用户名: 密码: 验证码:
单质粒心肌特异性缺氧调节SDF-1警戒载体在小鼠心肌梗死治疗中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
间质细胞衍生因子-1(Stromal cell derived factor-1)是一种趋化因子,它和主要受体CXCR4相互作用,介导干细胞归巢、抑制细胞凋亡等。心肌梗死后,内源性SDF-1分泌在表达量和持续时间上无法满足心肌梗死后机体修复的需求。本研究构建了单质粒心肌特异性缺氧调节SDF-1警戒载体,体内体外实验论证这个单质粒警戒载体的优越性。同时,探讨SDF-1抑制缺氧引起心肌细胞凋亡的机制。
     [目的]掌握分离间充质干细胞、心脏干细胞的方法;使用H9C2细胞模拟心肌细胞,研究SDF-1基因治疗后SDF-1在缺氧心肌内的表达时间曲线;研究SDF-1能否抑制缺氧应激引起的H9C2、间充质干细胞、心脏干细胞凋亡;探讨这种抑制作用与p-Bad蛋白去磷酸化为Bad的关系。
     [方法]分离、培养MSCs、CSCs。构建pCMV-hSDF-1-GFP质粒,转染到缺氧的H9C2细胞,Real-time PCR、细胞染色验证转染。Western-blot法检测SDF-1的表达时间曲线。在SDF-1表达高峰时间点(转染后3天)收集条件培养基,以缺氧后内源性SDF-1表达高峰培养基为对照培养基。对比两种培养基对MSCs、CSCs迁移的影响。分析两种培养基对H2O2模拟的缺氧应激引起的H9C2、MSCs、CSCs凋亡的影响(细胞活力试验、台盼蓝拒染法实验、细胞形态),并进一步观察SDF-1条件培养基对在这个过程中p-Bad蛋白去磷酸化为Bad蛋白的影响。
     [结果]pCMV-hSDF-1-GFP转染缺氧的H9C2细胞后,hSDF-1基因表达是对照组的31倍(p<0.01),转染效率在27.83%±2.61%。SDF-1蛋白在转染后3-7天达到表达高峰,即使14天后SDF-1的表达还较缺氧后内源性SDF-1表达高峰明显。条件培养基较对照培养基促进了MSCs、CSCs的迁移:CSCs34±11 vs.11±3,p < 0.001; MSCs 56±4 vs.10±1,p< 0.001。细胞活力试验:条件培养基组共聚焦显微镜下H9C2、MSCs、CSCs中绿色细胞比例较对照培养基组绿色细胞比例高。台盼蓝拒染法实验:MSCs(条件培养基组84%±7%vs.对照培养基组60%±2%,P<0.01);CSCs(条件培养基组82%±3%vs.对照培养基组62%±3%,P<0.001);H9C2(条件培养基组89%±3%vs.对照培养基组65%±2%,P<0.001)。形态学上观察H9C2、MSCs、CSCs细胞的区别:对照培养基组可以观察到更多的圆形、光亮的细胞。不同的培养基培养后,Western-blot结果:条件培养基组培养的H9C2、MSCs、CSCs细胞p-Bad的表达较对照组明显,Bad蛋白则相反。细胞染色:在共聚焦显微镜下,条件培养基组培养的H9C2、MSCs、CSCs细胞可以观察到p-Bad的表达。[结论]pCMV-hSDF-1-GFP质粒转染缺氧H9C2细胞后,SDF-1高表达持续超过14天,高峰在3-7天。基因治疗的SDF-1条件培养基可以通过减少p-Bad去磷酸为Bad抑制缺氧引起的H9C2、MSCs、CSCs凋亡。基因治疗的SDF-1条件培养基明显促进了MSCs、CSCs的迁移。
     [目的]构建单质粒心肌特异性缺氧调节SDF-1警戒载体,体外、体内试验验证这个载体系统的有效性。探讨SDF-1抑制心肌细胞凋亡的机制。
     [方法]构建单、双质粒心肌特异性缺氧调节SDF-1警戒载体,Real-time PCR对比单双质粒载体hSDF-1的表达。分离原代心肌细胞,转染单质粒载体,对比正常氧、低氧下hSDF-1的表达。探寻单质粒载体启动的时间。叠氮钠模拟缺氧应激,单质粒心肌特异性缺氧调节SDF-1警戒载体转染心肌细胞后,观察心肌细胞的生存,提取条件培养基,用AMD3100阻断SDF-1和CXCR4的相互作用,分为Control、AMD3100、AMD3100+条件培养基、条件培养基组,分析SDF-1抑制心肌细胞时是否磷酸化Akt、p-38MAPK、ERK1/2。体内实验验证单质粒警戒载体能否实现:高效、心肌特异性、缺氧警戒,分为Control组、MI组、假手术+V(警戒载体)组、MI+V组,在心肌梗死后1天分析SDF-1在肝脏、假手术+V组心肌、MI+V组心肌的表达,同时Western-blot和免疫组化法分析心肌组织p-Akt、p-ERK1/2/ p-38MAPK、p-Bad的表达,TUNEL实验评价体内心肌细胞的凋亡。7天后小动物心超分析各组心功能各项参数:EF%(左室射血分数)、LV mass(左室壁心肌重量)、FS%(短轴缩短率)等,通过Masson染色评价心肌纤维化。
     [结果]成功构建单质粒心肌特异性缺氧调节SDF-1警戒载体,该载体在缺氧条件下hSDF-1基因表达是双质粒载体的2.5倍(p<0.01)。单质粒SDF-1载体在低氧后30分钟,hSDF-1基因开始表达上调(是正常氧浓度下hSDF-1基因的1.5倍),缺氧24小时后对比非缺氧条件上升8.6倍(p<0.01)。单质粒载体转染原代心肌细胞效率在55%±7%;原代心肌细胞分为Normal组,Model组(叠氮钠),SDF组,SDF+叠氮钠组:Normal、Model、SDF组原代心肌细胞在第3天开始出现部分心肌细胞死亡,第5天心肌细胞完全死亡;在SDF+叠氮钠组观察到原代心肌细胞在第9天才开始出现部分心肌细胞死亡,第11天培养的原代心肌细胞完全死亡。对比Control、AMD3100、AMD3100+条件培养基组,SDF-1条件培养基组明显增加了p-Akt、p-ERK1/2、p-38MAPK的表达。体内试验:单质粒载体治疗组心肌组织的SDF-1较非治疗组表达明显,也较治疗组肝脏组织的SDF-1表达明显;Western-blot、免疫组化染色的实验结果表明治疗组p-Akt、p-ERK1/2、p-38MAPK、p-Bad都较未治疗组高表达;单质粒载体治疗组心肌组织中TUNEL阳性细胞数25±2较非治疗组43±8明显少,P<0.01。7天后,心超测定心功能:MI+V组心功能较MI组明显改善,MI+V组和MI组:EF%,36.68±5.21 VS 21.1±2.12,p<0.01;LV Mass,102.85±9.90VS 151.90±9.08,p<0.01;FS%,17.42±2.22 VS 10.05±0.50,p<0.01。Masson染色结果表明:单质粒载体治疗组纤维化面积较未治疗组缩小。
     [结论]本课题构建的单质粒心肌特异性缺氧调节SDF-1警戒载体具备高效、缺氧警戒、心肌特异性的特点,体外体内实验都证明这个单质粒警戒载体的有效性,是一种良好的基因工具。SDF-1通过促进Akt、ERK1/2、p38MAPK的磷酸化、减少p-Bad蛋白的去磷酸化抑制缺氧刺激引起的心肌细胞凋亡。
Stromal cell-derived factor 1 a (SDF-1a) is a homing factor that can cause stem cells to migrate from the bone marrow,which can react with its main receptor CXCR4.It can inhibit cell apoptosis,too.Although endogenous SDF-1a is secreted in the early phase of infarction in ischemic myocardium, the expression of myocardial SDF-1 is not effective for heart repair. SDF-1 has to be expressed in larger quantities and for a longer time.We try to build one single-plasmid vigilant vector.This vigilant vector has some features:high efficiency, hypoxia-regulated, vigilant,cardiac-specific.We evalute this vigilant system in cardiac myocytes. Furtherly, we evalute this vigilant system in mouse model of myocardial infarction.Another aim of this reserch is to evalute anti-apoptosis of SDF-1 and to find the inner mechanism.
     Objective SDF-1 has to be expressed in larger quantities and for a longer time for the treatment of myocardial infarction. A gene therapy approach using an SDF-1 a vector can increase SDF-1 expression and mobilize and direct stem cells to the ischemic myocardium. SDF-1 can serve as a heart-protective factor through its ability to activate phosphorylated-AKT and ERK1/2. The role of the Bcl-2-associated death (BAD) and phosphorylated-BAD (p-BAD) in this process, however, has not been determined. In addition,the detailed time course of a SDF-1 a vector adminastration remains unclear.
     Methods Contrust the p-CMV-hSDF-1 plasmids.H9C2 cells were transfected with the p-CMV-hSDF-1 plasmid under hypoxic stimuli. Real-time PCR and cell staining was used to confirm the transfection under hypoxic condition.Western blot analysis was used to determine the SDF-1 expression time course.In the SDF-1 peak expression,the conditioned medium was collected for further experiment.The SDF-1 conditioned medium in endogenous peak expression would be considered as control medium.Isolate mesenchymal stem cells (MSCs) and cardiac stem cells (CSCs).Under conditioned medium or control medium,MSCs and CSCs would be migrated. H2O2 was used to induce H9C2,MSCs and CSCs apoptosis.The apoptosis of H9C2,MSCs and CSCs was evaluated with conditioned medium or control medium.Western-blot,cell staining was to confirm reduction of dephosphorylation of p-Bad.
     Results The transfection efficiency was approximately 27.83%±2.61%. H9C2 cells transfected with the pCMV-hSDF-1 plasmid expressed 31-fold more h-SDF-1 than the control group (P=0.003563).Western blot analysis revealed that SDF-1 expression peaked from the third day to the 7th day after pCMV-hSDF-1 plasmid transfection. After treatment with conditioned medium, which was gathered on the third day, H9C2 cells, mesenchymal stem cells (MSCs) and cardiac stem cells (CSCs) were more resistant to hypoxic insult than control groups, based on the results of the Live/Dead cell viability test, morphological observation and trypan blue uptake test. Live/Dead cell viability test:in confocol laser scan,there were more green H9C2,MSCs,and CSCs cells in conditioned medium treatment groups than in control medium groups. Morphological observation:there were more round,bright H9C2,MSCs and CSCs in control groups than in conditioned medium. Trypan blue uptake test: MSCs (conditioned medium 84%±7% vs. control medium60%±2%, P< 0.01); CSCs (conditioned medium 82%±3% vs. control medium 62%±3%, P< 0.001); H9C2 (conditioned medium 89%±3% vs. control medium 65%±2%, P< 0.001).Both western blot and staining results confirmed the dephosphorylation reduction of p-BAD in H9C2s, MSCs and CSCs after being treated with SDF-1 conditioned medium.The conditioned medium made more MSCs migrate compared with control medium(56±4 vs.10±1, p< 0.001).Likewise, the conditioned medium made more CSCs migrate compared with control medium(34±11 vs.11±3, p< 0.001).
     Conclusions These findings indicate that, under hypoxic stimulation after SDF-1 gene delivery, the expression of SDF-1 peaks from the third day to the 7th and lasts longer than fourteen days. As a result, more MSCs and CSCs migrate into the hypoxic myocardium. In addition, treatment with SDF-1 conditioned medium causes H9C2s, MSCs and CSCs to become more resistant to hypoxic stimuli and to reduce dephosphorylation of the p-BAD proteins.
     Objective To construct one single-plasmid vigilant vector,which has special features:high-efficiency,vigilant,hypoxia-regulated,cardiac-specific.This system can meet the requirement of therapy in myocardial infarction.These features would be assessed in vitro and in vivo experiments.Another aim is to prove that SDF-1 can be anti-apoptosis in cardiac myocytes.The inner mechanism would be assessed.
     Methods After constructing the single-plasmid vigilant vector,this vigilant plasmid would be compared with double-plasmids vigilant vector under hypoxic stimuli.In addition,the on-set time of this single-plasmid vector would be evaluated. Furthermore,the hypoxia-regulated feature was appraised. Isolate and culture cardiac myocytes.The cardaic myocytes was transfected with single-vigilant plasmid. NaN3 was used to stimulate hypoxia insult. Cell apoptosis or death could be observed from cell morphology. Collect the used medium in the 5th day as conditioned medium.The cardiac myocytes would be divided into four groups:Control,AMD3100,AMD3100 with conditioned medium,conditioned medium.Phosphorylation of ERK1/2,p-38MAPK and Akt were detected by Westen blot. Then this single-plasmid was injected into myocardium in left ventricular apical.The animal experiment would be divided into four groups:MI,Sham+V,MI+V,Control.After 3 days,the left anterior descending coronary artery (LAD) was ligated as myocardial infarction model. 24 houres later,the SDF-1, p-ERK1/2, p-p38MAPK and p-Akt expression of MI or MI+V groups were detected by Western-blot and immunohistochemistry.
     TUNEL test was performed to assess cardiac myocytes apoptosis in vivo.7 days later, the echocardiographic assessment(EF%,LV mass and FS%) of myocardial infarction and heart function was performed.Masson staining was performed to identify collagen fibers.
     Results Under hypoxic stimuli,single-plasmid vigilant vector can express more 2.5 folds hSDF-1 gene than double-plasmids vigilant vector(p< 0.01).After 30 mins of hypoxia stimuli,SDF-1gene can be on-set.Compared with nomoxia,hypoxia stimuli can make more 8.6 foldes hSDF-1 be expressed in cardiac myocytes transfected with single vigilant vector.The transfection efficiency is about 55%±7%.The cardiac myocytes transfected with single-plasmid vigilant vector can be more resistant to hypoxic stimuli induced by NaN3.Compared with other groups starting dying in 3rd day and dying totally in 5th day.Part of these cardiac myocytes transfected with single plasmid would start to die in the 9th day.Most of them would die in eleven day.The conditioned medium can inhibit apoptosis of cardaic myocytes via increasing phosphorylation of Akt, p38MAPK and ERK1/2.After 24 houres,MI+V group has a stronger SDF-1,p-Akt,p-p38MAPK,p-ERK1/2 and p-Bad expression than MI group. MI+V group had less TUNEL positive cells than MI group(25±2 vs 43±8,P<0.01).The SDF-1 expression in MI+V group was stronger than liver organ.The results of echocardiographic assessment showed that MI+V group has better EF%,FS% and LV mass than MI group(EF%,36.68±5.21 VS 21.1±2.12, p<0.01; LV Mass,102.85±9.90 VS 151.90±9.08,p<0.01; FS%,17.42±2.22 VS 10.05±0.50,p< 0.01).Masson staining result showed that MI+V group has less collagen fibers.
     Conclusions The hypoxia-regulated single-plasmid vigilant vector has special features:high-efficiency,vigilant,hypoxia-regulated,cardiac-specific.In addition,SDF-1 can inhibit apoptosis of cardiac myocytes via increasing phosphorylation of Akt,p38MAPK and ERK1/2.
引文
1.张海澄,郭继鸿。冠心病流行病学与一级预防,中国实用内科杂志2002,(22)8:449-451.
    2. 《中国心血管病报告2006》编委会.中国心血管病报告2006,北京:中国大百科全书出版社,2005,1-2.
    3. Nagasawa T, Kikutani H,Kishimoto T.Molecular cloning and strueture of a Pre-B cell growth-stimulating factor.Proe Natl Acad Sei USA,1994,91(6):2305-309.
    4. Horuk R.Chemokine receptors.Cytokine Grieth Factor Rev,2001,12(4):313-335.
    5. Ceradini DJ, Kulkarni AR, Callaghan MJ et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004,10(8):858-64.
    6. Lee SP,Youn SW,Cho HJ et al..Intergrin-linked kinase,a hypoxia-responsive molecule,controls postnatal vascuogenesis by recruitment of endothial progenitor cells to ischemic tissure.Circulation,2006,114(2):150-159.
    7.孙韬周闻白王宣春罗心平施海明.Wistar大鼠心肌梗死造模后SDF-1/CXCR4的表达.中国分子心脏病学杂志2007,7(3):146-150.
    8. Askari AT, Unzek S, Popovie ZB et al. Effect of stromal cell derived factor-1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet, 2003,362(9385):697-703.
    9. Tang YL,Qian KP,Zhang Clare,et al. Mobilizing of haematopoietic stem cells to ischemic myocardium by plasmid-mediated stromal-cell-derived factor-la treatment.2005,125(1-3):1-8.
    10. Orlic D,Kajstura J,Chimenti S, et al.Bone marrow cells regenerate infarcted myocardium. Nature,2001,410(6829):701-705.
    11. Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001,7(4):430-436.
    12. Toma C,Pittenger MF,Cahill KS,et al.Human mesenchymal stem cells diferentiate to a eardiomyoeyte phenotype in the adultmufine heart. Circulation,2002,105(1): 93-98.
    13. Bittira B, Shum-Tim D, Al-Khaldi A,et al. Mobilization and homing of bone marrow stromal cells in myocardial infarction. Eur J Cardiothorae Surg,2003, 24(3):393-398.
    14. Meyer GP, Wollert KC, Lotz J,et al. Intracoronary Bone Marrow Cell Transfer After Myocardial Infarction. Eighteen Months'Follow-Up Data From the Randomized, Controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) Trial. Circulation,2006,113 (10):1287-1294.
    15. Carmen Hernandez-Lopez, Alberto Varas, Rosa Sacedon,et al. Stromal cell-derived factor 1/CXCR4 signaling is critical for early human T-cell development. Blood,2002,99(2):546-554.
    16. Hwang JH, Kim SW, Park SE, et al. Overexpression of stromal cell-derived factor-1 enhances endothelium-supported transmigration, maintenanee, and proliferation of hematopoietic progenitor cells. StemCells,2006,15(2):260-268.
    17. Yamaguchi J, Kusano KF, Masuo O,et al. Stromal Cell-Derived Factor-1 Effects on Ex Vivo Expanded Endothelial Progenitor Cell Recruitment for Ischemic Neovascularization. Circulation.2003,107(9):1322-1328.
    18. Pasha Z, Wang Y, Sheikh R, Zhang D, Zhao T, Ashraf M. Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc Res 2008;77:134-142.
    19. Sumida A, Horiba M, Ishiguro H,et al. Midkine gene transfer after myocardial infarction in rats prevents remodelling and ameliorates cardiac dysfunction. Cardiovasc Res.2010,86(1):113-21.
    20. Das H, George JC, Joseph M,et al. Stem cell therapy with overexpressed VEGF and PDGF genes improves cardiac function in a rat infarct model. PLoS One. 2009,4(10):e7325.
    21. Ding L, Dong L, Chen X,et al. Increased expression of integrin-linked kinase attenuates left ventricular remodeling and improves cardiac function after myocardial infarction. Circulation.2009,120(9):764-73.
    22. Lahteenvuo JE, Lahteenvuo MT, Kivela A,et al.Vascular endothelial growth factor-B induces myocardium-specific angiogenesis and arteriogenesis via vascular endothelial growth factor receptor-1-and neuropilin receptor-1-dependent mechanisms. Circulation.2009,119(6):845-56.
    23. Tang YL,Tang Y,Zhang YC,et al. A hypoxia-inducible vigilant vector system for activating therapeutic genes in ischemia. Gene Therapy,2005,12:1163-1170.
    24. Tang Y,Jackon M,Qian KP,et al. Hypoxia Inducible Double Plasmid System for Myocardial Ischemia Gene Therapy. Hypertension 2002,39;695-698.
    25. Tang YL,Qian KP,Zhang YC,et al. A Vigilant, Hypoxia-Regulated Heme Oxygenase-1 Gene Vector in the Heart Limits Cardiac Injury After Ischemia-Reperfusion In Vivo. J Cardiovasc Pharmacol Ther 2005,10; 251-263.
    26. Tang YL,Tang Y,Zhang YC,et al. Protection From Ischemic Heart Injury by a Vigilant Heme Oxygenase-1 Plasmid System. Hypertension 2004,43;746-751.
    27. Tang Y,Schmitt-Ott K,Qian KP,et al. Vigilant vectors:adeno-associated virus with a biosensor to switch on amplified therapeutic genes in specific tissues in life-threatening diseases.Mathods,2002,28:259-266
    28. Semenza GL, Jiang BH, Leung SW, et al. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem. 1996;271:32529-32537.
    29. Wang GL, Semenza GL. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci U-S A. 1993;90:4304-4308.
    30. Hong JR,Wu JJL.Induction of apoptotic death in cellsvia bad gene ex-pression by infectious pancreatic necrosis virus infections. Cell Death Differ,2002,9(2):113.
    31. Bonni A,Brunet A,Wesr AE,et al.Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and independent mechanisms.Science,1999,286(5):1358-1362.
    32. Chen SJ, Bradley ME, Lee TC.Chemical hypoxia triggers ap-optosis of cultured neonatal rat cardiac myocytes:modulation by calcium-regulated proteases and protein kinases. Molecular and Cellular Biochemistry,1998,178(1-2):141-149.
    33. Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A 1999;96:10711-10716.
    34. Tang YL, Shen L, Qian K, Phillips MI. A novel two-step procedure to expand cardiac Sca-1+ cells clonally. Biochem Biophys Res Commun 2007;359:877-883.
    35. Lynn EG, McLeod CJ, Gordon JP et al. SIRT2 is a negative regulator of anoxia-reoxygenation tolerance via regulation of 14-3-3 zeta and BAD in H9c2 cells. FEBS Lett.2008,582(19):2857-62.
    36. Liu XH, Chen PF, Pan LL, et al.4-Guanidino-n-butyl syringate (Leonurine, SCM 198) protects H9c2 rat ventricular cells from hypoxia-induced apoptosis. J Cardiovasc Pharmacol.2009 Nov;54(5):437-44.
    37. Strauer BE, Brehm M, ZeusT, et al. Repair of Infarcted Myocardium by Autologous Intracoronary Mononuclear Bone Marrow Cell Transplantation in Humans.Circulation.2002,06(15):1913-1918.
    38. Strauer BE, Brehm M, Zeus T, et al.Repair of infarcted myoeardium by antologous intracoronary mononuelear bonemarrow cell transplantation in humans.Circulation.2002,06(15):1913-18.
    39. Perin EC, Dohmann HF, Borojevic R, et al.Transendocardial autologous bone marrow cell transplantation of servere, chronic isehemic heartfailure.Circulation, 2003,107(18):2294-2302.
    40. Perin EC, Dohlnarm HF, Borojevie R, et al.Improved exercise capacity and isehemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy.Circulation,2004, 110(115Ssupple):11213-218.
    41. Sehaehinger V, Assmus B, Britten MB, et al.Transplantation of progenitor cells and regeneration enhancement in acutemyocardial infaretion:final one-year results of the TOPCARE-AMITrial.J Am Coll Cardiol.2004:44(8):1690-1699.
    42. Toma C, Pittenger MF, Cahill KS, et al.Human mesenehymal stem cells differentia into a cardiomyocyte phenotype in the adult murine heart.Circulation, 2002,105(1):93-98.
    43. Xia Z, Locklin RM, Triffitt JT. Fates and osteogenic differentiation potential of human mesenchymal stem cells in immunocompromised mice. Eur J Cell Biol. 2008 Jun;87(6):353-64.
    44. Zhu W, Chen J, Cong X, et al.Hypoxia and serum deprivation-induced apoptosis in mesenchymalstem cells.StemCell,2006,24(2):416-425.
    45. Chen J, Baydoun AR, Xu R,et al. Lysophosphatidic acid protects mesenchymal stem cells against hypoxia and serum deprivation-induced apoptosis. Stem Cells. 2008 Jan;26(1):135-45.
    46. Xu R, Chen J, Cong X,et al. Lovastatin protects mesenchymal stem cells against hypoxia-and serum deprivation-induced apoptosis by activation of PI3K/Akt and ERK1/2. J Cell Biochem.2008 Jan 1;103(1):256-69.
    47. Frnagoginnais NG, Smith CW, Eniman ML.The inflammatory response in myocardial infarction.Cardiovase Res,2002,53(l):31-47.
    48. Zymek P, Nah DY, Bujak M et al. Interleukin-10 is not a critical regulator of infarct healing and left ventricular remodeling. Cardiovasc Res. 2007,74(2):313-22.
    49. Bujak M, Ren G, Kweon HJ et al. Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation.2007,116(19):2127-38.
    50. Tanaka F, Tominaga K, Ochi M et al. Exogenous administration of mesenchymal stem cells ameliorates dextran sulfate sodium-induced colitis via anti-inflammatory action in damaged tissue in rats. Life Sci. 2008,83(23-24):771-9.
    51. Coyne TM, Marcus AJ, Woodbury D et al. Marrow stromal cells transplanted to the adult brain are rejected by an inflammatory response and transfer donor labels to host neurons and glia. Stem Cells.2006,24(11):2483-92.
    52. Greco SJ, Rameshwar P. Enhancing effect of IL-1alpha on neurogenesis from adult human mesenchymal stem cells:implication for inflammatory mediators in regenerative medicine. J Immunol.2007,179(5):3342-50.
    53. Li Z, Lee A, Huang M et al. Imaging survival and function of transplanted cardiac resident stem cells. J Am Coll Cardiol.2009,53(14):1229-40.
    54. Reinecke H, Minami E, Zhu WZ et al. Cardiogenic differentiation and transdifferentiation of progenitor cells. Circ Res.2008,103(10):1058-71.
    55. Boni A, Urbanek K, Nascimbene A et al. Notch1 regulates the fate of cardiac progenitor cells. Proc Natl Acad Sci U S A.2008,105(40):15529-34.
    56. Rota M, Padin-Iruegas ME, Misao Y et al. Local activation or implantation of cardiac progenitor cells rescues scarred infarcted myocardium improving cardiac function. Circ Res.2008,103(1):107-16.
    57. Parmacek MS, Epstein JA. Pursuing cardiac progenitors:regeneration redux. Cell. 2005,120(3):295-8.
    58. Messina E, De Angelis L, Frati G et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res.2004,95(9):911-21.
    59. Joggerst SJ, Hatzopoulos AK. Stem cell therapy for cardiac repair:benefits and barriers. Expert Rev Mol Med.2009,11:e20.
    60. Laflamme MA, Murry CE. Regenerating the heart. Nat Biotechnol. 2005,23(7):845-56.
    61. Jan AB,Thomas JK. CXCR4:a key receptor in the crosstalk between tumor cells and their microenvironment.Blood,2006,107(5):1761-1767.
    62. Olive M, Mellad JA, Beltran LE et al. p21Cipl modulates arterial wound repair through the stromal cell-derived factor-1/CXCR4 axis in mice. J Clin Invest. 2008,118(6):2050-61.
    63. Unzek S, Zhang M, Mal N et al. SDF-1 recruits cardiac stem cell-like cells that depolarize in vivo. Cell Transplant.2007;16(9):879-86.
    64. Yano T, Liu Z, Donovan J et al. Stromal cell derived factor-1 (SDF-1)/CXCL12 attenuates diabetes in mice and promotes pancreatic beta-cell survival by activation of the prosurvival kinase Akt. Diabetes.2007,56(12):2946-57.
    65. Basu S, Broxmeyer HE. CCR5 ligands modulate CXCL12-induced chemotaxis, adhesion, and Akt phosphorylation of human cord blood CD34+ cells. J Immunol. 2009,183(11):7478-88.
    66. Shen X, Artinyan A, Jackson D et al. Chemokine receptor CXCR4 enhances proliferation in pancreatic cancer cells through AKT and ERK dependent pathways. Pancreas.2010,39(1):81-7.
    67. Wu Y, Peng H, Cui M et al. CXCL12 increases human neural progenitor cell proliferation through Akt-1/FOXO3a signaling pathway. J Neurochem. 2009,109(4):1157-67.
    68. Saxena A, Fish JE, White MD et al. Stromal cell-derived factor-1alpha is cardioprotective after myocardial infarction. Circulation.2008,117(17):2224-31.
    69. Zheng H, Dai T, Zhou B et al. SDF-1alpha/CXCR4 decreases endothelial progenitor cells apoptosis under serum deprivation by PI3K/Akt/eNOS pathway. Atherosclerosis.2008,201(1):36-42.
    70. Acharya M, Edkins AL, Ozanne BW et al. SDF-1 and PDGF enhance alphavbeta5-mediated ERK activation and adhesion-independent growth of human pre-B cell lines. Leukemia.2009,23(10):1807-17.
    71. Huang CY, Lee CY, Chen MY et al. Stromal cell-derived factor-1/CXCR4 enhanced motility of human osteosarcoma cells involves MEK1/2, ERK and NF-kappaB-dependent pathways. J Cell Physiol.2009,221(1):204-12.
    72. Gao H, Priebe W, Glod J et al. Activation of signal transducers and activators of transcription 3 and focal adhesion kinase by stromal cell-derived factor 1 is required for migration of human mesenchymal stem cells in response to tumor cell-conditioned medium. Stem Cells.2009,27(4):857-65.
    73. Mangi AA, Noiseux N, Kong D, et al.Mesenchymal stem cells modified with Akt Prevent remodeling and restore performance of infarcted hearts.Nat Med, 2003,9(9):1195-1201.
    74. Li W, Ma N, Ong LL, et al.Bel-2 engineered MSCs inhibited apoptosis and improved heart function.StemCells,2007,25(8):2118-2127.
    75. Zhou H, Ramiya VK, Visner GA et al. Bone marrow stem cells as a vehicle for delivery of heme oxygenase-1 gene. Stem Cells Dev.2006,15(1):79-86.
    76. Rosova I, Dao M, Capoccia B et al. Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells.2008,26(8):2173-82.
    77. Hu X, Yu SP, Fraser JL et al. Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg. 2008,135(4):799-808.
    78. Kumar S, Chanda D, Ponnazhagan S et al. Therapeutic potential of genetically modified mesenchymal stem cells. Gene Ther.2008,15(10):711-5.
    79. Bonni A,Brunet A,Wesr AE,et al.Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and independent mechanisms. Science,1999,286(5):1358-1362.
    80. Schindler CK,Shinoda S,Simon RP,et al.Subcellular distribution of Bcl-2 family proteins and 14-3-3 within the hippocampus during sei-zure-induced neuronal death in the rat.Neurosci Lett,2004,356,(3):163-166
    81. Abbott JD, Huang Y, Liu D, et al. Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation.2004; 110: 3300-3305.
    82. Askari AT, Unzek S, Popovic ZB,et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet. 2003;362:697-703.
    83. Zhang G, Nakamura Y, Wang X, et al. Controlled release of stromal cell-derived factor-1 alpha in situ increases c-kit+ cell homing to the infarcted heart. Tissue Eng.2007;13(8):2063-71.
    84. Koch KC, Schaefer WM, Liehn EA,et al. Effect of catheter-based transendocardial delivery of stromal cell-derived factor 1alpha on left ventricular function and perfusion in a porcine model of myocardial infarction. Basic Res Cardiol.2006;101(1):69-77.
    85. Saxena A, Fish JE, White MD,et al. Stromal cell-derived factor-lalpha is cardioprotective after myocardial infarction. Circulation.2008;117(17):2224-31.
    86. Tang J, Wang J, Song H et al. Adenovirus-mediated stromal cell-derived factor-1 alpha gene transfer improves cardiac structure and function after experimental myocardial infarction through angiogenic and antifibrotic actions. Mol Biol Rep. 2010;37(4):1957-69.
    87. Penn MS, Zhang M, Deglurkar I et al. Role of stem cell homing in myocardial regeneration. Int J Cardiol.2004;95 Suppl 1:S23-5.
    88. Abbott JD, Huang Y, Liu D et al. Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation. 2004;110(21):3300-5.
    89. Ma J, Ge J, Zhang S et al. Time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction. Basic Res Cardiol. 2005; 100(3):217-23.
    90. Cho HC, Marban E. Biological therapies for cardiac arrhythmias:can genes and cells replace drugs and devices? Circ Res.2010;106(4):674-85.
    91. Sleegers K, Lambert JC, Bertram L et al. The pursuit of susceptibility genes for Alzheimer's disease:progress and prospects. Trends Genet.2010;26(2):84-93.
    92. Levine BL, Humeau LM, Boyer J, et al.Gene transfer in humans using a conditionally replicating lentiviral vector. Proc Natl Acad Sci U S A.2006; 103 (46):17372-7.
    93. Maguire AM, Simonelli F, Pierce EA, et al. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N Engl J Med.2008;358 (21):2240-8.
    94. Cavazzana-Calvo M, Thrasher A, Mavilio F.The future of gene therapy. Nature.2004; 427 (6977):779-81.
    95. Morgan RA, Dudley ME, Wunderlich JR, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006;314 (5796):126-9.
    96. Ott MG, Schmidt M, Schwarzwaelder K, et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med.2006;12 (4):401-9.
    97. Brown BD, Venneri MA, Zingale A, et al. Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nat Med.2006;12 (5):585-91.
    98. Woods NB, Bottero V, Schmidt M,et al.Gene therapy:therapeutic gene causing lymphoma. Nature,2006;440 (7088):1123.
    99. Thrasher AJ, Gaspar HB, Baum C, et al. Gene therapy:X-SCID transgene leukaemogenicity. Nature,2006;443 (7109):5-6.
    100.Berchner-Pfannschmidt U, Frede S, Wotzlaw C et al. Imaging of the hypoxia-inducible factor pathway:insights into oxygen sensing. Eur Respir J 2008; 32:210-217
    101.0'Connell TD, Rodrigo MC, Simpson PC. Isolation and culture of adult mouse cardiac myocytes. Methods Mol Biol.2007;357:271-96.
    102.Zhou YY, Wang SQ, Zhu WZ, et al. Culture and adenoviral infection of adult mouse cardiac myocytes:methods for cellular genetic physiology. Am J Physiol Heart Circ Physiol.2000;279(l):H429-36.
    103.Peng W, Zhang Y, Zheng M,et al. Cardioprotection by CaMKII-deltaB is mediated by phosphorylation of heat shock factor 1 and subsequent expression of inducible heat shock protein 70. Circ Res.2010;106(1):102-10.
    104.Wright VP, Reiser PJ, Clanton TL. Redox modulation of global phosphatase activity and protein phosphorylation in intact skeletal muscle. J Physiol. 2009;587(Pt23):5767-81.
    105.Zhu M, Li MW, Tian XS et al. Neuroprotective role of delta-opioid receptors against mitochondrial respiratory chain injury. Brain Res.2009;1252:183-91.
    106.Guan F, Yu B, Qi GX,et al. Chemical hypoxia-induced glucose transporter-4 translocation in neonatal rat cardiomyocytes. Arch Med Res.2008;39(1):52-60.
    107.Lori AK, Olga MH, Nanette HB, et al. Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. PNAS,2002; 99 (20):12825-12830
    108.Anne HB, Nathan RB, Roberta AG. Enhancing Macroautophagy Protects against Ischemia/Reperfusion Injury in Cardiac Myocytes. The Journal of Biological Chemistry,2006;281:29776-29787.
    109.张 浩,侯迈,胡盛寿.小鼠心肌梗死模型的建立和无创超声评价.中国微创外科杂志2007年11月第7卷第11期:1111-1112
    110.Ankur S, Jason EF, Michael DW,et al. Stromal Cell-Derived Factor-1 Is Cardioprotective After Myocardial Infarction. Circulation.2008; 117:2224-2231.
    1. Nagasawa T, Kikutani H,Kishimoto T.Molecular cloning and strueture of a Pre-B cell growth-stimulating factor.Proe Natl Acad Sei USA,1994,91(6):2305-309.
    2. Horuk R.Chemokine receptors.Cytokine Grieth Factor Rev,2001,12(4):313-335.
    3. Smart N,Riley PR.The stem cell movement.Circ Res,2008,102(10):1155-1168.
    4. Mirshahi F, Pourtau J et al. SDF-1 α activity on microvasuclarendothelial cells:consequences on angiogenesis in vitro and in vivo models.Thromb Res,2000,99(6):587-594.
    5. Donzella GA, Sehols D, Lin SW et al. AMD3100, a small molecule inhibitor HIV-1 engry via the CXCR4 co-receptor.Nat med,1998,4(1):72-77.
    6. Majka M, Ratajczak J, Kowalska MA,et al. Binding of stromal derived factor-1alpha (SDF-1alpha) to CXCR4 chemokine receptor in normal human megakaryoblasts but not in platelets induces phosphorylation of mitogen-activated protein kinase p42/44 (MAPK), ELK-1 transcription factor and serine/threonine kinase AKT. Eur J Haematol.2000,64(3):164-172.
    7. Vila-Coro AJ, Rodriguez-Frade JM, Martin De Ana A et al. The chemokine SDF-1a triggers CXCR4 receptor dimerization and activates the JAK/STAT Pathway. FASEB J.1999,13(13):1699-1710.
    8. Fernandis AZ, Cherla RP, GanjuRK.Differential regulation of CXCR4-mediated T-cell chemotaxis and mitogen-activated Protein kinase activation by the membrane Tyrosine PhosPhatase CD45.J Biol Chem.2003,278(11):9536-9543.
    9. Wang JF, Park IW, Groopman JE.Stromal cell-derived factor-1alpha stimulates tyrosine phosphorylation of multiple focal adhesion proteins and induces migration of hematopoietic progenitor cells:roles of phosphoinositide-3 kinase and protein kinase C. Blood.2000 15;95(8):2505-13.
    10. Askari AT, Unzek S, Popovie ZB et al. Effect of stromal cell derived factor-1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet, 2003,362(9385):697-703.
    11.孙韬周闻白王宣春罗心平施海明.Wistar大鼠心肌梗死造模后SDF-1/CXCR4的表达.中国分子心脏病学杂志2007,7(3):146-150.
    12. Lee SP,Youn SW,Cho HJ et al..Intergrin-linked kinase,a hypoxia-responsive molecule,controls postnatal vascuogenesis by recruitment of endothial progenitor cells to ischemic tissure. Circulation,2006,114(2):150-159.
    13. Ceradini DJ, Kulkarni AR, Callaghan MJ et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004,10(8):858-64.
    14. Wang Y,Deng Y,Zhou GQ.SDF-1/CXCR4-mediated migration of aystemically transplanted bone marrow atromal cells towards ischemic brain lesion in a rat model.Brain Res,2008,1195:104-112.
    15. YL Tang,WQ Zhu,M Cheng et al. Hypoxic Preconditioning Enhances the Benefit of Cardiac Progenitor Cell Therapy for Treatment of Myocardial Infarction by Inducing CXCR4 Expression.Cir Res.2009,104(10):1209-16.
    16. Smart N,Riley PR.The stem cell movement.Cir Res,2008,102(10):1155-1168.
    17. Kollet O,Shivtiel S,Chen YQ et al.HGF,SDF-1,and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver.J Clin Invest,2003,112(2):160-169.
    18. Misso Y,Takemura QArai M et al.Importance of recruitment of bone marrow-derived CXCR4+cells in post-infarct cardiac repair mediated by G-GSF.Cardiovas Res,2006,71(3):455-465.
    19. Grunewald M,Avraham I,Dor Yet al.VEGF-induced adult neovascularization: recruiment,retention,androleofaccessorycells.Cell,2006,124(1):175-189.
    20. Naiyer AJ,Jo DY,Ahn J et al.Stromal derived factor-1-induced chemokinesis of cord blood CD34(+)cells through endothelial cells is mediated by E-selectin.Blood,1999,94(12):4011-4019.
    21.Peled A, Grabovsky V, Habler L et al. The chemokine SDF-1 stimulates integrin-mediated arrest of CD34(+) cells on vascular endothelium under shear flow. J Clin Invest.1999,04(9):1199-211.
    22. Chang C,Werb Z.The many faces of metalloproteases:cell growth,invasion, angiogenesis and metastasis.Trends Cell Biol,2001,11(11):S37-43.
    23. Son BR,Marques-Curtis LA,Kucia M et al.Migration of bone marrow and cord blood mesenchynal stem cells in vitro in regulated by stomal-derived factor-1 CXCR4 and hepatocyte growth factor and involves matrix metalloproteinases. Stem cells,2006,24(5):1254-1264.
    24. Wysoczynski M, Reca R, Ratajczak J et al. Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient. Blood.2005,105(1):40-48.
    25. Avigdor A, Goichberg P, Shivtiel S et alCD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood.2004,103(8):2981-2989.
    26. Walter DH,Haendeler J,Reinhold J,et al.Impaired CXCR4 signaling contributes to the reduced neovaeculariration capacity of endothelial progenitor cells from patients with coronary artery disease.Cir Res,2005,97(11):1142-1151.
    27. Chavakia.Phosphatidylinositol-3-kinase-gamma is integral to boming functions of progenitor cells.Cir Res,2008,103(1):13-14.
    28. Orlic D,Kajstura J,Chimenti S, et al.Bone marrow cells regenerate infarcted myocardium. Nature,2001,410(6829):701-705.
    29. Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001,7(4):430-436.
    30. Toma C,Pittenger MF,Cahill KS,et al.Human mesenchymal stem cells diferentiate to a eardiomyoeyte phenotype in the adultmufine heart. Circulation,2002,105(1): 93-98.
    31. Bittira B, Shum-Tim D, Al-Khaldi A,et al. Mobilization and homing of bone marrow stromal cells in myocardial infarction. Eur J Cardiothorae Surg,2003, 24(3):393-398.
    32. Meyer GP, Wollert KC, Lotz J,et al. Intracoronary Bone Marrow Cell Transfer After Myocardial Infarction. Eighteen Months'Follow-Up Data From the Randomized, Controlled BOOST (Bone marrow transfer to enhance ST-elevation infarct regeneration) Trial. Circulation,2006,113 (10):1287-1294.
    33. Carmen Hernandez-Lopez, Alberto Varas, Rosa Saced6n,et al. Stromal cell-derived factor 1/CXCR4 signaling is critical for early human T-cell development. Blood,2002,99(2):546-554.
    34. Hwang JH, Kim SW, Park SE, et al. Overexpression of stromal cell-derived factor-1 enhances endothelium-supported transmigration, maintenanee, and proliferation of hematopoietic progenitor cells. StemCells,2006,15(2):260-268.
    35. Yamaguchi J, Kusano KF, Masuo O,et al. Stromal Cell-Derived Factor-1 Effects on Ex Vivo Expanded Endothelial Progenitor Cell Recruitment for Ischemic Neovascularization. Circulation.2003,107(9):1322-1328.
    36. Pasha Z, Wang Y, Sheikh R, Zhang D, Zhao T, Ashraf M. Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc Res 2008;77:134-142.
    37. Damas JK, W(?)hre T, Yndestad A,et al. Stromal Cell-Derived Factor-1 in Unstable Angina Potential Antiinflammatory and Matrix-Stabilizing Effects.Circulation,2002,106(1):36-42.
    38. Abi-Younes S, Sauty A, Mach F, et al. The stromal cell-derived factor-1 chemokine is a potent platelet agonist highly expressed in atherosclerotic plaques. Circ Res.2000,86(2):131-8.
    39. Schober A, Knarren S, Lietz M,et al. Crucial role of stromal cell-derived factor-1 alpha in neointima formation after vascular injury in apolipoprotein E-deficient mice. Circulation.2003,108(20):2491-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700