues of Salicornia brachiata Roxb. Under saline conditions. Photosynthetica. 1992,26:173-179
    151.Sivakumar P, Sharmila P, Saradhi PP. Proline Suppresses Rubisco Activity in Higher Plants. Biochemical and Biophysical Researeh Communications.1998,252(2):428-432
    152.Sivakumar P, Sharmila P, Pardha Saradhi P.2000. Proline Alleviates Salt-Stress-Induced Enhancement in Ribulose-1,5-Bisphosphate oxygenase Activity. Biochemical and Biophysical ResearchCommunications.2792:512-515
    153.Aragao MEF, Guedes MM, otoch MLO, Guedes MIF, Melo DF, Lima MGS. Differential responses of ribulose-1,5-bisphosphate carboxylase/oxygenase activities of two Vigna unguiculata cultivars to salt stress. Brazilian Journal of plant Physiologyogy.2005, 17(2):207-212
    154.Seemann JR, Critchley C. Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L(?) Planta.1985,164(2):151-162
    155.Kozlowaki TT. Responses of woody plants to flooding and salinity. Tree Physiology Monograph.1997, (1):1-29
    156.王艳青,蒋湘宁,李悦.盐胁迫对刺槐不同组织及细胞离子吸收和分配的变化.北京林业大学学报.2001,23(1):19-23
    157.Hansen EH, Munns DN. Effect of CaSO4 and NaCl on mineral content of leucaena leucocephala. Plant and Soil.1988,107(1):101-105
    158.Ashraf M. Salt tolerance of cotton:Some new advances. Critical Review in Plant Sciences. 2002,21(1):1-30
    159.Mehmet AD. Comparative response of two olive (Olea europaea L.) cultivars to salinity.Turk J Agric.2005,29:267-274
    160.Rabie GH, Almadini AM. Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. African Journal of Biotechnology.2005,4(3):210-222
    161.石德成,赵可夫. NaCl和Na2CO3对星星草生长及营养液中主要矿质元素存在状态的影响.草业学报.1997,6(2):51-61
    162.Niu XM, Bressan RA, Hasegawa PM, Pardo JM. Ion homeostasis in NaCl stress environments. Plant Physiology.1995,109(3):735-742
    163.陈秀兰.提高棉花耐盐性的途径.棉花学报.1998,10(2):64-68
    164.赵可夫.植物抗盐生理.北京:科学技术出版社.1993
    165.武维华.植物生理学.北京:科学出版社.2003,448-455
    166.Taiz L, Zeiger E. Plant physiology,3rd Edition. Sinauer Assoc., Sunderland.2002
    167.Ashraf M, Bashir A. Salt stress induced changesin some organic metabolites and ionic relations innodules and other plant parts of two crop legumes differing in salt tolerance.Flora.2003,198(6):486-498
    168.赵可夫.植物对盐渍逆境的适应.生物学通报.2002,37(6):7-10
    169.Ueda A, Kanechi M, Uno Y, Inagaka N. Photosynthetic limitations of a halophyte sea aster (Aster tripolium L.) under water stress and NaCl stress. Journal of Plant Research.2003, 116(1):65-70
    170.许兴,郑国琦.宁夏枸杞耐盐性与生理生化特征研究.中国农业生态学报.2002,10(3):70-73
    171.Abraham E, Rigo G, Szekely G, Nagy R, Koncz C, Szabados L. Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Molecular Biology.2003,51(3):363-372
    172.Mohanty A, Kathuria H, Ferjani A, Sakamoto A, Mohanty P, Murata N, Tyagi A. Transgenics of an elite indica rice variety Pusa Basmati 1harbouring the codA gene are highly tolerant to salt stress. Tag Theoretical and Applied Genetics.2002,106(1):51-57
    173.Yang WJ, Rich PJ, Axtell JD, Wood KV, Bonham CC, Ejeta G, Mickelbart MV, Rhodes D. Genotypic variation for glycinebetaine in sorghum. Crop Science.2003,43(1):162-169
    174.Khatkar D, Kuhad MS. Short-term salinity induced changes in two wheat cultivars at different growth stages. Biologia Plantarum.2000,43 (4):629-632
    175.Zhang HY, Fan ZF. Comparative Study on the Content of Inorganic and Organic Solutes in Ten Salt-tolerant Plants in Yuncheng Saltlake. Acta Ecologica Sinica.2002,22(3):352-358
    176.Murakeozy EP, Nagy Z, Duhaze C, Bouchereau A, Tuba Z. Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary. Journal of Plant Physiology.2003,160(4):395-401
    177.Zhifang G, Loescher WH. Expression of acelery mannose 6-phosphate reductase in Arabidopsis thaliana enhances salt tolerance and induces biosynthesis of both mannitol and aglucosyl-mannitol dimmer. Plant, Cell and Environment.2003,26(2):275-283
    178.Abd-El Baki GK, Siefritz F, Man HM, Weiner H, Kaldenhoff R, Kaiser WM. Nitrate reductase in Zea mays L. under salinity. Plant, Cell and Environment.2000,23(5):15-521
    179.El-shintinawy F, El-shourbagy MN. Alleviation of changes in protein metabolism in NaCl-stressed wheat seedlings by thiamine. Biologia Plantarum.2001,44(4):541-545
    180.Humphrey A. Partitioning in chi odium ion in the germination seed of two forage legumes under varied salinity and temperature regimes. Commu Soil Sci Plant Anal.1995, (26): 3357-3370
    181.谈健康,安树青,王铮锋,朱学雷,张久海,陈兴龙,李国旗. NaCL、Na2SO4和Na2CO3胁迫对小麦叶片自由基含量及质膜透性的比较研究.植物学通报.1998,(15):82-86
    182.寥祥儒,贺普超,朱新产.玉米素对盐渍下葡萄叶圆片H2O2清除系统的影响.植物学报.1997,39(7):641-646
    183.戚乐磊,陈阳,贾恢先.盐胁迫下有机及无机硅对水稻种子萌发的影响.甘肃农业大学学报.2002,(3):272-278
    184.刘友良,毛才良,汪良驹.植物耐盐性研究进展.植物生理学通讯.1987,(4):1-7
    185.智慧,刁现民,吕芃,Zoya A.人工盐胁迫法鉴定谷子及狗尾草物种耐盐基因型.河北农业科学.2004,8(4):15-18
    186.刘旭,史娟,张学勇,马缘生,贾继增.小麦耐盐种质的筛选鉴定和耐盐基因的标记. 植物学报.2001,43(9):948-954
    187.平俊爱,张福耀,程庆军,杜志宏.高粱耐盐性鉴定及其应用.山西农业科学.1998,26(2):12-14
    188.韩朝红,孙谷畴,林植芳.NaCl对吸胀后水稻的种子发芽和幼苗生长的影响.植物生理学通讯.1998,34(5):339-342
    189. Shannon MC, Stage CG. Adaptation of plants to salinity. Advances in Agronomy.1997, 60:75-120
    190.万贤崇,宋永俊.盐胁迫及其钙调节对竹子根系活力和丙二醛含量的影响.南京林业大学学报.1995,19(3):16-20
    191.李磊,赵檀方,胡延吉.大麦苗期耐盐性鉴定指标的研究.莱阳农学院学报.1998,15(4):253-257
    192.苗海霞,孙明高,夏阳,李国雷,张金凤,张连英.盐胁迫对苦楝根系活力的影响.山东农业大学学报(自然科学版).2005,36(1):9-12
    193.张润花,郭世荣,李娟.盐胁迫对黄瓜根系活力、叶绿素含量的影响.长江蔬菜.2006,(2):47-49
    194.Lioyd J, Kriedemann P, Prior L, Grieve A. Citrus leaf fluorescence:Water and salt effects. ISHS Acta Horticulturae.1986,175:333-337
    195.刘家尧,衣艳君,张承德,闫志佩.活体叶绿素荧光诱导动力学及其在植物抗盐生理研究中的应用.曲阜师范大学学报.1997,24(3):830-831
    196.刘家尧,张其德.盐胁迫对不同抗盐性小麦叶片荧光诱导活动力学的影响.植物学通报.1998,15(2):46-49
    197.Abdel-Aziz SM, Reda MMA. Osmotic adjustment for two wheat varieties. Egypt. J. Agric. Res.2000,78:993-1004
    198.Xingyu J, Junxia D, Zhengqiu W. Comparison of regulation of NaCl for photosynthetic and osmotic adjustment ability of maize and cotton. Plant Physiol. Commun.2001,37: 303-305
    199.孙金月,赵玉田.小麦细胞壁糖蛋白的耐盐性保护作用与机制研究.中国农业科学.1997,30(4):9-15
    200.Sabu A, Sheeja TE, Nambison P. Comparison of proline accumulation in callus and seedlings of two cultivation of Oryza Sativa L differing in salt tolerance. Indian Journal of Expermental Biology.1995,33(2):139-141
    201.傅秀云,崔光泉.冬小麦耐盐力与脯氨酸含量的关系.山东农业科学.1988,(2):5-9
    202.陶晶,陈士刚,秦彩云,李岩,李铁,张考明.盐碱胁迫对杨树各品种丙二醛及保护酶活性的影响.东北林业大学学报.2005,33(3):13-15,37
    203.王瑞刚,陈少良,刘力源,郝志勇,翁海娇,李鹤,杨爽,段杉.盐胁迫下3种杨树的抗氧化能力与耐盐性研究.北京林业大学学报.2005,27(3):46-52
    204.周兴元,曹福亮.土壤盐分胁迫对三种暖季型草坪草保护酶活性及脂质过氧化作用的影响.林业科学研究.2005,18(3):336-341
    205.Rengel Z. The role of calcium in salt toxicity. Plant, Cell and Environment.1992,15: 625-632
    206.张宝译.盐胁迫下不同的钙盐对小麦幼苗耐盐性的影响.植物学通报.1997,14(4):48-50
    207.Soussi M, Ocana A, Lluch C. Growth, nitrogen fixation and ion accumulation in two chickpea cultivars under salt stress. Agricoltura Mediterranea.2001,131:1-8
    208.Unno H, Maeda Y, Yamamoto S, Okamoto M, Takenaga H. Relationship between salt tolerance and Ca2+ retention among plant species. Japanese Journal of Soil Science and Plant Nutrition.2002,73:715-718
    209.Subbarao GV, Johansen C, Janansen MKJ, Rao JVDKK. Effects of the sodium/calcium ratio in modifying salinity response of pigeonpea (Cajanus cajan L.). Journal of Plant Physiology.1990,136:439-443
    210.Foolad MR. Genetic basis of physiological traitsrelated to salt tolerance in tomato, Lycopersicon esculentum Mill. Plant Breed.1997,116(1):53-58
    211.Gorham J, Bridges J, Dubcovsky J, Dvorak J, Hollington PA, Luo MC, Khan JA. Genetic analysis and physiology of a trait for enhanced K+/Na+ discrimination in wheat. New Phytologist.1997,137(1):109-116
    212.He T, Cramer GR. Salt tolerance of rapid-cycling Brassica species in relation to potassium/sodium ratio and selectivity at the whole plant and callus level. Journal of Plant Nutrition.1993a,16(7):1263-1277
    213.Shannon MC. Principles and strategies in breeding for higher salt tolerance. Plant and Soil. 1985,89(1-3):227-241
    214.Noble CL, Rogers ME. Arguments for the use of physiological criteria for improving the salt tolerance in crops. Plant and Soil.1992,146(1-2):99-107
    215.张建峰,李吉跃,宋玉民,邢尚军,郗金标,马丙尧.植物耐盐机理与耐盐植物选育研究进展.世界林业研究.2003,16(2):16-22
    216.刘凤华,郭岩,谷冬梅,肖岗,陈正华,陈受宜.转甜菜碱醛脱氢酶基因植物的耐盐性研究.遗传学报.1997,24(1):54-58
    217.Gao M, Sakamoto A, Miura K, Murata N, Sugiura A, Tao R. Transformation of Japanese persimmon (Diospyros kaki Thunb.) with a bacterial gene for choline oxidase. Molecular Breeding.2000,6(5):501-510
    218.Gervera M, Ortega C, Navarro A, et al. Generation of transgenic citrus plants with the tolerance-to-salinity gene HAL2 from yeast. Journal of Horticultural Science & Biotechnology.2000,75(1):26-30
    219.王俊英,尹伟伦,夏新莉.胡杨锌指蛋白基因克隆及其结构分析.遗传.2005,27(2):238-245
    220.马丽.胡杨耐盐相关基因克隆及转化群众杨的研究.北京林业大学硕士学位论文.2005
    221.朱馨蕾,马艳,张富春.盐胁迫下胡杨cDNA文库的构建及其nhx基因的克隆.植物研究.2007,27(1):82-88
    222.李驹,陈维玥.杨树耐盐细胞系的筛选及不定苗再生的研究.林业科技通讯.1984,(1):1-3
    223.李玲,韩一凡.杨树耐盐突变体筛选的研究.林业科学.1990,26(4):359-362
    224.张绮纹,张望东.群众杨39无性系耐盐悬浮细胞系的建立和体细胞变异完整植株的诱导.林业科学研究.1995,8(4):395-401
    225.李周岐,徐养福,郭军战.河北杨体细胞抗盐性突变体抗性稳定性研究.西北林学院学报.1997,12(2):80-84
    226.李周岐,郭军战,李建梅,杨秀平.河北杨体细胞抗盐性变异系的同工酶鉴定.西北林学院学报.1995,10(4):68-71
    227.李周岐,郭军战,刘西平,邱明光等.河北杨体细胞抗盐性突变体试管苗抗盐性测定.西北林学院学报.1996,11(4):94-97
    228.李周岐,周志华,郭军战,刘西平,毕春霞.河北杨体细胞抗盐性突变体离体筛选的研究.西北林学院学报.1995,10(3):1-7
    229.杨秀平,翟梅枝,张凤云,张强.河北杨体细胞抗盐性突变体Na+、K+积累特性.西北林学院学报.2003,18(4):26-28
    230.王兴军,姚敦义.运用多步选择系统筛选木槿耐盐突变体.植物生理学通讯.1994,30(1):22-24
    231.王长泉,宋恒.杜鹃抗盐突变体的筛选.核农学报.2003,17(3):179-183
    232.魏志刚,高玉池,杨传平,刘桂丰,王军,刘关君. NaCl胁迫下盐松不同种源种子的发芽特性.2009,8(28);9-13
    233.沙霍夫(著),韩国尧(译).植物的抗盐性.北京:科学出版社.1958
    234. JOHNSON JD. A rapid techinique for estimating total surface area of pine needles Journal of Forest Science.1984,30(4):913-921
    235.朱教君,康宏樟,李智辉.不同水分胁迫方式对沙地樟子松幼苗光合特性的影响.北京林业大学学报.2006,28(2):57-63
    236.余叔文,汤章城.植物生理与分子生物学.北京:科学出版社.2001,752-753
    237.许详明,叶和春,李国风.植物抗盐机理的研究进展.应用与环境生物学报.2000,6(4):379-387
    238.Foolad MR, Jones RA. Mapping salt-tolerance genes in tomato (Lycopersicon esculentum) using trait-based marker analysis. TAG Theoretical and Applied Genetics.1993,87(1- 2):184-192
    239.Farquhar DG, Sharkey TD. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology.1982,33:317-345
    240.Fischer RA, TurnerNeil C. Plant productivity in the arid and semi-arid Zones. Annual Review of Plant Physiology.1978,29:277-317
    241.周小玲,田大伦,许忠坤,徐清乾.中亚热带四川桤木与台湾桤木幼林的光合生态特性.中南林业科技大学学报(自然科学版).2007,27(1):40-49
    242.陈彤,柯世省,张阿英.木荷夏季气体交换、光能和水分利用效率的日变化.天津师范大学学报(自然科学学报).2005,25(4):28-31
    243.柯裕州,周金星,张旭东,孙启祥,左力等.盐胁迫对桑树幼苗光合生理生态特性的影响.林业科学.2009,45(8):61-66
    244.Moradi F, Ismail AM. Responses of Photosynthesis, Chlorophyll Fluorescence and ROS-Scavenging Systems to Salt Stress During Seedling and Reproductive Stages in Rice. Annals of Botany.2007,99(6):1161-1173
    245.Yang Y, Jiang DA, Xu HX, Yan CQ, Hao SR. Cyclic electron flow around photosystem Ⅰ is required for adaptation to salt stress in wild soybean species Glycine cyrtoloba ACC547. Biologia planturum.2006,50(4):586-590
    246.Yang Y, yan CQ, Cao BH, Xu HX, Chen JP, Jiang DA. Some photosynthetic responses to salinity resistance are transferred into the somatic habrid descendants from the wild sobean Glydine cyrtoloba ACC547. Physiologia Plantarum.2007,38:1-12
    247.王非.三江平原低山区落叶松速生丰产林增产机理的研究.硕士论文,东北林业大学.2000
    248.李玉花,任坚毅,刘晓,岳明.独叶草的光合生理生态特性.生态学杂志,2007,26(7):1038-1042
    249.黄丽华,陈训,崔炳芝.黄褐毛忍冬光合特征和水分利用效率日变化研究.贵州科学.2007,25(1):54-58
    250.元野,张民,刘瑞清,李海宾,赵光伟,刘世丰.烤烟成熟期叶片光合生理参数的日变化.现代化农业.2007,(7):23-25
    251.Martin CA, Stable LB. Plant gas exchang and water status in unban desert landscapes. Journal of Arid Environ.2002,51(2):235-254
    252.山伦.植物水分利用效率与半干旱地区农业节水.植物生理学通讯.1994,30(1):61-66
    253.周纪芗.实用回归分析方法.上海:上海科学技术出版社.1990:48-50
    254.徐玮玮,李晓储,汪成忠,何小弟,陆建飞,黄立斌.扬州古运河风光带绿地树种固碳释放氧效应初步研究.浙江林学院学报.2007,24(5):575-578
    255.曾小平,赵平,彭少麟,余作岳.5种木本豆科植物的光合特性研究.植物生态学报. 1997,21(6):539-544
    256.芦站根,赵昌琼,韩英,谈锋.不同光照条件下生长的曼地亚红豆杉光合特性的比较研究.西南师范大学学报.2003,28(1):117-121
    257.Sharp RE, Matthews MA, Boyer JS. Kok effect and the quantum yield of photosynthesis: light partially inhibits dark respiration. Plant Physiol.1984,75(1):95-101
    258.曾小美,袁琳,沈允钢.拟南芥连体和离体叶片光合作用的光响应.植物生理学通讯.2002,38(1):25-26
    259.De Pury DGG, Farquhar GD. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant, Cell and Environment.1997,20(5):537-557
    260.Gollatz GJ, Ribas-Carbo M, Berry JA. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Plant Physiol.1992,19(5):519-538
    261.Wang YP, Leuning R. A two-leaf model for canopy conductance photosynthesis and partitioning of available energy. Ⅱ. Model description and comparison with a multi-layered model. Agricultural and Forest Meteorology.1998,91(1-2):89-111
    262.索恩利,王天铎译.植物生理的数学模型.北京:科学出版社.1980:109-112
    263.高峻,孟平,吴斌,张劲松,褚建民.杏-丹参林药复合系统中丹参光合和蒸腾特性的研究.北京林业大学报.2006,28(2):64-67
    264.叶子飘.光响应曲线模型在超级杂交稻组合-Ⅱ优明86中的应用.生态学杂志.2007,26(8):1323-1326
    265.蒋高明,林光辉.几种热带雨林与荒漠植物暗呼吸作用对高CO2浓度的响应.生态学报.1999,19(4):519-522
    266.Walker DA, Jarvis PG, Farquhar GD, Leverenz J. Automated measurement of leaf photosynthetic O2 evolution as a function of photon flux density. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.1989, 323(1216):313-326
    267.Herrick JD, Thomas RB. Effects of CO2 enrichment on the photosynthetic light response of sun and shade of canopy sweetgum trees (Liquidambar styraciflua) in a forest ecosystem. Tree Physiology.1999,19(12):779-786
    268.Bassman JH, Zwier JC. Gas exchange characteristics of Populus trichocarpa, Populus deltoids and Poulus trichocarpa × P. deltoides clone. Tree Physiology.1991,8(2):145-149
    269.周纪芗.实用回归分析方法.上海:上海科学技术出版社.1990:48-50
    270.吕芳德,徐德聪,侯红波,刘云龙,郑良康.5种红山茶叶绿素荧光特性的比较研究.经济林研究.2003,21(4):4-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700