用户名: 密码: 验证码:
新型芳唑(嗪)巯乙酰胺类HIV-1 NNRTI的设计、合成与活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
艾滋病(Acquired Immunodeficiency Syndrome, AIDS)的主要病原体是人免疫缺陷病毒1型(Human Immunodeficiency Virus type 1, HIV-1)。自从1981年被发现以来,艾滋病已经成为危害人类生命健康的重大传染性疾病。虽然高效抗逆转录疗法(Highly Active Antiretroviral Therapy, HAART)的实施是抗艾滋病治疗的一项重大突破,但是病毒耐药性的出现及长期服药的毒性问题极大地限制了该疗法的应用。因此研发新型的抗艾滋病药物依然是当前一项重大的科研任务。
     HIV-1非核苷类逆转录酶抑制剂(Non-nucleoside Rreverse Transcriptase Inhibitors, NNRTI)是HAART疗法的重要组成部分。NNRTI具有结构多样性,但都作用于HIV-1逆转录酶(Reverse Transcriptase, RT)的疏水性口袋。该类药物具有高效、低毒的优点,但是耐药毒株的蔓延使该类药物迅速丧失临床效价。因此新型、高效、低毒、广谱抗耐药的NNRTI的研发是目前抗HIV药物研究的重要方向之一。
     在目前的非核苷类抗艾滋病药物研究领域,由于NNRTI结合口袋(NNRTI Binding Pocket, NNIBP)本身不存在(需要NNRTI诱导产生)、结构柔韧性较强及组成的氨基酸极易突变等限制性因素,使精确预测NNRTI的结合模式、完全基于HIV-1 RT的三维结构进行全新抑制剂设计还存在较大困难。因此,选择研发前景较大的化合物为先导,在对其构效关系及结合模式分析的基础上,综合运用结构生物学信息、计算化学技术及传统药物化学策略进行先导化合物的优化,是当前发现新一代NNRTI药物的有效途径。
     三唑/四唑巯乙酰胺类化合物是通过高通量筛选(High-throughput Screening,HTS)得到的一类结构新颖的NNRTI。在细胞水平的活性测试中,大多数衍生物在亚微摩尔浓度就产生较强的抗HIV活性。体外实验发现,该类化合物不但对野生型RT具有较强的抑制活性,而且对K103N-Y181C双突变的HIV-1 RT也具有很高的活性,因此三唑/四唑巯乙酰胺类化合物是非常具有研发前景的一类NNRTI。本论文即是以此类NNRTI为先导化合物,在前期初步构效关系及结合模式分析的基础上,根据“生物电子等排”、“骨架跃迁”及“多靶点配体设计”等药物设计基本原理,对先导化合物中的“杂环支架及氢键作用区”进行广泛的结构变换,构建全新的结构骨架。并以新设计的“等排”、“跃迁”及多靶点“杂合”骨架为母核,优选先导化合物中的活性基团,对先导化合物中的“疏水作用区”及“开口区”进行系统的结构修饰,构建起结构多样的虚拟化合物库。通过基于分子对接的虚拟筛选,对预测活性较高的化合物实施定向合成,并经体外抗HIV-1活性实验,由此发现高效低毒、抗耐药性且具有自主知识产权的的新型NNRTI,为该类抗艾滋病药物的研发奠定基础。
     目标化合物的合理设计1)基于HIV-1 RT与NNRTI复合物的三维结构以及NNRTI药效团的构成要素(支架/氢键作用区、疏水作用区及“开口区”),在对三唑/四唑巯乙酰胺类先导化合物构效关系和分子模拟的基础上,按照“生物电子等排”原理,对五元芳杂环进行结构多样性的变换,构建了1,2,3-噻二唑、1,2,3-硒二唑、咪唑及新三唑等4类新型的唑类巯乙酰胺骨架,并在“开口区”引入多种含N、S原子的杂环基团,以增强该亲水区域的作用力。此外,尽管嗪类杂环作为唑类杂环的非经典的电子等排体,但是它们具有非常类似的电子排布及生物学功能。为了进一步考察杂环的种类对活性的影响,本论文还设计了全新的芳嗪类(如哒嗪、三嗪等)巯乙酰胺骨架。
     2)根据先导化合物的药效团特征及“骨架跃迁”(Scaffold Hopping)概念,对芳唑巯乙酰胺类NNRTI的“杂环支架及氢键作用区”作进一步改造,设计了杂环剖开或取代、且结合模式类似的“跃迁骨架”:①用磺酰胺基团代替唑类杂环,羰基氧原子模拟唑类杂环上的N、S等杂原子,作为氢键的受体。并在连接链引入新的构象限制性基团,保持与先导化合物具有类似的分子自由度及活性构象。据此,设计了氨基磺酰胺及磺酰胺吡咯烷“跃迁”骨架。②通过对先导化合物分子模拟,并结合具有类似结合模式的二芳基嘧啶类NNRTI的结构特征,在唑环上引入氨基、卤素等取代基,以增强该区域与结合位点氨基酸主链形成氢键或卤键的能力。设计了杂环上连有氨基或卤素的取代噻唑巯乙酰胺类结构骨架。
     3)多靶点抑制剂研究已成为当前新药研发的新策略,也是抗艾滋病药物研究的新热点。根据靶点的结构生物学信息及先导化合物的构效关系,利用“药效团整合”的方法,并借助计算机手段进行合理设计是发现新型双靶点HIV抑制剂的最有效途径。在对芳基二酮类HIV整合酶抑制剂及芳唑巯乙酰胺类NNRTI构效关系及结合模式分析的基础上,结合两类抑制剂结构的相似性,充分利用每类抑制剂中的可修饰位点,通过药效团整合的策略,构建新型的芳唑巯乙酰胺二酮结构骨架。
     4)以上述新设计的“等排”、“跃迁”及多靶点“杂合”骨架为母核,优选先导化合物中的活性基团,构建起结构多样的虚拟化合物库。借鉴基于分子对接的虚拟筛选结果来确定拟合成目标化合物的结构。
     目标化合物的合成通过对目标分子的结构进行逆合成分析,确定化学合成路线。目前已合成1,2,3-噻二唑、1,2,3-硒二唑、咪唑、三唑、哒嗪、三嗪、取代噻唑巯乙酰胺、氨基磺酰胺乙酰胺及含有二酮酸基团的芳唑巯乙酰胺等9大系列200余个结构全新的目标化合物,其制备方法未见文献报道,具有较高的创新性,已申请多项国家专利。已完成三嗪巯乙酰胺类NNRTI母核结构硫代三嗪酮的合成。
     目标化合物的活性筛选将设计合成的部分芳唑巯乙酰胺类衍生物进行了初步的抗HIV-1(ⅢB)及抗HIV-2 (ROD)舌性筛选。结果表明,在1,2,3-噻二唑及咪唑巯乙酰胺衍生物中,大多数目标化合物都具有较高的抗HIV-1活性。共有13个化合物的EC50值低于(或接近)上市药物奈韦拉平与地拉韦定(阳性对照药);多数1,2,3-硒二唑巯乙酰胺衍生物活性较低,且细胞毒性较高;在新型三唑巯乙酰胺系列中,有多个化合物对野生型HIV及E138K、K103N及L100I耐药株具有显著的抑制活性,EC50处在微摩尔水平;在氯代噻唑球乙酰系列化合物中共有4个化合物(IX-B8a、IX-B8e、IX-B8f、IX-B8g)的EC50值达到微摩尔水平。而且化合物IX-B8e、IX-B8f、IX-B8g能有效地抑制耐药株(E138K、K103N、L100I);芳唑巯乙酰胺-二酮酸类化合物X-3A及X-3B对野生型HIV (ⅢB)毒株及多种耐药毒株(E138K、K103N、L100I、L100I)具有较好的抑制活性,单比先导化合物的活性有所降低;氨基噻唑巯乙酰胺系列及氨基磺酰胺系列化合物丧失抗病毒活性。所筛选的目标化合物对HIV-2(ROD)均无明显抑制活性。此外,一些具有较高活性的目标化合物对多种耐药毒株的活性筛选试验正在进行中,期待有新的发现。
     本论文还初步探讨了各类目标化合物抑制HIV-1(ⅢB)的构效关系。利用计算机辅助药物设计软件对发现的活性化合物进行了分子模拟(Dock)及3D-QSAR研究,佐证了构效关系结论,为进一步结构修饰提供了合理的指导。
     本论文对部分目标化合物中进行了抗流感病毒活性的随机筛选,结果发现,化合物IX-A8g和IX-A8h呈现出显著的抗流感病毒活性,而且对甲型H1N1流感病毒毒株有较高的选择性及较强的抑制作用。EC50值比几种对照药物低1-2个数量级,但是这两个化合物的细胞毒性较大,值得进一步结构修饰。
     总之,本论文以高效抗耐药的先导化合物四唑/三唑巯乙酰胺类NNRTI为模板,在作者前期初步结构修饰的基础上,结合构效关系结论及药效团特征,分别根据药物设计中的“生物电子等排”、“骨架跃迁”及“多靶点配体设计”等原理,对先导化合物进行结构多样的骨架变换,并应用药物设计软件进行虚拟筛选,避免了合成的盲口性。本课题总共设计合成了9个系列共200余个结构全新的化合物。对其中的部分目标化合物进行了抗HIV活性筛选及抗流感病毒活性的随机筛选,发现了新型结构骨架的1,2,3-噻二唑巯乙酰胺类及咪唑巯乙酰胺类NNRTI,其中10余个化合物的抗HIV-1(ⅢB)活性达到或超过上市药物奈韦拉平与地拉韦定,并发现了2个对甲型H1N1流感病毒毒株有较高的选择性及较强抑制作用的氨基噻唑类苗头化合物,具有进一步研究与开发价值。
The human immunodeficiency virus type 1 (HIV-1) is the main cause of the acquired immunodeficiency syndrome (AIDS), which was first identified in the Western world in 1981. Since then, AIDS has developed into a worldwide pandemic of disastrous proportions. Considerable progress has been made in treating HIV-infected patients using highly active antiretroviral therapy (HAART) involving multidrug combinations. However, the increasing incidence of drug resistant viruses along with the drug toxicity among treated people calls for continuous efforts of developing anti-HIV-1 drugs.
     HIV-1 reverse transcriptase (RT) is one of the main targets for the action of anti-AIDS drugs. Drugs targeted at HIV RT can be divided into two categories:(i) nucleoside and nucleotide analogue RT inhibitors (NRTIs/NtRTIs), which, following activation to their triphosphate forms, compete with the RT substrate and also act as terminators of DNA synthesis after incorporation into the primer strand; and (ⅱ) nonnucleoside RT inhibitors (NNRTIs), including the approved drugs nevirapine, delavirdine, efavirenz and etravirine, which, although having wide structural variation, all bind at a similar site distal to the active site within RT. NNRTIs currently in clinical use have a low genetic barrier to resistance and therefore, the need for novel NNRTIs active against drug-resistant mutants selected by current therapies is of paramount importance.
     In recent year, in spite of the rapid growth of HIV-1 RT 3D-structural information, the difficulty in structure-based de novo design of NNRTIs scaffolds and docking based virtual screening approach lies in the following two aspects:i) The flexibility of NNIBP, formed by conformational changes in the RT on binding of the NNRTI ligand;ⅱ) The NNRTI resistance mutations located in and around the NNIBP. Therefore, structure-based and ligand-based combined drug design methodology was carried out to facilitate both drug lead generation and lead optimization. And considerable cases illustrated the benefits for NNRTIs design of closely coupled traditional medicinal chemistry, structural biology, computational chemistry methodology, and many others.
     From high-throughput screening (HTS) of compounds library, several interesting sulfanyltriazole and sulfanyltetrazole-typed leads were identified as novel NNRTIs, which have simple, yet distinctively different chemical structure from the HIV inhibitors reported in the literature. Extensive structural modification and bioactivity research demonstrated that most of them showed submicromolar activity in a cell assay and significant in vitro activity on the WT or K103N-Y181C HIV-1 RT. With a suitable combination of substitution patterns on the aryl linked to the tetrazole/triazole core (hydrophobic interaction domain), the anilide aryl (the solvent exposed region), five-membered moiety and thioacetamide linker (scaffold and hydrogen bond interaction domain), it is possible to identify compounds which maintain the same intrinsic activity on the wild-type HIV-1 enzyme and the clinically relevant K103N mutant. Based on the above, we hypothesized that alternate, potentially better scaffolds could be designed.
     Bioisosteric replacement principle is an excellent tool of Medicinal Chemistry for lead optimization to produce the desired potency and selectivity and the requisite ADME profile for a marketable drug. On the basis of extensive SAR and molecular modeling studies of sulfanyltriazole and sulfanyltetrazole-typed NNRTIs, we replace the triazole or tetrazole five-membered core in the leads by other five-membered heterocycles (1,2,3-thiadiazole,1,2,3-selenadiazole, imidazole, triazole) and six-membered heterocycles (pyridazine, triazine) to obtain the novel scaffolds, i.e. Arylazolyl(azinyl)thioacetanilides based NNRTIs.
     In chemoinformatics, searching for compounds which are structurally diverse and share a biological activity is called scaffold hopping. On account of the structural similarity of NNRTIs families, scaffold hopping or chemotype switching via dismantlement and simplification of known NNRTIs is important since it can be used to obtain alternative structures with improved efficiency and unexpected side-effects. Based on the "scaffold hopping" concept and the pharmacophore characteristic of lead compounds, sulfamoylaminoacetamide and sulfamoyl pyrrolidine-2-carboxamide scaffold were designed, which exhibited similar binding conformation to tetra(tri)azole thioacetanilides. In addition, the SAR analysis and the similarity of molecular modeling of tetra(tri)azole thioacetanilides based NNRTIs and DAPY-based NNRTIs permitted the scaffold hopping to a novel series of substituted thiazole thioacetanilides NNRTIs.
     Multiple ligands are emerging in anti-HIV drug discovery strategies, using a single entity to inhibit multitargets could yield improved patient compliance, thus reducing the likelihood of drug resistance. The exploration of such multifunctional ligands has proven valuable for anti-HIV leads discovery. Our design began with the general knowledge that a diketoacid (DKA) group and an directly connected aromatic ring are the two indispensable structural features for the DKA class of HIV-1 integrase (IN) inhibitors. The key to multiple ligands design strategy would be to incorporate these two features into a tolerant region in the RT inhibitors. Molecular modelling has shown that the amide connected phenyl group of azole thioacetanilides-based NNRTIs is situated in an open area controlled by the P236 loop where structural modification could be tolerated. Based on these general knowledge and the multiple ligands design strategy, azolthioacetamidophenyl-2-hydroxy-4-oxobut-2-enoic acid-based RT/IN dual inhibitors were designed via incorporation of an IN pharmacophore to this tolerant region of the azole thioacetanilides NNRTIs.
     Virtual compounds library was constructed by introducing superior substituent group of lead compounds to the designed core:1,2,3-thiadiazole thioacetanilides, 1,2,3-selenadiazole thioacetanilides, imidazole thioacetanilides, triazole thioacetanilides, pyridazine thioacetanilides, triazine thioacetanilides, sulfamoylaminoacetamide and sulfamoyl pyrrolidine-2-carboxamide scaffold, substituted thiazole thioacetanilides and azolthioacetamidophenyl-2-hydroxy-4-oxobut-2-enoic acid-based scaffold. Virtual compounds were evaluated by docking, program, carried out using FlexX, which is a widely used docking algorithm in drug design whose ability in predicting a binding mode of the ligand very close to its X-ray structure has been widely described in literature.
     In this dissertation,206 title compounds belong to 9 novel scaffolds were designed and synthesized, starting from the commercially available starting material, and were structurally identified by IR, Mass spectroscopy,'H-NMR and/or 13C-NMR spectral analysis respectively. These compounds and the new synthesis approaches have not been reported in literature.
     The preliminary activity and cytotoxicity screening of the newly designed and synthesized target compounds 1,2,3-thiadiazole thioacetanilides,1,2,3-selenadiazole thioacetanilides and imidazole thioacetanilides were tested in MT-4 cells for inhibition of HIV-1 (strain IIIB) and HIV-2 (strain ROD). Bioactivity assay indicated that most of the title compounds showed good activities against HIV-1 and none of the compounds exhibited inhibitory activity against HIV-2.①In particular,10 compounds in 1,2,3-thiadiazole thioacetanilide (TTA) series showed anti-HIV-1 activities at sub-micromolar concentrations. Interestingly, the cytotoxicity of TTAs was generally low. Owing to the above reasons, their SI values were in many cases similar to that of the reference drug. In particular, compound I-A7c displayed the most potent anti-HIV-1 activity (EC50=36.4 nM), inhibiting HIV-1 replication in MT-4 cells more effectively than NVP (by 7-fold) and DLV (by 8-fold).②The results showed that some 1,2,3-selenadiazole thioacetanilide derivatives, such as II-7f (EC50=2.45μM), possess similar HIV-1 inhibitory activity compared with that of sulfanyltriazole series, but most of these derivatives exhibited decreased anti-HIV-1 specificity due to a significantly increased cytotoxicity. Although the pharmacological results are not very encouraging, this study provides useful information to further design new anti-HIV agents.③Most of the tested imidazole thioacetanilides derivatives inhibited HIV-1 replication in a lower micromolar concentration range. The most potent HIV-1 inhibitors were III-A4e (EC50=0.18μM, CC50=28.81μM, SI=162), andⅢ-A4b (EC50= 0.20μM, CC50=35.24μM, SI=170). The EC50 values of these two compounds were lower than those of one triazole lead compound (EC50=2.053μM) and of the reference drugs NVP and DLV. Other compounds,Ⅲ-A4c,Ⅲ-A4d,Ⅲ-C4e, andⅢ-A4a, also showed higher anti-HIV-1 potency (EC50=0.64,0.73,1.03, and 1.78μM, respectively) compared with the respect to that of the triazole lead compound, indicating that the imidazole is also an acceptable isosteric replacement for the triazole, tetrazole, or 1,2,3-thiadiazole in the lead compounds.④Several compounds in 1,2,4-series and chloro-substituted thiazole series (Ⅳ-7a,Ⅳ-7c,Ⅳ-7e,Ⅳ-7g,Ⅳ-71,Ⅳ-7m andⅨ-B8a,Ⅸ-B8e,Ⅸ-B8f,Ⅸ-B8g) proved to be active against HIV-Ⅰ(Ⅲb). These compounds also showed an appreciable activity against mutant HIV-1 strains (E138K、K103N、L1001).⑤All of the tested compounds in sulfamoylaminoacetamide series, sulfamoyl pyrrolidine-2-carboxamide series and amino-substituted thiazole series lost their anti-HIV activity.⑥Two azolthioacetamidophenyl-2-hydroxy-4-oxobut-2-enoic acid derivatives (Ⅹ-3A andⅩ-3B) retained moderate activity against wild-type HIV-1 and the mutant strains E138K, K103N and L1001. On the basis of the chemical structure and the fact that the target compounds inhibit HIV-1, but not HIV-2 replication, these molecules can be proposed to act as genuine HIV-1 NNRTIs. The preliminary structure-activity relationships (SAR) of the newly synthesized congeners are discussed. Molecular modeling (docking) and 3D-QSAR studies of some potent compounds in complex with HIV-1 RT are described, allowing rationalization of some SAR conclusions. Moreover, the anti-HIV activity against an NNRTI-resistant strain of the newly synthesized derivatives is in progress, from which we are expecting to get some useful information.
     Some selected target compounds (54 compounds) were randomly tested for their anti-influenza virus activity. Preliminary result showed that two amino-substituted thiazole derivatives (IX-A8g and IX-A8h) displayed potent and selective inhibitory activities against influenza A H1N1 subtype. And these compounds could be used as "hit" compounds to further design influenza inhibitors.
     In summary, taking the sulfanyltriazole and sulfanyltetrazole-typed NNRTIs as leads, night series of arylazolyl(azinyl)thioacetanilides-based NNRTIs were designed and synthesized in this dissertation according to "bioisosteric replacement" principle, "scaffold hopping" concept and "multiple ligands design" strategy, respectively. The new, simple, and convenient synthetic approaches to the title compounds were developed, or improved and optimized. Lastly, through biological evaluation, we find many high potent antiviral agents, the 1,2,3-thiadiazole/imidazole thioacetanilide scaffolds were identified as novel NNRTIs, amino-substituted thiazole derivatives were discovered as promising anti-influenza virus agents in random screening, which are worth further investigation and development. We hope that the knowledge and insight on the NNRTI research learnt from the work will help a lot on the battle against the virus and benefit human health and life.
引文
[1]AIDS Epidemic Update:December 2008. Joint United Nations Programme on HIV/AIDS and World Health Organization 2008.
    [2]Abdool Karim SS, Abdool Karim Q, Gouws E, Baxter C. Global epidemiology of HIV-AIDS. Infect Dis Clin North Am.2007 Mar;21(1):1-17, vii.
    [3]Kallings LO. The first postmodern pandemic:25 years of HIV/AIDS. J Intern Med.2008 Mar;263(3):218-43.
    [4]French N, Kaleebu P, Pisani E, Whitworth JA. Human immunodeficiency virus (HIV) in developing countries. Ann Trop Med Parasitol.2006 Jul-Sep;100(5-6):433-54.
    [5]Guidozzi F, Black V. The obstetric face and challenge of HIV/AIDS. Clin Obstet Gynecol. 2009 Jun;52(2):270-84.
    [6]Simon V, Ho DD, Abdool Karim Q. HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. Lancet.2006 Aug 5;368(9534):489-504.
    [7]Croce F, Piconi S, Atzeni F, Sarzi-Puttini P, Galli M, Clerici M. HIV/AIDS:epidemic update, new treatment strategies and impact on autoimmunity. Clin Exp Rheumatol.2008 Jan-Feb;26(1 Suppl 48):S48-52.
    [8]Wang L, Wang N, Wang L, Li D, Jia M, Gao X, Qu S, Qin Q, Wang Y, Smith K. The 2007 Estimates for People at Risk for and Living With HIV in China:Progress and Challenges. J Acquir Immune Defic Syndr.2009 Apr 1;50(4):414-8.
    [1]Adamson CS, Freed EO. Novel approaches to inhibiting HIV-1 replication. Antiviral Res. 2010 Jan;85(1):119-41.
    [2]Freed EO, Mouland AJ. The cell biology of HIV-1 and other retroviruses. Retrovirology.2006 Nov 3;3:77.
    [3]Freed EO. HIV-1 replication. Somat Cell Mol Genet.2001; 26:13-33.
    [4]Ferguson MR, Rojo DR, von Lindern JJ, O'Brien WA. HIV-1 replication cycle. Clin Lab Med 2002; 22:611-35.
    [1]Barbara G, Scozzafava A, Mastrolorenzo A, Supuran CT. Highly active antiretroviral therapy: current state of the art, new agents and their pharmacological interactions useful for improving therapeutic outcome. Curr Pharm Des.2005;11(14):1805-43.
    [2]De Clercq E. New developments in anti-HIV chemotherapy. Curr Med Chem.2001 Nov; 8(13):1543-72.
    [3]De Clercq E. Emerging anti-HIV drugs.Expert Opin Emerg Drugs.2005 May; 10(2):241-73.
    [4]De Clercq E.The design of drugs for HIV and HCV. Nat Rev Drug Discov.2007 Dec; 6(12):1001-18.
    [5]Richter SN, Frasson I, Palu G. Strategies for inhibiting function of HIV-1 accessory proteins:a necessary route to AIDS therapy? Curr Med Chem.2009;16(3):267-86.
    [6]Agrawal L, Lu X, Jin Q, Alkhatib G Anti-HIV therapy:Current and future directions. Curr Pharm Des.2006;12(16):2031-55.
    [7]Tandon VK, Chhor RB. Current Status of Anti-HIV Agents. Curr. Med. Chem.-Anti-Infective Agents,2005,4,3-28
    [8]Greene WC, Debyser Z, Ikeda Y, Freed EO, Stephens E, Yonemoto W, Buckheit RW, Este JA, Cihlar T. Novel targets for HIV therapy. Antiviral Res.2008 Dec;80(3):251-65.
    [9]Adamson CS, Freed EO. Recent progress in antiretrovirals-lessons from resistance. Drug Discov Today.2008 May;13(9-10):424-32.
    [10]De Clercq E. Anti-HIV drugs:25 compounds approved within 25 years after the discovery of HIV. Int J Antimicrob Agents.2009 Apr;33(4):307-20.
    [11]Dau B, Holodniy M. Novel targets for antiretroviral therapy:clinical progress to date. Drugs. 2009;69(1):31-50.
    [12]Perno CF, Moyle G, Tsoukas C, Ratanasuwan W, Gatell J, Schechter M. Overcoming resistance to existing therapies in HIV-infected patients:the role of new antiretroviral drugs. J Med Virol.2008 Apr;80(4):565-76.
    [13]Broder S. The development of antiretroviral therapy and its impact on the HIV-1/AIDS pandemic. Antiviral Res.2010 Jan;85(1):1-18.
    [14]De Clercq E. The history of antiretrovirals:key discoveries over the past 25 years. Rev Med Virol.2009 Sep;19(5):287-99.
    [15]Bhattacharya S, Osman H. Novel targets for anti-retroviral therapy. J Infect.2009 Dec; 59(6):377-86.
    [16]Nikolopoulos G, Bonovas S, Tsantes A, Sitaras NM. HIV/AIDS:recent advances in antiretroviral agents. Mini Rev Med Chem.2009 Jul;9(8):900-10.
    [17]Mehellou Y, De Clercq E. Twenty-six years of anti-HIV drug discovery:where do we stand and where do we go? J Med Chem.2010 Jan 28;53(2):521-38.
    [18]Turpin JA. The next generation of HIV/AIDS drugs:novel and developmental antiHIV drugs and targetsJExpert Rev Anti Infect Ther.2003 Jun;1(1):97-128.
    [19]Adamson CS, Freed EO. Novel approaches to inhibiting HIV-1 replication. Antiviral Res. 2010Jan;85(1):119-41.
    [20]Este JA, Cihlar T. Current status and challenges of antiretroviral research and therapy. Antiviral Res.2010 Jan;85(1):25-33.
    [21]Miller MD, Hazuda DJ. New antiretroviral agents:looking beyond protease and reverse transcriptase. Curr Opin Microbiol.2001 Oct;4(5):535-9.
    [22]Steinhart CR. Recent advances in the treatment of HIV/AIDS. Expert Rev Anti Infect Ther. 2004Apr;2(2):197-211.
    [23]Arhel N, Kirchhoff F. Host proteins involved in HIV infection:New therapeutic targets. Biochim Biophys Acta.2010 Mar; 1802(3):313-321.
    [24]Coley W, Kehn-Hall K, Van Duyne R, Kashanchi F. Novel HIV-1 therapeutics through targeting altered host cell pathways. Expert Opin Biol Ther.2009 Nov;9(11):1369-82.
    [25]Zhang, J.; Liu, X.; De Clercq, E. Capsid (CA) protein as a novel drug target:recent progress in the research of HIV-1 CA inhibitors. Mini. Rev. Med. Chem.,2009,9,510-8.
    [26]Mingyan, Y; Xinyong, L.; De Clercq, E. NF-kappaB:the inducible factors of HIV-1 transcription and their inhibitors. Mini. Rev. Med. Chem.,2009,9,60-9.
    [27]Cao, Y; Liu, X.; De Clercq, E. Cessation of HIV-1 transcription by inhibiting regulatory protein Rev-mediated RNA transport. Curr. HIV Res.,2009,7,101-8.
    [28]Yu, F.; Liu, X.; Zhan, P.; De Clercq, E. Recent advances in the research of HIV-1 RNase H inhibitors. Mini. Rev. Med. Chem.,2008,8,1243-51.
    [29]Wang, Y; Liu, X.Y.; De Clercq, E. Role of the HIV-1 positive elongation factor P-TEFb and inhibitors thereof. Mini. Rev. Med. Chem.,2009,9,379-85.
    [30]Chen H, Liu X, Li Z, Zhan P, De Clercq E. TSG101:A Novel Anti-HIV-1 Drug Target. Curr Med Chem.2010 Jan 21.
    [31]Zhan P, Liu X, De Clercq E. Blocking Nuclear Import of Pre-Integration Complex:An Emerging Anti-HIV-1 Drug Discovery Paradigm. Curr Med Chem.2009 Dec 17.
    [1]Jonckheere H, Anne J, De Clercq E. The HIV-1 reverse transcription (RT) process as target for RT inhibitors. Med Res Rev.2000;20(2):129-54.
    [2]Castro HC, Loureiro NI, Pujol-Luz M, Souza AM, Albuquerque MG, Santos DO, Cabral LM, Frugulhetti IC, Rodrigues CR. HIV-1 reverse transcriptase:a therapeutical target in the spotlight. Curr Med Chem.2006;13(3):313-24.
    [3]Sarafianos SG, Marchand B, Das K, Himmel DM, Parniak MA, Hughes SH, Arnold E. Structure and function of HIV-1 reverse transcriptase:molecular mechanisms of polymerization and inhibition. J Mol Biol.2009;385(3):693-713.
    [4]Uina T, Parniak MA. Inhibitors of HIV-1 reverse transcriptase. Adv Pharmacol.2008; 56:121-67.
    [5]El Safadi Y, Vivet-Boudou V, Marquet R. HIV-1 reverse transcriptase inhibitors. Appl Microbiol Biotechnol.2007; 75(4):723-37.
    [6]Jochmans D. Novel HIV-1 reverse transcriptase inhibitors. Virus Res.2008;134(1-2):171-85.
    [7]Locatelli GA, Cancio R, Spadari S, Maga G. HIV-1 reverse transcriptase inhibitors:current issues and future perspectives. Curr Drug Metab.2004;5(4):283-90.
    [8]Martins S, Ramos MJ, Fernandes PA. The current status of the NNRTI family of antiretrovirals used in the HAART regime against HIV infection. Curr Med Chem. 2008;15(11):1083-95.
    [9]Sluis-Cremer N, Tachedjian G. Mechanisms of inhibition of HIV replication by non-nucleoside reverse transcriptase inhibitors. Virus Res.2008;134(1-2):147-56.
    [10]Domaoal RA, Demeter LM. Structural and biochemical effects of human immunodeficiency virus mutants resistant to non-nucleoside reverse transcriptase inhibitors. Int J Biochem Cell Biol.2004;36(9):1735-51.
    [11]de Bethune MP. Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection:a review of the last 20 years (1989-2009). Antiviral Res.2010;85(1):75-90.
    [12]Sluis-Cremer N, Temiz NA, Bahar I. Conformational changes in HIV-1 reverse transcriptase induced by nonnucleoside reverse transcriptase inhibitor binding. Curr HIV Res. 2004;2(4):323-32.
    1. Tronchet JM, Seman M. Nonnucleoside inhibitors of HIV-1 reverse transcriptase:from the biology of reverse transcription to molecular design. Curr Top Med Chem 2003;3:1496-1511.
    2. Martins S, Ramos MJ, Fernandes PA. The current status of the NNRTI family of antiretrovirals used in the HAART regime against HIV infection. Curr Med Chem 2008;15:1083-1095.
    3. Zhou Z, Lin X, Madura JD. HIV-1 RT nonnucleoside inhibitors and their interaction with RT for antiviral drug development. Infect Disord Drug Targets 2006;6:391-413.
    4. (a) Seminari E, Castagna A, Lazzarin A. Etravirine for the treatment of HIV infection. Expert Rev Anti Infect Ther 2008;6:427-433. (b) Daar ES. Emerging resistance profiles of newly approved antiretroviral drugs. Top HIV Med 2008;16:110-116.
    5. (a) Arendt G, de Nocker D, von Giesen HJ, Nolting T. Neuropsychiatric side effects of efavirenz therapy. Expert Opin Drug Saf 2007;6:147-54. (b) Fumaz CR, Munoz-Moreno JA, Molto J, Negredo E, Ferrer MJ, Sirera G, Perez-Alvarez N, Gomez G, Burger D, Clotet B. Long-term neuropsychiatric disorders on efavirenz-based approaches:quality of life, psychologic issues, and adherence. J Acquir Immune Defic Syndr 2005;38:560-5. (c) SUSTIVA(?) (efavirenz) capsules and tablets:Package insert, Bristol-Myers Squibb Co, Princeton, NJ, USA (2008). package inserts. Bms/com/pi/pi_sustiva.pdf.
    6. (a) Boone LR. Next-generation HIV-1 non-nucleoside reverse transcriptase inhibitors. Curr Opin Investig Drugs 2006;7:128-135. (b) Sweeney ZK, Klumpp K. Improving non-nucleoside reverse transcriptase inhibitors for first-line treatment of HIV infection:the development pipeline and recent clinical data. Curr Opin Drug Discov Devel 2008; 11:458-70.
    7. Alberts IL, Todorov NP, Dean PM. Receptor flexibility in de novo ligand design and docking. J Med Chem 2005;48:6585-6596.
    8. Cozzini P, Kellogg GE, Spyrakis F, Abraham DJ, Costantino G, Emerson A, Fanelli F, Gohlke H, Kuhn LA, Morris GM, Orozco M, Pertinhez TA, Rizzi M, Sotriffer CA. Target flexibility: an emerging consideration in drug discovery and design. J Med Chem 2008;51:6237-6255.
    9. B-Rao C, Subramanian J, Sharma SD. Managing protein flexibility in docking and its applications. Drug Discov Today 2009; 14:394-400.
    10. (a) De Clercq E. The role of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the therapy of HIV-1 infection. Antiviral Res 1998;38:153-179. (b) De Clercq E. Perspectives of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the therapy of HIV-1 infection. Farmaco 1999;54:26-45. (c) De Clercq E. Non-nucleoside reverse transcriptase inhibitors (NNRTIs):past, present, and future. Chem Biodivers 2004; 1:44-64.
    11. Campiani G, Ramunno A, Maga G, Nacci V, Fattorusso C, Catalanotti B, Morelli E, Novellino E. Non-nucleoside HIV-1 reverse transcriptase (RT) inhibitors:past, present, and future perspectives. Curr Pharm Des 2002;8:615-657.
    12. Pauwels R. New non-nucleoside reverse transcriptase inhibitors (NNRTIs) in development for the treatment of HIV infections. Curr Opin Pharmacol 2004;4:437-446.
    13. Basavapathruni A, Anderson KS. Developing novel nonnucleoside HIV-1 reverse transcriptase inhibitors:beyond the butterfly. Curr Pharm Des 2006;12:1857-1865.
    14. Balzarini J. Current status of the non-nucleoside reverse transcriptase inhibitors of human immunodeficiency virus type 1. Curr Top Med Chem 2004;4:921-944.
    15. Zhan P, Liu X, Li Z. Recent Advances in the Discovery and Development of Novel HIV-1 NNRTI Platforms:2006-2008 Update.Curr Med Chem 2009;16:2876-2889.
    16. de Bethune MP. Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection:A review of the last 20 years (1989-2009). Antiviral Res.2009 Sep 23. on line.
    17. Prajapati DG, Ramajayam R, Yadav MR, Giridhar R. The search for potent, small molecule NNRTIs:A review. Bioorg Med Chem 2009; 17:5744-5762.
    18. (a) Pauwels R, Andries K, Desmyter J, Schols D, Kukla MJ, Breslin HJ, Raeymaeckers A, Van Gelder J, Woestenborghs R, Heykants J, et al. Potent and selective inhibition of HIV-1 replication in vitro by a novel series of TIBO derivatives. Nature 1990;343:470-474. (b) Pauwels R, Andries K, Debyser Z, Kukla M, Schols D, Desmyter J, De Clercq E, Janssen PA.TIBO derivatives:a new class of highly potent and specific inhibitors of HIV-1 replication. Biochem Soc Trans 1992;20:509-512.
    19. Kelly TA, McNeil DW, Rose JM, David E, Shih CK, Grob PM. Novel non-nucleoside inhibitors of human immunodeficiency virus type 1 reverse transcriptase.6.2-Indol-3-yl-and 2-azaindol-3-yl-dipyridodiazepinones. J Med Chem 1997;40:2430-2433.
    20. Merluzzi VJ, Hargrave KD, Labadia M, Grozinger K, Skoog M, Wu JC, Shih CK, Eckner K, Hattox S, Adams J, et al. Inhibition of HIV-1 replication by a nonnucleoside reverse transcriptase inhibitor. Science 1990;250:1411-1413.
    21. (a) Chimirri A, Grasso S, Monforte AM, Monforte P, Zappala M. Anti-HIV agents Ⅱ. Synthesis and in vitro anti-HIV activity of novel 1H,3H-thiazolo[3,4-a]benzimidazoles.Farmaco 1991;46:925-933. (b) Buckheit RW Jr, Hollingshead MG, Germany-Decker J, White EL, McMahon JB, Allen LB, Ross LJ, Decker WD, Westbrook L, Shannon WM, et al. Thiazolobenzimidazole:biological and biochemical anti-retroviral activity of a new nonnucleoside reverse transcriptase inhibitor. Antiviral Res 1993;21:247-265.
    22. Maass G, Immendoerfer U, Koenig B, Leser U, Mueller B, Goody R, Pfaff E. Viral resistance to the thiazolo-iso-indolinones, a new class of nonnucleoside inhibitors of human immunodeficiency virus type 1 reverse transcriptase. Antimicrob Agents Chemother 1993;37:2612-2617.
    23. De Lucca GV, Otto MJ. Synthesis and anti-HIV activity of pyrrolo[l,2-d]-(l,4)-benzodiazepin-6-ones. Bioorg Med Chem Lett 1992;2:1639-1644.
    24. Terrett NK, Bojanic D, Merson JR, Stephenson PT. Imidazo[2'-3'-:6,5]dipyrido [3,2-b:2',3'-e]-1,4-diazepines:non-nucleoside HIV-1 reverse transcriptase inhibitors with greater enzyme affinity than nevirapine. Bioorg Med Chem Lett 1992;2:1745-1750.
    25. Bellarosa D, Antonelli G, Bambacioni F, Giannotti D, Viti G, Nannicini R, Giachetti A, Dianzani F, Witvrouw M, Pauwels R, Desmyter J, De Clercq E. New arylpyrido-diazepine and-thiodiazepine derivatives are potent and highly selective HIV-1 inhibitors targeted at the reverse transcriptase. Antiviral Res 1996;30:109-124.
    26. (a) Campiani G, Nacci V, Fiorini I, De Filippis MP, Garofalo A, Greco G, Novellino E, Altamura S, Di Renzo L. Pyrrolobenzothiazepinones and pyrrolobenzoxazepinones:novel and specific non-nucleoside HIV-1 reverse transcriptase inhibitors with antiviral activity. J Med Chem 1996;39:2672-2680. (b) Campiani G, Morelli E, Fabbrini M, Nacci V, Greco G, Novellino E, Ramunno A, Maga G, Spadari S, Caliendo G, Bergamini A, Faggioli E, Uccella I, Bolacchi F, Marini S, Coletta M, Nacca A, Caccia S. Pyrrolobenzoxazepinone derivatives as non-nucleoside HIV-1 RT inhibitors:further structure-activity relationship studies and identification of more potent broad-spectrum HIV-1 RT inhibitors with antiviral activity. J Med Chem 1999;42:4462-4470.
    27. Silvestri R, Artico M, Bruno B, Massa S, Novellino E, Greco G, Marongiu ME, Pani A, De Montis A, La Colla P. Synthesis and biological evaluation of 5H-indolo [3,2-b][1,5]benzothiazepine derivatives, designed as conformationally constrained analogues of the human immunodeficiency virus type 1 reverse transcriptase inhibitor L-737,126. Antiviral Chem Chemother 1998;9:139-148.
    28. Livermore DGH, Bethell RC, Cammack N, Hancock AP, Hann MM, Green DVS, Lamont RB, Noble SA, Orr DC, Payne JJ, Ramsay MVJ, Shingler AH, Smith C, Storer R, Williamson C, Willson T, Synthesis and anti-HIV-1 activity of a series of imidazo[1,5-b]pyridazines. J Med Chem 1993;36:3784-3794.
    29-Witvrouw M, Arranz ME, Pannecouque C, Declercq R, Jonckheere H, Schmit JC, Vandamme AM, Diaz JA, Ingate ST, Desmyter J, Esnouf R, Van Meervelt L, Vega S, Balzarini J, De Clercq E. 1,1,3-Trioxo-2H,4H-thieno[3,4-e][1,2,4]thiadiazine (TTD) derivatives:a new class of nonnucleoside human immunodeficiency virus type 1 (HIV-1) reverse transcriptase inhibitors (NNRTIs) with anti-HIV-1 activity. Antimicrob Agents Chemother 1998:42:618-623.
    30. Krikorian D, Parushev S, Tarpanov V, Mechkarova P, Mikhova B, Botta M, Corelli F, Maga G, Spadari S. Synthesis and biological evaluation of imidazo[1,2-d][1,4]benzodiazepines and related compounds as potential anti-HIV-1 agents. Med Chem Res 1997:7;546-556.
    31. Taylor DL, Ahmed PS, Tyms AS, Bedard J, Duchaine J, Falardeau G, Lavallee JF, Hamel M, Rando RF, Bowlin T. A pyrido [1,2a] indole derivative identified as a novel non-nucleoside reverse transcriptase inhibitor of HIV-1. Abs.11th Int. Conf. Antiviral Res., San Diego, CA, USA, April 5-10,1998, Antiviral Res 1998:37:A53(abstract no.44).
    32. Krajewski K, Zhang Y, Parrish D, Deschamps J, Roller PP, Pathak VK. New HIV-1 reverse transcriptase inhibitors based on a tricyclic benzothiophene scaffold:synthesis, resolution, and inhibitory activity. Bioorg Med Chem Lett 2006;16:3034-3038.
    33. (a) Kashman Y, Gustafson KR, Fuller RW, Cardellina JH 2nd, McMahon JB, Currens MJ, Buckheit RW Jr, Hughes SH, Cragg GM, Boyd MR. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. J Med Chem 1992;35:2735-2743. (b) Kostova I. Coumarins as inhibitors of HIV reverse transcriptase. Curr HIV Res 2006;4:347-363. (c) Yu D, Suzuki M, Xie L, Morris-Natschke SL, Lee KH. Recent progress in the development of coumarin derivatives as potent anti-HIV agents. Med Res Rev 2003;23:322-345. (d) Kostova I, Raleva S, Genova P, Argirova R. Structure-Activity Relationships of Synthetic Coumarins as HTV-1 Inhibitors. Bioinorg Chem Appl.2006:68274.
    34. Artico M, Silvestri R, Pagnozzi E, Stefancich G, Massa S, Loi AG, Putzolu M, Corrias S, Spiga MG, La Colla P.5H-pyrrolo[1,2-b] [1,2,5]benzothiadiazepines (PBTDs):a novel class of non-nucleoside reverse transcriptase inhibitors. Bioorg Med Chem 1996;4:837-850.
    35. Corbett JW, Pan S, Markwalder JA, Cordova BC, Klabe RM, Garber S, Rodgers JD, Erickson-Viitanen SK.3,3a-Dihydropyrano[4,3,2-de]quinazolin-2(1H)-ones are potent non-nucleoside reverse transcriptase inhibitors. Bioorg Med Chem Lett 2001;11:211-214.
    36. Zhang Z, Walker M, Xu W, Shim JH, Girardet JL, Hamatake RK, Hong Z. Novel nonnucleoside inhibitors that select nucleoside inhibitor resistance mutations in human immunodeficiency virus type 1 reverse transcriptase. Antimicrob Agents Chemother 2006;50:2772-2781.
    37. (a) Dueweke TJ, Kezdy FJ, Waszak GA, Deibel MR Jr, Tarpley WG. The binding of a novel bisheteroarylpiperazine mediates inhibition of human immunodeficiency virus type 1 reverse transcriptase. J Biol Chem 1992;267:27-30. (b) Dueweke TJ, Poppe SM, Romero DL, Swaney SM, So AG, Downey KM, Althaus IW, Reusser F, Busso M, Resnick L, et al. U-90152, a potent inhibitor of human immunodeficiency virus type 1 replication. Antimicrob Agents Chemother 1993;37:1127-1131.
    38. Kleim JP, Bender R, Billhardt UM, Meichsner C, Riess G, Rosner M, Winkler I, Paessens A. Activity of a novel quinoxaline derivative against human immunodeficiency virus type 1 reverse transcriptase and viral replication. Antimicrob Agents Chemother 1993;37:1659-1664.
    39. (a) Williams TM, Ciccarone TM, MacTough SC, Rooney CS, Balani SK, Condra JH, Emini EA, Goldman ME, Greenlee WJ, Kauffrnan LR, et al. 5-chloro-3-(phenylsulfonyl)indole-2-carboxamide:a novel, non-nucleoside inhibitor of HIV-1 reverse transcriptase. J Med Chem 1993;36:1291-1294. (b) Silvestri R, Artico M. Indolyl aryl sulfones (IASs):development of highly potent NNRTIs active against wt-HIV-1 and clinically relevant drug resistant mutants. Curr Pharm Des 2005;11:3779-3806.
    40. Buckheit RW Jr, Fliakas-Boltz V, Decker WD, Roberson JL, Pyle CA, White EL, Bowdon BJ, McMahon JB, Boyd MR, Bader JP, et al. Biological and biochemical anti-HIV activity of the benzothiadiazine class of nonnucleoside reverse transcriptase inhibitors. Antiviral Res 1994;25:43-56.
    41. Tucker TJ, Lyle TA, Wiscount CM, Britcher SF, Young SD, Sanders WM, Lumma WC, Goldman ME, O'Brien JA, Ball RG, et al. Synthesis of a series of 4-(arylethynyl)-6-chloro-4-cyclopropyl-3,4-dihydroquinazolin-2(1H)-ones as novel non-nucleoside HIV-1 reverse transcriptase inhibitors. J Med Chem 1994;37:2437-2444.
    42. Young SD, Britcher SF, Tran LO, Payne LS, Lumma WC, Lyle TA, Huff JR, Anderson PS, Olsen DB, Carroll SS, et al. L-743,726 (DMP-266):a novel, highly potent nonnucleoside inhibitor of the human immunodeficiency virus type 1 reverse transcriptase. Antimicrob Agents Chemother 1995;39:2602-2605.
    43. Di Santo R, Costi R, Artico M, Massa S, Marongiu ME, Loi AG, De Montis A, La Colla P. 1,2,5-Benzothiadiazepine and pyrrolo[2,1-d][1,2,5]benzothiadiazepine derivatives with specific anti-human immunodeficiency virus type 1 activity. Antiviral Chem Chemother 1998;9:127-137.
    44. Jiang T, Kuhen KL, Wolff K, Yin H, Bieza K, Caldwell J, Bursulaya B, Wu.TY, He Y. Design, synthesis and biological evaluations of novel oxindoles as HIV-1 non-nucleoside reverse transcriptase inhibitors. Part I. Bioorg Med Chem Lett 2006;16:2105-2108.
    45. (a) Ellis D, Kuhen KL, Anaclerio B, Wu B, Wolff K, Yin H, Bursulaya B, Caldwell J, Karanewsky D, He Y. Design, synthesis, and biological evaluations of novel quinolones as HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg Med Chem Lett 2006;16:4246-4251. (b) Hopkins AL, Ren J, Milton J, Hazen RJ, Chan JH, Stuart DI, Stammers DK. Design of non-nucleoside inhibitors of HIV-1 reverse transcriptase with improved drug resistance properties.1. J Med Chem 2004;47:5912-5922. (c) Barreca ML, De Luca L, Iraci N, Rao A, Ferro S, Maga G, Chimirri A. Structure-based pharmacophore identification of new chemical scaffolds as non-nucleoside reverse transcriptase inhibitors. J Chem Inf Model 2007;47:557-562.
    46. Barreca ML, Rao A, De Luca L, Iraci N, Monforte AM, Maga G, De Clercq E, Pannecouque C, Balzarini J, Chimirri A. Discovery of novel benzimidazolones as potent non-nucleoside reverse transcriptase inhibitors active against wild-type and mutant HIV-1 strains. Bioorg Med Chem Lett 2007;17:1956-1960.
    47. Ludovici DW, Kavash RW, Kukla MJ, Ho CY, Ye H, De Corte BL, Andries K, de Bethune MP, Azijn H, Pauwels R, Moereels HE, Heeres J, Koymans LM, de Jonge MR, Van Aken KJ, Daeyaert FF, Lewi PJ, Das K, Arnold E, Janssen PA. Evolution of anti-HIV drug candidates. Part 2:Diaryltriazine (DATA) analogues. Bioorg Med Chem Lett 2001;11:2229-2234.
    48. Ludovici DW, De Corte BL, Kukla MJ, Ye H, Ho CY, Lichtenstein MA, Kavash RW, Andries K, de Bethune MP, Azijn H, Pauwels R, Lewi PJ, Heeres J, Koymans LM, de Jonge MR, Van Aken KJ, Daeyaert FF, Das K, Arnold E, Janssen PA. Evolution of anti-HIV drug candidates. Part 3:Diarylpyrimidine (DAPY) analogues. Bioorg Med Chem Lett 2001;11:2235-2239.
    49. Heeres J, de Jonge MR, Koymans LM, Daeyaert FF, Vinkers M, Van Aken KJ, Arnold E, Das K, Kilonda A, Hoornaert GJ, Compernolle F, Cegla M, Azzam RA, Andries K, de Bethune MP, Azijn H, Pauwels R, Lewi PJ, Janssen PA. Design, synthesis, and SAR of a novel pyrazinone series with non-nucleoside HIV-1 reverse transcriptase inhibitory activity. J Med Chem 2005;48:1910-1918.
    50. Tian X, Qin B, Lu H, Lai W, Jiang S, Lee KH, Chen CH, Xie L. Discovery of diarylpyridine derivatives as novel non-nucleoside HIV-1 reverse transcriptase inhibitors. Bioorg Med Chem Lett 2009; 19:5482-5485.
    51. Baba M, Tanaka H, De Clercq E, Pauwels R, Balzarini J, Schols D, Nakashima H, Perno CF, Walker RT, Miyasaka T. Highly specific inhibition of human immunodeficiency virus type 1 by a novel 6-substituted acyclouridine derivative. Biochem Biophys Res Commun 1989;165:1375-1381.
    52. Kim DK, Gam J, Kim YW, Lim J, Kim HT, Kim KH. Synthesis and anti-HIV-1 activity of a series of 1-alkoxy-5-alkyl-6-(arylthio)uracils. J Med Chem 1997;40:2363-2373.
    53. (a) Artico M, Massa S, Mai A, Marongiu ME, Piras G, Tramontano E, La Colla P. 3,4-Dihydro-2-alkoxy-6-benzyl-4-oxopyrimidines (DABOs):a new class of specific inhibitors of human immunodeficiency virus type 1. Antiviral Chem Chemother 1993;4:361-368. (b) Artico, M. Selected non-nucleoside reverse transcriptase inhibitors (NNRTIs):The DABOs family. Drugs Fut 2002;27:159-175.
    54. (a) Goldman ME, Nunberg JH, O'Brien JA, Quintero JC, Schleif WA, Freund KF, Gaul SL, Saari WS, Wai JS, Hoffman JM, et al. Pyridinone derivatives:specific human immunodeficiency virus type 1 reverse transcriptase inhibitors with antiviral activity. Proc Natl Acad Sci USA 1991;88:6863-6867. (b) Saari WS, Hoffman JM, Wai JS, Fisher TE, Rooney CS, Smith AM, Thomas CM, Goldman ME, O'Brien JA, Nunberg JH, et al.2-Pyridinone derivatives:a new class of nonnucleoside, HTV-1-specific reverse transcriptase inhibitors. J Med Chem 1991;34:2922-2925. (c) Medina-Franco JL, Martinez-Mayorga K, Juarez-Gordiano C, Castillo R. Pyridin-2(1H)-ones:a promising class of HIV-1 non-nucleoside reverse transcriptase inhibitors. ChemMedChem 2007;2:1141-1147.
    55. (a) Althaus IW, Chou KC, Lemay RJ, Franks KM, Deibel MR, Kezdy FJ, Resnick L, Busso ME, So AG, Downey KM, Romero DL, Thomas RC, Aristoff PA, Tarpley WG, Reusser F. The benzylthio-pyrimidine U-31,355, a potent inhibitor of HTV-1 reverse transcriptase. Biochem Pharmacol 1996;51:743-750. (b) Nugent RA, Schlachter ST, Murphy MJ, Cleek GJ, Poel TJ, Wishka DG, Graber DR, Yagi Y, Keiser BJ, Olmsted RA, Kopta LA, Swaney SM, Poppe SM, Morris J, Tarpley WG, Thomas RC. Pyrimidine thioethers:a novel class of HTV-1 reverse transcriptase inhibitors with activity against BHAP-resistant HIV. J Med Chem 1998;41:3793-3803. (c) Nugent RA, Wishka DG, Cleek GJ, Graber DR, Schalachter ST, Murphy MJ, Morris J, Thomas RC. Preparation of 2-pyrimidino alkyl ethers and thioethers as inhibitors of viral reverse transcriptase. WO/9635678.
    56. Wishka DG, Graber DR, Kopta LA, Olmsted RA, Friis JM, Hosley JD, Adams WJ, Seest EP, Castle TM, Dolak LA, Keiser BJ, Yagi Y, Jeganathan A, Schlachter ST, Murphy MJ, Cleek GJ, Nugent RA, Poppe SM, Swaney SM, Han F, Watt W, White WL, Poel TJ, Thomas RC, Morris J, et al. (-)-6-Chloro-2-[(1-furo[2,3-c]pyridin-5-ylethyl)thio]-4-pyrimidinamine, PNU-142721, a new broad spectrum HIV-1 non-nucleoside reverse transcriptase inhibitor. J Med Chem 1998;41:1357-1360.
    57. (a) Jorgensen WL, Ruiz-Caro J, Tirado-Rives J, Basavapathruni A, Anderson KS, Hamilton AD. Computer-aided design of non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg Med Chem Lett 2006; 16:663-667. (b) Ruiz-Caro J, Basavapathruni A, Kim JT, Bailey CM, Wang L, Anderson KS, Hamilton AD, Jorgensen WL. Optimization of diarylamines as non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg Med Chem Lett 2006;16:668-671. (c) Thakur VV, Kim JT, Hamilton AD, Bailey CM, Domaoal RA, Wang L, Anderson KS, Jorgensen WL. Optimization of pyrimidinyl-and triazinyl-amines as non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg Med Chem Lett 2006; 16:5664-5667.
    58. Ijichi K, Fujiwara M, Hanasaki Y, Watanabe H, Katsuura K, Takayama H, Shirakawa S, Sakai SI, Shigeta S, Konno K, Yokota T, Baba M. Potent and specific inhibition of human immunodeficiency virus type 1 replication by 4-(2,6-dichlorophenyl)-1,2,5-thiadiazol-3-Y1 N,N-dialkylcarbamate derivatives. Antimicrob Agents Chemother 1995;39:2337-40.
    59. Antonucci T, Warmus JS, Hodges JC, Nickell DG. Characterization of the antiviral activity of highly substituted pyrroles:a novel class of non-nucleoside HIV-1 reverse transcriptase inhibitor. Antiviral Chem Chemother 1995;6:98-108.
    60. (a) Barreiro G, Guimaraes CR, Tubert-Brohman I, Lyons TM, Tirado-Rives J, Jorgensen WL. Search for non-nucleoside inhibitors of HIV-1 reverse transcriptase using chemical similarity, molecular docking, and MM-GB/SA scoring. J Chem Inf Model 2007;47:2416-2428. (b) Barreiro G, Kim JT, Guimaraes CR, Bailey CM, Domaoal RA, Wang L, Anderson KS, Jorgensen WL. From docking false-positive to active anti-HIV agent. J Med Chem 2007;50:5324-5329. (c) Zeevaart JG, Wang L, Thakur VV, Leung CS, Tirado-Rives J, Bailey CM, Domaoal RA, Anderson KS, Jorgensen WL. Optimization of azoles as anti-human immunodeficiency virus agents guided by free-energy calculations. J Am Chem Soc 2008;130:9492-9499.
    61. (a) Fujiwara T, Sato A, el-Farrash M, Miki S, Abe K, Isaka Y, Kodama M, Wu Y, Chen LB, Harada H, Sugimoto H, Hatanaka M, Hinuma Y. S-1153 inhibits replication of known drug-resistant strains of human immunodeficiency virus type 1. Antimicrob Agents Chemother 1998;42:1340-1345. (b) Gewurz BE, Jacobs M, Proper JA, Dahl TA, Fujiwara T, Dezube BJ. Capravirine, a nonnucleoside reverse-transcriptase inhibitor in patients infected with HIV-1:a phase 1 study. J Infect Dis 2004;190:1957-1961. (c) Sato A, Hammond J, Alexander TN, Graham JP, Binford S, Sugita K, Sugimoto H, Fujiwara T, Patick AK. In vitro selection of mutations in human immunodeficiency virus type 1 reverse transcriptase that confer resistance to capravirine, a novel nonnucleoside reverse transcriptase inhibitor. Antiviral Res 2006;70:66-74.
    62. Genin MJ, Biles C, Keiser BJ, Poppe SM, Swaney SM, Tarpley WG, Yagi Y, Romero DL. Novel 1,5-diphenylpyrazole nonnucleoside HIV-1 reverse transcriptase inhibitors with enhanced activity versus the delavirdine-resistant P236L mutant:lead identification and SAR of 3-and 4-substituted derivatives. J Med Chem 2000;43:1034-1040.
    63. Barreca ML, Chimirri A, De Luca L, Monforte AM, Monforte P, Rao A, Zappala M, Balzarini J, De Clercq E, Pannecouque C, Witvrouw M. Discovery of 2,3-diaryl-1,3-thiazolidin-4-ones as potent anti-HIV-1 agents. Bioorg Med Chem Lett 2001;11:1793-1796.
    64. (a) Wu B, Kuhen K, Ngoc Nguyen T, Ellis D, Anaclerio B, He X, Yang K, Karanewsky D, Yin H, Wolff K, Bieza K, Caldwell J, He Y. Synthesis and evaluation of N-aryl pyrrolidinones as novel anti-HIV-1 agents. Part 1. Bioorg Med Chem Lett 2006;16:3430-3433. (b) Wu B, Nguyen TN, Ellis DA, He X, Anaclerio BM, Yang K, Chol H-S, Wang Z, Marsilje T, He Y. Phenyl-substituted pyrrolidones.2006; WO2006081544.
    65. (a) Zhan P, Li Z, Liu X, De Clercq E. Sulfanyltriazole/tetrazoles:a promising class of HIV-1 NNRTIs. Mini Rev Med Chem 2009;9:1014-1023. (b) Wang Z, Wu B, Kuhen KL, Bursulaya B, Nguyen TN, Nguyen DG, He Y. Synthesis and biological evaluations of sulfanyltriazoles as novel HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg Med Chem Lett 2006;16:4174-4177. (c) De La Rosa M, Kim HW, Gunic E, Jenket C, Boyle U, Koh YH, Korboukh I, Allan M, Zhang W, Chen H, Xu W, Nilar S, Yao N, Hamatake R, Lang SA, Hong Z, Zhang Z, Girardet JL. Tri-substituted triazoles as potent non-nucleoside inhibitors of the HIV-1 reverse transcriptase. Bioorg Med Chem Lett 2006;16:4444-4449. (d) Muraglia E, Kinzel OD, Laufer R, Miller MD, Moyer G, Munshi V, Orvieto F, Palumbi MC, Pescatore G, Rowley M, Williams PD, Summa V. Tetrazole thioacetanilides:potent non-nucleoside inhibitors of WT HIV reverse transcriptase and its K103N mutant. Bioorg Med Chem Lett 2006; 16:2748-2752. (e) O'Meara JA, Jakalian A, LaPlante S, Bonneau PR, Coulombe R, Faucher AM, Guse I, Landry S, Racine J, Simoneau B, Thavonekham B, Yoakim C. Scaffold hopping in the rational design of novel HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg Med Chem Lett 2007; 17:3362-3366. (f) Gagnon A, Amad MH, Bonneau PR, Coulombe R, DeRoy PL, Doyon L, Duan J, Garneau M, Guse I, Jakalian A, Jolicoeur E, Landry S, Malenfant E, Simoneau B, Yoakim C. Thiotetrazole alkynylacetanilides as potent and bioavailable non-nucleoside inhibitors of the HIV-1 wild type and K103N/Y181C double mutant reverse transcriptases. Bioorg Med Chem Lett 2007;17:4437-4441. (g) Zhang Z, Xu W, Koh YH, Shim JH, Girardet JL, Yeh LT, Hamatake RK, Hong Z. A novel nonnucleoside analogue that inhibits human immunodeficiency virus type 1 isolates resistant to current nonnucleoside reverse transcriptase inhibitors. Antimicrob Agents Chemother 2007;51:429-437.
    66. (a) Masuda N, Yamamoto O, Fujii M, Ohgami T, Fujiyasu J, Kontani T, Moritomo A, Orita M, Kurihara H, Koga H, Nakahara H, Kageyama S, Ohta M, Inoue H, Hatta T, Suzuki H, Sudo K, Shimizu Y, Kodama E, Matsuoka M, Fujiwara M, Yokota T, Shigeta S, Baba M. Studies of nonnucleoside HIV-1 reverse transcriptase inhibitors. Part 1:Design and synthesis of thiazolidenebenzenesulfonamides. Bioorg Med Chem 2004;12:6171-6182. (b) Masuda N, Yamamoto O, Fujii M, Ohgami T, Fujiyasu J, Kontani T, Moritomo A, Orita M, Kurihara H, Koga H, Kageyama S, Ohta M, Inoue H, Hatta T, Shintani M, Suzuki H, Sudo K, Shimizu Y, Kodama E, Matsuoka M, Fujiwara M, Yokota T, Shigeta S, Baba M. Studies of non-nucleoside HIV-1 reverse transcriptase inhibitors. Part 2:synthesis and structure-activity relationships of 2-cyano and 2-hydroxy thiazolidenebenzenesulfonamide derivatives. Bioorg Med Chem 2005;13:949-961.
    67. (a) Pauwels R, Andries K, Debyser Z, Van Daele P, Schols D, Stoffels P, De Vreese K, Woestenborghs R, Vandamme AM, Janssen CG, et al. Potent and highly selective human immunodeficiency virus type 1 (HIV-1) inhibition by a series of alpha-anilinophenylacetamide derivatives targeted at HIV-1 reverse transcriptase. Proc Natl Acad Sci USA 1993;90:1711-1715. (b) Ludovici DW, Kukla MJ, Grous PG, Krishnan S, Andries K, de Bethune MP, Azijn H, Pauwels R, De Clercq E, Arnold E, Janssen PA. Evolution of anti-HIV drug candidates. Part 1:From alpha-anilinophenylacetamide (alpha-APA) to imidoyl thiourea (ITU). Bioorg Med Chem Lett 2001; 11:2225-2228.
    68. Balzarini J, Brouwer WG, Felauer EE, De Clercq E, Karlsson A. Activity of various thiocarboxanilide derivatives against wild-type and several mutant human immunodeficiency virus type 1 strains. Antiviral Res 1995;27:219-236.
    69. (a) Bell FW, Cantrell AS, Hogberg M, Jaskunas SR, Johansson NG, Jordan CL, Kinnick MD, Lind P, Morin JM Jr, Noreen R, et al. Phenethylthiazolethiourea (PETT) compounds, a new class of HIV-1 reverse transcriptase inhibitors.1. Synthesis and basic structure-activity relationship studies of PETT analogs. J Med Chem 1995;38:4929-4936. (b) Cantrell AS, Engelhardt P, Hogberg M, Jaskunas SR, Johansson NG, Jordan CL, Kangasmetsa J, Kinnick MD, Lind P, Morin JM Jr, Muesing MA, Noreen R, Oberg B, Pranc P, Sahlberg C, Ternansky RJ, Vasileff RT, Vrang L, West SJ, Zhang H. Phenethylthiazolylthiourea (PETT) compounds as a new class of HIV-1 reverse transcriptase inhibitors.2. Synthesis and further structure-activity relationship studies of PETT analogs. J Med Chem 1996;39:4261-4274. (c) Ahgren C, Backro K, Bell FW, Cantrell AS, Clemens M, Colacino JM, Deeter JB, Engelhardt JA, Hogberg M, Jaskunas SR, et al. The PETT series, a new class of potent nonnucleoside inhibitors of human immunodeficiency virus type 1 reverse transcriptase. Antimicrob Agents Chemother 1995;39:1329-1335. (d) Campiani G, Aiello F, Fabbrini M, Morelli E, Ramunno A, Armaroli S, Nacci V, Garofalo A, Greco G, Novellino E, Maga G, Spadari S, Bergamini A, Ventura L, Bongiovanni B, Capozzi M, Bolacchi F, Marini S, Coletta M, Guiso G, Caccia S. Quinoxalinylethylpyridylthioureas (QXPTs) as potent non-nucleoside HIV-1 reverse transcriptase (RT) inhibitors. Further SAR studies and identification of a novel orally bioavailable hydrazine-based antiviral agent. J Med Chem 2001;44:305-315.
    70. (a) Sahlberg C, Noreen R, Engelhardt P, Hogberg M, Kangasmetsa J, Vrang L, Zhang H. Synthesis and anti-HIV activities of urea-PETT analogs belonging to a new class of potent non-nucleoside HIV-1 reverse transcriptase inhibitors. Bioorg Med Chem Lett 1998;8:1511-1516. (b) Hogberg M, Sahlberg C, Engelhardt P, Noreen R, Kangasmetsa J, Johansson NG, Oberg B, Vrang L, Zhang H, Sahlberg BL, Unge T, Lovgren S, Fridborg K, Backbro K. Urea-PETT compounds as a new class of HIV-1 reverse transcriptase inhibitors.3. Synthesis and further structure-activity relationship studies of PETT analogues. J Med Chem 1999;42:4150-4160.
    71. Cesarini S, Spallarossa A, Ranise A, Fossa P, La Colla P, Sanna G, Collu G, Loddo R. Thiocarbamates as non-nucleoside HIV-1 reverse transcriptase inhibitors. Part 1:Parallel synthesis, molecular modelling and structure-activity relationship studies on O-[2-(hetero)arylethyl]-N-phenylthiocarbamates. Bioorg Med Chem 2008;16:4160-4172.
    72. Cushman M, Golebiewski WM, Graham L, Turpin JA, Rice WG, Fliakas-Boltz V, Buckheit RW Jr. Synthesis and biological evaluation of certain alkenyldiarylmethanes as anti-HIV-1 agents which act as non-nucleoside reverse transcriptase inhibitors. J Med Chem 1996;39:3217-3227.
    73. Hara H, Fujihashi T, Sakata T, Kaji A, Kaji H. Tetrahydronaphthalene lignan compounds as potent anti-HIV type 1 agents. AIDS Res Hum Retroviruses 1997;13:695-705.
    74. Chan JH, Hong JS, Hunter RN 3rd, Orr GF, Cowan JR, Sherman DB, Sparks SM, Reitter BE, Andrews CW 3rd, Hazen RJ, St Clair M, Boone LR, Ferris RG, Creech KL, Roberts GB, Short SA, Weaver K, Ott RJ, Ren J, Hopkins A, Stuart DI, Stammers DK.2-Amino-6-arylsulfonylbenzonitriles as non-nucleoside reverse transcriptase inhibitors of HIV-1. J Med Chem 2001;44:1866-1882.
    75. Jones LH, Allan G, Barba O, Burt C, Corbau R, Dupont T, Kndchel T, Irving S, Middleton DS, Mowbray CE, Perros M, Ringrose H, Swain NA, Webster R, Westby M, Phillips C. Novel indazole non-nucleoside reverse transcriptase inhibitors using molecular hybridization based on crystallographic overlays. J Med Chem 2009;52:l219-23.
    76. Wyatt PG, Bethell RC, Cammack N, Charon D, Dodic N, Dumaitre B, Evans DN, Green DV, Hopewell PL, Humber DC, et al. Benzophenone derivatives:a novel series of potent and selective inhibitors of human immunodeficiency virus type 1 reverse transcriptase. J Med Chem 1995;38:1657-1665.
    77. Tucker TJ, Saggar S, Sisko JT, Tynebor RM, Williams TM, Felock PJ, Flynn JA, Lai MT, Liang Y, McGaughey G, Liu M, Miller M, Moyer G, Munshi V, Perlow-Poehnelt R, Prasad S, Sanchez R, Torrent M, Vacca JP, Wan BL, Yan Y. The design and synthesis of diaryl ether second generation HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) with enhanced potency versus key clinical mutations. Bioorg Med Chem Lett 2008; 18:2959-2966.
    78. Silvestri R, Artico M, Massa S, Marceddu T, De Montis F, La Colla P. 1-[2-(Diphenyl methoxy)ethyl]-2-methyl-5-nitroimidazole:a potent lead for the design of novel NNRTIs. Bioorg Med Chem Lett 2000;10:253-256.
    79. Xie L, Xie JX, Kashiwada Y, Cosentino LM, Liu SH, Pai RB, Cheng YC, Lee KH. Anti-AIDS (acquired immune deficiency syndrome) agents.17. New brominated hexahydroxybiphenyl derivatives as potent anti-HIV agents. J Med Chem 1995;38:3003-3008.
    80. (a) Balzarini J, Perez-Perez MJ, San-Felix A, Schols D, Perno CF, Vandamme AM, Camarasa MJ, De Clercq E.2',5'-Bis-O-(tert-butyldimethylsilyl)-3′-spiro-5″-(4″-amino-1″,2″-oxathiole-2″,2′-dioxide)pyrimidine (TSAO) nucleoside analogues:highlyselective inhibitors of human immunodeficiency virus type 1 that are targeted at the viral reverse transcriptase. Proc Natl Acad Sci USA 1992;89:4392-4396. (b) Camarasa MJ, San-Felix A, Velazquez S, Perez-Perez MJ, Gago F, Balzarini J.TSAO compounds:the comprehensive story of a unique family of HIV-1 specific inhibitors of reverse transcriptase. Curr Top Med Chem 2004;4:945-963. (c) Camarasa MJ, Velazquez S, San-Felix A, Perez-Perez MJ, Bonache MC, De Castro S. TSAO derivatives, inhibitors of HIV-1 reverse transcriptase dimerization:recent progress. Curr Pharm Des 2006;12:1895-1907.
    81. Duarte CD, Barreiro EJ, Fraga CA. Privileged structures:a useful concept for the rational design of new lead drug candidates. Mini Rev Med Chem 2007;7:1108-1119.
    82. DeSimone RW, Currie KS, Mitchell SA, Darrow JW, Pippin DA. Privileged structures: applications in drug discovery. Comb Chem High Throughput Screen 2004;7:473-494.
    83. Fischer M, Hubbard RE. Fragment-based ligand discovery. Mol Interv 2009;9:22-30.
    84. Schafer W, Friebe WG, Leinert H, Mertens A, Poll T, von der Saal W, Zilch H, Nuber B, Ziegler ML. Non-Nucleoside Inhibitors of HIV-1 Reverse Transcriptase:Molecular Modeling and X-ray Structure Investigations. J Med Chem 1993;36:726-732.
    85. (a) Sriram D, Bal TR, Yogeeswari P. Aminopyrimidinimino isatin analogues:design and synthesis of novel non-nucleoside HIV-1 reverse transcriptase inhibitors with broad-spectrum anti-microbial properties. Med Chem 2005;1:277-285. (b) Sriram D, Bal TR, Yogeeswari P. Aminopyrimidinimino isatin analogues:design of novel non-nucleoside HIV-1 reverse transcriptase inhibitors with broad-spectrum chemotherapeutic properties. J Pharm Pharm Sci 2005;8:565-577. (c) Sriram D, Bal TR, Yogeeswari P. Newer aminopyrimidinimino isatin analogues as non-nucleoside HIV-1 reverse transcriptase inhibitors for HIV and other opportunistic infections of AIDS:design, synthesis and biological evaluation. Farmaco 2005;60:377-384. (d) Sriram D, Bal TR, Yogeeswari P. Design, synthesis and biological evaluation of novel non-nucleoside HIV-1 reverse transcriptase inhibitors with broad-spectrum chemotherapeutic properties. Bioorg Med Chem 2004; 12:5865-5873.
    86. Ren J, Esnouf R, Garman E, Somers D, Ross C, Kirby I, Keeling J, Darby G, Jones Y, Stuart D, et al. High resolution structures of HIV-1 RT from four RT-inhibitor complexes. Nat Struct Biol 1995;2:293-302.
    87. Ding J, Das K, Moereels H, Koymans L, Andries K, Janssen PA, Hughes SH, Arnold E. Structure of HIV-1 RT/TIBO R 86183 complex reveals similarity in the binding of diverse nonnucleoside inhibitors. Nat Struct Biol 1995;2:407-415.
    88. Ren J, Esnouf R, Hopkins A, Ross C, Jones Y, Stammers D, Stuart D. The structure of HTV-1 reverse transcriptase complexed with 9-chloro-TIBO:lessons for inhibitor design. Structure 1995;3:915-926.
    89. Ren J, Stammers DK. Structural basis for drug resistance mechanisms for non-nucleoside inhibitors of HIV reverse transcriptase. Virus Res 2008;134:157-170.
    90. Patel Y, Gillet VJ, Bravi G, Leach AR. A comparison of the pharmacophore identification programs:Catalyst,DISCO and GASP. J Comput Aided Mol Des 2002; 16:653-681.
    91.Iwase K, Hirono S. Estimation of active conformations of drugs by a new molecular superposing procedure. J Comput Aided Mol Des 1999;13:499-512.
    92. Daeyaert F, de Jonge M, Heeres J, Koymans L, Lewi P, Vinkers MH, Janssen PA. A pharmacophore docking algorithm and its application to the cross-docking of 18 HIV-NNRTI's in their binding pockets. Proteins 2004;54:526-533.
    93. Daszykowski M, Walczak B, Xu QS, Daeyaert F, de Jonge MR, Heeres J, Koymans LM, Lewi PJ, Vinkers HM, Janssen PA, Massart DL. Classification and regression trees-studies of HIV reverse transcriptase inhibitors. J Chem Inf Comput Sci 2004;44:716-726.
    94. Barreca ML, Rao A, De Luca L, Zappala M, Monforte AM, Maga G, Pannecouque C, Balzarini J, De Clercq E, Chimirri A, Monforte P. Computational strategies in discovering novel non-nucleoside inhibitors of HIV-1 RT. J Med Chem 2005;48:3433-3437.
    95. Wang J, Kang X, Kuntz ID, Kollman PA. Hierarchical database screenings for HIV-1 reverse transcriptase using a pharmacophore model, rigid docking, solvation docking, and MM-PB/SA. J Med Chem 2005;48:2432-2444.
    96. Zhang Z, Zheng M, Du L, Shen J, Luo X, Zhu W, Jiang H. Towards discovering dual functional inhibitors against both wild type and K103N mutant HIV-1 reverse transcriptases: molecular docking and QSAR studies on 4,1-benzoxazepinone analogues. J Comput Aided Mol Des 2006;20:281-293.
    97. Sluis-Cremer N, Temiz NA, Bahar I. Conformational changes in HIV-1 reverse transcriptase induced by nonnucleoside reverse transcriptase inhibitor binding. Curr HIV Res 2004;2:323-332.
    98. Esnouf RM, Ren J, Hopkins AL, Ross CK, Jones EY, Stammers DK, Stuart DI. Unique features in the structure of the complex between HIV-1 reverse transcriptase and the bis(heteroaryl)piperazine (BHAP) U-90152 explain resistance mutations for this nonnucleoside inhibitor. Proc Natl Acad Sci USA 1997;94:3984-3989.
    99. Zhan P, Liu X, Li Z, Pannecouque C, De Clercq E. Design strategies of novel NNRTIs to overcome drug resistance. Curr Med Chem 2009;16:3903-3917.
    100. Fox S, Farr-Jones S, Sopchak L, Boggs A, Comley J. High-throughput screening:searching for higher productivity. J Biomol Screen 2004;9:354-358.
    101. Posner BA. High-throughput screening-driven lead discovery:meeting the challenges of finding new therapeutics. Curr Opin Drug Discov Devel 2005;8:487-494.
    102. Pettersson S, Clotet-Codina I, Este JA, Borrell JI, Teixido J. Recent advances in combinatorial chemistry applied to development of anti-HIV drugs. Mini Rev Med Chem 2006;6:91-108.
    103. Lee KH. Current developments in the discovery and design of new drug candidates from plant natural product leads. J Nat Prod 2004;67:273-283.
    104. De Clercq E. Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection. Med Res Rev 2000;20:323-349.
    105. Tziveleka LA, Vagias C, Roussis V. Natural products with anti-HIV activity from marine organisms. Curr Top Med Chem 2003;3:1512-1535.
    106. Matthee G, Wright AD, Konig GM. HIV reverse transcriptase inhibitors of natural origin. Planta Med 1999;65:493-506.
    107. Nonaka G, Nishioka I, Nishizawa M, Yamagishi T, Kashiwada Y, Dutschman GE, Bodner AJ, Kilkuskie RE, Cheng YC, Lee KH. Anti-AIDS agents,2:Inhibitory effects of tannins on HIV reverse transcriptase and HIV replication in H9 lymphocyte cells. J Nat Prod 1990;53:587-595.
    108. (a) Buckheit RW Jr, White EL, Fliakas-Boltz V, Russell J, Stup TL, Kinjerski TL, Osterling MC, Weigand A, Bader JP. Unique anti-human immunodeficiency virus activities of the nonnucleoside reverse transcriptase inhibitors calanolide A, costatolide, and dihydrocostatolide. Antimicrob Agents Chemother 1999;43:1827-1834. (b) Buckheit RW Jr, Russell JD, Xu ZQ, Flavin M. Anti-HIV-1 activity of calanolides used in combination with other mechanistically diverse inhibitors of HIV-1 replication. Antivir Chem Chemother 2000; 11:321-327. (c) Creagh T, Ruckle JL, Tolbert DT, Giltner J, Eiznhamer DA, Dutta B, Flavin MT, Xu ZQ. Safety and pharmacokinetics of single doses of (+)-calanolide a, a novel, naturally occurring nonnucleoside reverse transcriptase inhibitor, in healthy, human immunodeficiency virus-negative human subjects. Antimicrob Agents Chemother 2001;45:1379-1386. (d) Eiznhamer DA, Creagh T, Ruckle JL, Tolbert DT, Giltner J, Dutta B, Flavin MT, Jenta T, Xu ZQ. Safety and pharmacokinetic profile of multiple escalating doses of (+)-calanolide A, a naturally occurring nonnucleoside reverse transcriptase inhibitor, in healthy HIV-negative volunteers. HIV Clin Trials 2002;3435-3450.
    109. Patil AD, Freyer AJ, Eggleston DS, Haltiwanger RC, Bean MF, Taylor PB, Caranfa MJ, Breen AL, Bartus HR, Johnson RK, et al. The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn. J Med Chem 1993;36:4131-4138.
    110. Zembower DE, Liao S, Flavin MT, Xu ZQ, Stup TL, Buckheit RW Jr, Khilevich A, Mar AA, Sheinkman AK. Structural analogues of the calanolide anti-HIV agents. Modification of the
    trans-10,11-dimethyldihydropyran-12-ol ring (ring C). J Med Chem 1997;40:1005-1017.
    111. Xue H, Lu X, Zheng P, Liu L, Han C, Hu J, Liu Z, Ma T, Li Y, Wang L, Chen Z, Liu G. Highly suppressing wild-type HIV-1 and Y181C mutant HIV-1 strains by 10-chloromethyl-ll-demethyl-12-oxo-calanolide A with druggable profile. J Med Chem 2010 Jan 5. on line.
    112. Lee TT, Kashiwada Y, Huang L, Snider J, Cosentino M, Lee KH. Suksdorfin:an anti-HIV principle from Lomatium suksdorfii,. its structure-activity correlation with related coumarins, and synergistic effects with anti-AIDS nucleosides. Bioorg Med Chem 1994;2:1051-1056.
    113. Huang L, Kashiwada Y, Cosentino LM, Fan S, Chen CH, McPhail AT, Fujioka T, Mihashi K, Lee KH. Anti-AIDS agents.15. Synthesis and anti-HIV activity of dihydroseselins and related analogs. J Med Chem 1994;37:3947-3955.
    114. Huang L, Yuan X, Yu D, Lee KH, Chen CH. Mechanism of action and resistant profile of anti-HIV-1 coumarin derivatives. Virology 2005;332:623-628.
    115. Xie L, Takeuchi Y, Cosentino LM, Lee KH. Anti-AIDS agents.33. Synthesis and anti-HIV activity of mono-methyl substituted 3',4'-di-O-(-)-camphanoyl-(+)-cis-khellactone (DCK) analogues. Bioorg Med Chem Lett 1998;8:2151-2156.
    116. Yang ZY, Xia Y, Xia P, Cosentino LM, Lee KH. Anti-AIDS agents.31. Synthesis and anti-HIV activity of 4-substituted 3',4'-di-O-(-)-camphanoyl-(+)-cis-khellactone (DCK) thiolactone analogs. Bioorg Med Chem Lett 1998;8:1483-1486.
    117. Xie L, Takeuchi Y, Cosentino LM, Lee KH. Anti-AIDS agents.37. Synthesis and structure-activity relationships of (3'R,4'R)-(+)-cis-khellactone derivatives as novel potent anti-HIV agents. J Med Chem 1999;42:2662-2672.
    118. Yang ZY, Xia Y, Xia P, Brossi A, Cosentino LM, Lee KH. Anti-AIDS agents part 41: synthesis and anti-HIV activity of 3',4'-di-o-(-)-camphanoyl-(+)-cis-khellactone (DCK) lactam analogues. Bioorg Med Chem Lett 2000; 10:1003-1005.
    119. Xie L, Takeuchi Y, Cosentino LM, McPhail AT, Lee KH. Anti-AIDS agents.42. Synthesis and anti-HIV activity of disubstituted (3'R,4'R)-3',4'-di-O-(S)-camphanoyl-(+)-cis-khellactone analogues. J Med Chem 2001;44:664-671.
    120. Xie L, YuD, Wild C, Allaway G, Turpin J, Smith PC, Lee KH. Anti-AIDS agents.52. Synthesis and anti-HIV activity of hydroxymethyl (3'R,4'R)-3',4'-di-O-(S)-camphanoyl-(+)-cis-khellactone derivatives. J Med Chem 2004;47:756-760.
    121. Xie L, Zhao CH, Zhou T, Chen HF, Fan BT, Chen XH, Ma JZ, Li JY, Bao ZY, Lo Z, Yu D, Lee KH. Molecular modeling, design, synthesis, and biological evaluation of novel 3',4'-dicamphanoyl-(+)-cis-khellactone (DCK) analogs as potent anti-HIV agents. Bioorg Med Chem 2005;13:6435-6449.
    122. Chen Y, Zhang Q, Zhang B, Xia P, Xia Y, Yang ZY, Kilgore N, Wild C, Morris-Natschke SL, Lee KH. Anti-AIDS agents. Part 56:Synthesis and anti-HIV activity of 7-thia-di-O-(-)-camphanoyl-(+)-cis-khellactone (7-thia-DCK) analogs. Bioorg Med Chem 2004;12:6383-6387.
    123. Zhang Q, Chen Y, Xia P, Xia Y, Yang ZY, Yu D, Morris-Natschke SL, Lee KH. Anti-AIDS agents. Part 62:anti-HIV activity of 2'-substituted 4-methyl-3',4'-di-O-(-)-camphanoyl-(+)-cis-khellactone (4-methyl DCK) analogs. Bioorg Med Chem Lett 2004;14:5855-5857.
    124. Yu D, Brossi A, Kilgore N, Wild C, Allaway G, Lee KH. Anti-HIV agents. Part 55: 3'R,4'R-Di-(O)-(-)-camphanoyl-2',2'-dimethyldihydropyrano[2,3-f]chromone (DCP), a novel anti-HIV agent. Bioorg Med Chem Lett 2003;13:1575-1576.
    125. Yu D, Chen CH, Brossi A, Lee KH. Anti-AIDS agents.60. Substituted 3'R,4'R-di-O-(-)-camphanoyl-2',2'-dimethyldihydropyrano[2,3-f]chromone (DCP) analogues as potent anti-HIV agents. J Med Chem 2004;47:4072-4082.
    126. Xie L, Guo HF, Lu H, Zhuang XM, Zhang AM, Wu G, Ruan JX, Zhou T, Yu D, Qian K, Lee KH, Jiang S. Development and preclinical studies of broad-spectrum anti-HIV agent (3'R,4'R)-3-cyanomethyl-4-methyl-3′,4′-di-O-(S)-camphanoyl-(+)-cis-khellactone (3-cyanomethyl-4-methyl-DCK). J Med Chem 2008;51:7689-7696.
    127. Chen HF, Fan BT, Zhao CY, Xie L, Zhao CH, Zhou T, Lee KH, Allaway G. Computational studies and drug design for HIV-1 reverse transcriptase inhibitors of 3',4'-di-O-(S)-camphanoyl-(+)-cis-khellactone (DCK) analogs. J Comput Aided Mol Des 2005;19:243-258.
    128. Andricopulo AD, Salum LB, Abraham DJ. Structure-based drug design strategies in medicinal chemistry. Curr Top Med Chem 2009;9:771-790.
    129. Koppen H. Virtual screening-what does it give us? Curr Opin Drug Discov Devel 2009;12:397-407.
    130. Zoete V, Grosdidier A, Michielin O. Docking, virtual high throughput screening and in silico fragment-based drug design. J Cell Mol Med 2009;13:238-248.
    131. Mclnnes C. Virtual screening strategies in drug discovery. Curr Opin Chem Biol 2007;11: 494-502.
    132. Shoichet BK. Virtual screening of chemical libraries. Nature 2004;432:862-865.
    133. Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery:methods and applications. Nat Rev Drug Discov 2004;3:935-949.
    134. Sangma C, Chuakheaw D, Jongkon N, Saenbandit K, Nunrium P, Uthayopas P, Hannongbua S. Virtual screening for anti-HIV-1 RT and anti-HIV-1 PR inhibitors from the Thai medicinal plants database:a combined docking with neural networks approach. Comb Chem High Throughput Screen 2005;8:417-429.
    135. Bustanji Y, Al-Masri IM, Qasem A, Al-Bakri AG, Taha MO. In silico screening for non-nucleoside HIV-1 reverse transcriptase inhibitors using physicochemical filters and high-throughput docking followed by in vitro evaluation. Chem Biol Drug Des 2009;74:258-265.
    136. Nichols SE, Domaoal RA, Thakur VV, Tirado-Rives J, Anderson KS, Jorgensen WL. Discovery of wild-type and Y181C mutant non-nucleoside HIV-1 reverse transcriptase inhibitors using virtual screening with multiple protein structures. J Chem Inf Model 2009;49:1272-1279.
    137. Herschhorn A, Hizi A. Virtual screening, identification, and biochemical characterization of novel inhibitors of the reverse transcriptase of human immunodeficiency virus type-1. J Med Chem 2008;51:5702-5713.
    138. (a) Kurogi Y, Guner OF. Pharmacophore modeling and three-dimensional database searching for drug design using catalyst. Curr Med Chem 2001;8:1035-1055. (b) Guner O, Clement O, Kurogi Y. Pharmacophore modeling and three dimensional database searching for drug design using catalyst:recent advances. Curr Med Chem 2004;11:2991-3005.
    139. (a) van Drie JH. Pharmacophore discovery-lessons learned. Curr Pharm Des 2003;9:1649-1664. (b) Langer T, Krovat EM. Chemical feature-based pharmacophores and virtual library screening for discovery of new leads. Curr Opin Drug Discov Devel 2003;6:370-376.
    140. Gussio R, Pattabiraman N, Kellogg GE, Zaharevitz DW. Use of 3D QSAR methodology for data mining the National Cancer Institute Repository of Small Molecules:application to HIV-1 reverse transcriptase inhibition. Methods 1998;14:255-263.
    141. Leitao A, Andricopulo AD, Montanari CA. In silico screening of HIV-1 non-nucleoside reverse transcriptase and protease inhibitors. Eur J Med Chem 2008;43:1412-1422.
    142. Schneider G, Fechner U. Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov 2005;4:649-663.
    143. Bauman JD, Das K, Ho WC, Baweja M, Himmel DM, Clark AD Jr, Oren DA, Boyer PL, Hughes SH, Shatkin AJ, Arnold E. Crystal engineering of HIV-1 reverse transcriptase for structure-based drug design. Nucleic Acids Res 2008;36:5083-5092.
    144. Herschhorn A, Lerman L, Weitman M, Gleenberg IO, Nudelman A, Hizi A. De novo parallel design, synthesis and evaluation of inhibitors against the reverse transcriptase of human immunodeficiency virus type-1 and drug-resistant variants. J Med Chem 2007;50:2370-2384.
    145. Vinkers HM, de Jonge MR, Daeyaert FF, Heeres J, Koymans LM, van Lenthe JH, Lewi PJ, Timmerman H, Van Aken K, Janssen PA. SYNOPSIS:SYNthesize and OPtimize System in Silico. J Med Chem 2003;46:2765-2773.
    146. Griffith R, Luu TT, Garner J, Keller PA. Combining structure-based drug design and pharmacophores. J Mol Graph Model 2005;23:439-446.
    147. D'Cruz OJ, Uckun FM. Novel tight binding PETT, HEPT and DABO-based non-nucleoside inhibitors of HIV-1 reverse transcriptase. J Enzyme Inhib Med Chem 2006;21:329-350.
    148. D'Cruz OJ, Uckun FM. Novel broad-spectrum thiourea non-nucleoside inhibitors for the prevention of mucosal HIV transmission. Curr HIV Res 2006;4:329-345.
    149. Vig R, Mao C, Venkatachalam TK, Tuel-Ahlgren L, Sudbeck EA, Uckun FM. Rational design and synthesis of phenethyl-5-bromopyridyl thiourea derivatives as potent non-nucleoside inhibitors of HIV reserve transcriptase. Bioorg Med Chem 1998;6:1789-1797.
    150. Mao C, Vig R, Venkatachalam TK, Sudbeck EA, Uckun FM. Structure-based design of N-[2-(1-piperidinylethyl)]-N'-[2-(5-bromopyridyl)]-thiourea and N-[2-(1-piperazinylethyl)]-N'-[2-(5-bromopyridyl)]-thiourea as potent non-nucleoside inhibitors of HTV-1 reverse transcriptase. Bioorg Med Chem Lett 1998;8:2213-2218.
    151. Vig R, Mao C, Venkatachalam TK, Tuel-Ahlgren L, Sudbeck EA, Uckun FM. Rational design and synthesis of phenethyl-5-bromopyridyl thiourea derivatives as potent non-nucleoside inhibitors of HIV reserve transcriptase. Bioorg Med Chem 1998;6:1789-1797.
    152. Mao C, Sudbeck EA, Venkatachalam TK, Uckun FM. Structure-based drug design of non-nucleoside inhibitors for wild-type and drug-resistant HIV reverse transcriptase. Biochem Pharmacol 2000;60:1251-1265.
    153. Vig R, Mao C. Nonnucleoside inhibitors of reverse transcriptase, composite binding pocket and methods for use thereof. WO9947501A (1999); US6380190B (2002); US2005153995A (2005).
    154. Hopkins AL, Ren J, Esnouf RM, Willcox BE, Jones EY, Ross C, Miyasaka T, Walker RT, Tanaka H, Stammers DK, Stuart DI. Complexes of HIV-1 reverse transcriptase with inhibitors of the HEPT series reveal conformational changes relevant to the design of potent non-nucleoside inhibitors. J Med Chem 1996;39:1589-1600.
    155. Shen L, Shen J, Luo X, Cheng F, Xu Y, Chen K, Arnold E, Ding J, Jiang H. Steered molecular dynamics simulation on the binding of NNRTI to HIV-1 RT. Biophys J 2003;84:3547-3563.
    156. Heeres J, Lewi PJ. The medicinal chemistry of the DATA and DAPY series of HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIS). Adv Antiviral Drug Des 2007;5:213-242.
    157. Girardet JL, Koh YH, Shaw S, Kim HW. Diary 1-purine, azapurines and-deazapurines as non-nucleoside reverse transcriptase inhibitors for treatment of HIV. Patent. WO2006122003, 2006.
    158. Hopkins AL, Ren J, Tanaka H, Baba M, Okamato M, Stuart DI, Stammers DK. Design of MKC-442 (emivirine) analogues with improved activity against drug-resistant HIV mutants. J Med Chem 1999;42:4500-4505.
    159. (a) Morphy R, Rankovic Z. Designed multiple ligands. An emerging drug discovery paradigm. J Med Chem 2005;48:6523-6543. (b) Morphy R, Kay C, Rankovic Z. From magic bullets to designed multiple ligands. Drug Discov Today 2004;9:641-651. (c) Morphy R, Rankovic Z. The physicochemical challenges of designing multiple ligands. J Med Chem 2006;49:4961-4970. (d) Morphy R, Rankovic Z. Fragments, network biology and designing multiple ligands. Drug Discov Today 2007;12:156-160. (e) Morphy R, Rankovic Z. Designing multiple ligands-medicinal chemistry strategies and challenges. Curr Pharm Des 2009; 15:587-600.
    160. Zhan P, Liu X. Designed multiple ligands:an emerging anti-HIV drug discovery paradigm. Curr Pharm Des 2009;15:1893-1917.
    161. Das K, Bauman JD, Clark AD Jr, Frenkel YV, Lewi PJ, Shatkin AJ, Hughes SH, Arnold E. High-resolution structures of HIV-1 reverse transcriptase/TMC278 complexes:strategic flexibility explains potency against resistance mutations. Proc Natl Acad Sci USA 2008; 105:1466-1471.
    162. Das K, Sarafianos SG, Clark AD Jr, Boyer PL, Hughes SH, Arnold E. Crystal structures of clinically relevant Lys103Asn/Tyr181Cys double mutant HIV-1 reverse transcriptase in complexes with ATP and non-nucleoside inhibitor HBY 097. J Mol Biol 2007;365:77-89.
    163. Hsiou Y, Das K, Ding J, Clark AD Jr, Kleim JP, Rosner M, Winkler I, Riess G, Hughes SH, Arnold E. Structures of Tyr188Leu mutant and wild-type HTV-1 reverse transcriptase complexed with the non-nucleoside inhibitor HBY 097:inhibitor flexibility is a useful design feature for reducing drug resistance. J Mol Biol 1998;284:313-323.
    164. Ren J, Nichols C, Bird LE, Fujiwara T, Sugimoto H, Stuart DI, Stammers DK. Binding of the second generation non-nucleoside inhibitor S-1153 to HIV-1 reverse transcriptase involves extensive main chain hydrogen bonding. J Biol Chem 2000;275:14316-14320.
    165. Himmel DM, Das K, Clark AD Jr, Hughes SH, Benjahad A, Oumouch S, Guillemont J, Coupa S, Poncelet A, Csoka I, Meyer C, Andries K, Nguyen CH, Grierson DS, Arnold E. Crystal structures for HIV-1 reverse transcriptase in complexes with three pyridinone derivatives:a new class of non-nucleoside inhibitors effective against a broad range of drug-resistant strains. J Med Chem 2005;48:7582-7591.
    166 Pelemans H, Esnouf R, De Clercq E, Balzarini J. Mutational analysis of trp-229 of human immunodeficiency virus type 1 reverse transcriptase (RT) identifies this amino acid residue as a prime target for the rational design of new non-nucleoside RT inhibitors. Mol Pharmacol 2000;57:954-960.
    167. Ren J, Stammers DK. HIV reverse transcriptase structures:designing new inhibitors and understanding mechanisms of drug resistance. Trends Pharmacol Sci 2005;26:4-7.
    168. Pata JD, Stirtan WG, Goldstein SW, Steitz TA. Structure of HIV-1 reverse transcriptase bound to an inhibitor active against mutant reverse transcriptases resistant to other nonnucleoside inhibitors. Proc Natl Acad Sci USA 2004; 101:10548-10553.
    169. Himmel DM, Sarafianos SG, Dharmasena S, Hossain MM, McCoy-Simandle K, Ilina T, Clark AD Jr, Knight JL, Julias JG, Clark PK, Krogh-Jespersen K, Levy RM, Hughes SH, Parniak MA, Arnold E. HIV-1 reverse transcriptase structure with RNase H inhibitor dihydroxy benzoyl naphthyl hydrazone bound at a novel site. ACS Chem Biol 2006;]:702-712.
    170. (a) Patani GA, LaVoie EJ. Bioisosterism:A Rational Approach in Drug Design. Chem Rev 1996;96:3147-3176. (b) Olesen PH. The use of bioisosteric groups in lead optimization. Curr Opin Drug Discov Devel 2001;4:471-478. (c) Lima LM, Barreiro EJ. Bioisosterism:a useful strategy for molecular modification and drug design. Curr Med Chem 2005; 12:23-49.
    171. Andries K, Azijn H, Thielemans T, Ludovici D, Kukla M, Heeres J, Janssen P, De Corte B, Vingerhoets J, Pauwels R, de Bethune MP. TMC125, a novel next-generation nonnucleoside reverse transcriptase inhibitor active against nonnucleoside reverse transcriptase inhibitor-resistant human immunodeficiency virus type 1. Antimicrob Agents Chemother 2004; 48:4680-4686.
    172. Mordant C, Schmitt B, Pasquier E, Demestre C, Queguiner L, Masungi C, Peeters A, Smeulders L, Bettens E, Hertogs K, Heeres J, Lewi P, Guillemont J. Synthesis of novel diarylpyrimidine analogues of TMC278 and their antiviral activity against HIV-1 wild-type and mutant strains. Eur J Med Chem 2007;42:567-579.
    173. Guillemont J, Pasquier E, Palandjian P, Vernier D, Gaurrand S, Lewi PJ, Heeres J, de Jonge MR, Koymans LM, Daeyaert FF, Vinkers MH, Arnold E, Das K, Pauwels R, Andries K, de Bethune MP, Bettens E, Hertogs K, Wigerinck P, Timmerman P, Janssen PA. Synthesis of novel diarylpyrimidine analogues and their antiviral activity against human immunodeficiency virus type 1. J Med Chem 2005;48:2072-2079.
    174. Thakur A, Thakur M, Bharadwaj A, Thakur S. SAR and QSAR studies:modelling of new DAPY derivatives. Eur J Med Chem 2008;43:471-477.
    175. Feng XQ, Liang YH, Zeng ZS, Chen FE, Balzarini J, Pannecouque C, De Clercq E. Structural modifications of DAPY analogues with potent anti-HIV-1 activity. ChemMedChem 2009;4:219-224.
    176. Liang YH, Feng XQ, Zeng ZS, Chen FE, Balzarini J, Pannecouque C, De Clercq E. Design, synthesis, and SAR of naphthyl-substituted Diarylpyrimidines as non-nucleoside inhibitors of HIV-1 reverse transcriptase. ChemMedChem 2009;4:1537-1545.
    177. Corbett JW, Ko SS, Rodgers JD, Gearhart LA, Magnus NA, Bacheler LT, Diamond S, Jeffrey S, Klabe RM, Cordova BC, Garber S, Logue K, Trainor GL, Anderson PS, Erickson-Viitanen SK. Inhibition of clinically relevant mutant variants of HIV-1 by quinazolinone non-nucleoside reverse transcriptase inhibitors. J Med Chem 2000;43:2019-2030.
    178. Corbett JW, Ko SS, Rodgers JD, Jeffrey S, Bacheler LT, Klabe RM, Diamond S, Lai CM, Rabel SR, Saye JA, Adams SP, Trainor GL, Anderson PS, Erickson-Viitanen SK. Expanded-spectrum nonnucleoside reverse transcriptase inhibitors inhibit clinically relevant mutant variants of human immunodeficiency virus type 1. Antimicrob Agents Chemother 1999;43:2893-2897.
    179. Corbett JW, Gearhart LA, Ko SS, Rodgers JD, Cordova BC, Klabe RM, Erickson-Viitanen SK. Novel 2,2-dioxide-4,4-disubstituted-1,3-H-2,1,3-benzothiadiazines as non-nucleoside reverse transcriptase inhibitors. Bioorg Med Chem Lett 2000; 10:193-195.
    180. Patel M, Ko SS, McHugh RJ Jr, Markwalder JA, Srivastava AS, Cordova BC, Klabe RM, Erickson-Viitanen S, Trainor GL, Seitz SP. Synthesis and evaluation of analogs of Efavirenz (SUSTIVA) as HIV-1 reverse transcriptase inhibitors. Bioorg Med Chem Lett 1999;9:2805-2810.
    181. Patel M, McHugh RJ Jr, Cordova BC, Klabe RM, Bacheler LT, Erickson-Viitanen S, Rodgers JD. Synthesis and evaluation of novel quinolinones as HIV-1 reverse transcriptase inhibitors. Bioorg Med Chem Lett 2001;11:1943-1945.
    182. Cocuzza AJ, Chidester DR, Cordova BC, Klabe RM, Jeffrey S, Diamond S, Weigelt CA, Ko SS, Bacheler LT, Erickson-Viitanen SK, Rodgers JD.4,1-Benzoxazepinone analogues of efavirenz (Sustiva) as HIV-1 reverse transcriptase inhibitors. Bioorg Med Chem Lett 2001;11:1389-1392.
    183. Corbett JW, Gearhart LA, Ko SS, Rodgers JD, Cordova BC, Klabe RM, Erickson-Viitanen SK. Novel 2,2-dioxide-4,4-disubstituted-1,3-H-2,1,3-benzothiadiazines as non-nucleoside reverse transcriptase inhibitors. Bioorg Med Chem Lett 2000;10:193-195.
    184. (a) Di Santo R, Costi R, Artico M, Miele G, Lavecchia A, Novellino E, Bergamini A, Cancio R, Maga G. Arylthiopyrrole (AThP) derivatives as non-nucleoside HIV-1 reverse transcriptase inhibitors:synthesis, structure-activity relationships, and docking studies (part 1). ChemMedChem 2006;1:1367-1378. (b) Lavecchia A, Costi R, Artico M, Miele G, Novellino E, Bergamini A, Crespan E, Maga G, Di Santo R. Arylthiopyrrole (AThP) derivatives as non-nucleoside HIV-1 reverse transcriptase inhibitors:synthesis, structure-activity relationships, and docking studies (part 2). ChemMedChem 2006; 1:1379-1390.
    185. Jones LH, Dupont T, Mowbray CE, Newman SD. A concise and selective synthesis of novel 5-aryloxyimidazole NNRTIs. Org Lett 2006;8:1725-1727.
    186. Jones LH, Allan G, Corbau R, Hay D, Middleton DS, Mowbray CE, Newman SD, Perros M, Randall A, Vuong H, Webster R, Westby M, Williams D. Optimization of 5-aryloxyimidazole non-nucleoside reverse transcriptase inhibitors. ChemMedChem 2008;3:1756-1762.
    187. (a) Mowbray CE, Burt C, Corbau R, Perros M, Tran I, Stupple PA, Webster R, Wood A. Pyrazole NNRTIs 1:design and initial optimisation of a novel template. Bioorg Med Chem Lett 2009;19:5599-5602. (b) Mowbray CE, Corbau R, Hawes M, Jones LH, Mills JE, Perros M, Selby MD, Stupple PA, Webster R, Wood A. Pyrazole NNRTIs 3:optimisation of physicochemical properties. Bioorg Med Chem Lett 2009; 19:5603-5606. (c) Mowbray CE, Burt C, Corbau R, Gayton S, Hawes M, Perros M, Tran I, Price DA, Quinton FJ, Selby MD, Stupple PA, Webster R, Wood A. Pyrazole NNRTIs 4:selection of UK-453,061 (lersivirine) as a development candidate. Bioorg Med Chem Lett 2009;19:5857-5860.
    188. (a) Zhan P, Liu X, Cao Y, Wang Y, Pannecouque C, De Clercq E.1,2,3-Thiadiazole thioacetanilides as a novel class of potent HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg Med Chem Lett 2008;18:5368-5371. (b) Zhan P, Liu X, Li Z, Fang Z, Li Z, Wang D, Pannecouque C, Clercq ED. Novel 1,2,3-thiadiazole derivatives as HIV-1 NNRTIs with improved potency:synthesis and preliminary SAR studies. Bioorg Med Chem 2009;17:5920-5927. (c) Zhan P, Liu X, Fang Z, Li Z, Pannecouque C, De Clercq E. Synthesis and anti-HIV activity evaluation of 2-(4-(naphthalen-2-yl)-1,2,3-thiadiazol-5-ylthio)-N-acetamides as novel non-nucleoside HIV-1 reverse transcriptase inhibitors. Eur J Med Chem 2009;44:4648-4653. (d) Zhan P, Liu X, Li Z, Fang Z, Pannecouque C, De Clercq E. Synthesis and biological evaluation of a new series of 2-(4-(3,4-dichlorophenyl)-1,2,3-thiadiazol-5-ylthio) acetamides as HIV-1 inhibitors. Chem Biodivers 2010; revised, (e) Zhan P, Liu X, Zhu J, Fang Z, Li Z, Pannecouque C, Clercq ED. Synthesis and biological evaluation of imidazole thioacetanilides as novel non-nucleoside.HIV-1 reverse transcriptase inhibitors. Bioorg Med Chem 2009; 17:5775-5781. (f) Zhan P, Liu X, Fang Z, Pannecouque C, De Clercq E. 1,2,3-Selenadiazole thioacetanilides:Synthesis and anti-HIV activity evaluation. Bioorg Med Chem 2009;17:6374-6379.
    189. (a) Girardet JL, Zhang Z, Hamatake R, de la Rosa Hernandez MA, Gunic E, Hong Z, Kim H, Koh YH, Nilar S, Shaw S, Yao N. Non-nucleoside reverse transcriptase inhibitors. Patent WO 2004030611,2004. (b) Simoneau B, Thavonekham B, Landry S, O'Meara J, Yoakim C, Faucher AM. Non-nucleoside reverse transcriptase inhibitors. Patent WO 2004050643,2004. (c) Shaw-Reid CA, Miller MD, Hazuda DJ, Ferrer M, Sur SM, Summa V, Lyle TA, Kinzel O, Pescatore G, Muraglia E, Orvieto F, Williams PD. HIV reverse transcriptase inhibitors. Patent WO 2005115147,2005. (d) Girardet JL, Koh YH, Hernandez M, De la Rosa, Gunic E, Kim HW, Hong W. S-triazolyl a-mercaptoacetanildes as inhibitors of HIV reverse transcriptase. Patent WO 2006026356,2006. (e) Simoneau B, Thavonekham B, Landry S, O'Meara J, Yoakim C, Faucher AM. Non nucleoside reverse transcriptase inhibitors. Patent WO 2005118575,2005. (f) Koch U, Kinzel O, Muraglia E, Summa V. HIV reverse transcriptase inhibitors. Patent WO 2006037468,2006. (g) Gagnon A, Landry S, Coulombe R, Jakalian A, Guse I, Thavonekham B, Bonneau PR, Yoakim C, Simoneau B. Investigation on the role of the tetrazole in the binding of thiotetrazolylacetanilides with HIV-1 wild type and K103N/Y181C double mutant reverse transcriptases. Bioorg Med Chem Lett 2009;19:1199-205.
    190. Tucker TJ, Sisko JT, Tynebor RM, Williams TM, Felock PJ, Flynn JA, Lai MT, Liang Y, McGaughey G, Liu M, Miller M, Moyer G, Munshi V, Perlow-Poehnelt R, Prasad S, Reid JC, Sanchez R, Torrent M, Vacca JP, Wan BL, Yan Y. Discovery of 3-{5-[(6-amino-lH-pyrazolo [3,4-b]pyridine-3-yl)methoxy]-2-chlorophenoxy}-5-chlorobenzonitrile (MK-4965):a potent, orally bioavailable HIV-1 non-nucleoside reverse transcriptase inhibitor with improved potency against key mutant viruses. J Med Chem 2008;51:6503-6511.
    191. (a) Sweeney ZK, Harris SF, Arora SF, Javanbakht H, Li Y, Fretland J, Davidson JP, Billedeau JR, Gleason SK, Hirschfeld D, Kennedy-Smith JJ, Mirzadegan T, Roetz R, Smith M, Sperry S, Suh JM, Wu J, Tsing S, Villasenor AG, Paul A, Su G, Heilek G, Hang JQ, Zhou AS, Jernelius JA, Zhang FJ, Klumpp K. Design of annulated pyrazoles as inhibitors of HIV-1 reverse transcriptase. J Med Chem 2008;51:7449-7458. (b) Sweeney ZK, Dunn JP, Li Y, Heilek G, Dunten P, Elworthy TR, Han X, Harris SF, Hirschfeld DR, Hogg JH, Huber W, Kaiser AC, Kertesz DJ, Kim W, Mirzadegan T, Roepel MG, Saito YD, Silva TM, Swallow S, Tracy JL, Villasenor A, Vora H, Zhou AS, Klumpp K. Discovery and optimization of pyridazinone non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg Med Chem Lett 2008;18:4352-4354. (c) Sweeney ZK, Acharya S, Briggs A, Dunn JP, Elworthy TR, Fretland J, Giannetti AM, Heilek G, Li Y, Kaiser AC, Martin M, Saito YD, Smith M, Suh JM, Swallow S, Wu J, Hang JQ, Zhou AS, Klumpp K. Discovery of triazolinone non-nucleoside inhibitors of HIV reverse transcriptase. Bioorg Med Chem Lett 2008;18:4348-4351. (d) Sweeney ZK, Kennedy-Smith JJ, Wu J, Arora N, Billedeau JR, Davidson JP, Fretland J, Hang JQ, Heilek GM, Harris SF, Hirschfeld D, Inbar P, Javanbakht H, Jernelius JA, Jin Q, Li Y, Liang W, Roetz R, Sarma K, Smith M, Stefanidis D, Su G, Suh JM, Villasenor AG, Welch M, Zhang FJ, Klumpp K. Diphenyl ether non-nucleoside reverse transcriptase inhibitors with excellent potency against resistant mutant viruses and promising pharmacokinetic properties. ChemMedChem 2009;4:88-99.
    192. Silvestri R, Artico M, De Martino G, Ragno R, Massa S, Loddo R, Murgioni C, Loi AG, La Colla P, Pani A. Synthesis, biological evaluation, and binding mode of novel 1-[2-(diarylmethoxy)ethyl]-2-methyl-5-nitroimidazoles targeted at the HIV-1 reverse transcriptase. J Med Chem 2002;45:1567-1576.
    193. De Martino G, La Regina G, Di Pasquali A, Ragno R, Bergamini A, Ciaprini C, Sinistro A, Maga G, Crespan E, Artico M, Silvestri R. Novel 1-[2-(diarylmethoxy)ethyl]-2-methyl-5-nitroimidazoles as HIV-1 non-nucleoside reverse transcriptase inhibitors. A structure-activity relationship investigation. J Med Chem 2005;48:4378-4388.
    194. Cushman M, Casimiro-Garcia A, Hejchman E, Ruell JA, Huang M, Schaeffer CA, Williamson K, Rice WG, Buckheit RW Jr. New alkenyldiarylmethanes with enhanced potencies as anti-HIV agents which act as non-nucleoside reverse transcriptase inhibitors. J Med Chem 1998;41:2076-2089.
    195. Cushman M, Casimiro-Garcia A, Williamson K, Rice WG. Synthesis of a non-nucleoside reverse transcriptase inhibitor in the alkenyldiarylmethane (ADAM) series with optimized potency and therapeutic index. Bioorg Med Chem Lett 1998;8:195-198.
    196. Silvestri MA, Nagarajan M, De Clercq E, Pannecouque C, Cushman M. Design, synthesis, anti-HIV activities, and metabolic stabilities of alkenyldiarylmethane (ADAM) non-nucleoside reverse transcriptase inhibitors. J Med Chem 2004;47:3149-3162.
    197. Deng BL, Hartman TL, Buckheit RW Jr, Pannecouque C,.De Clercq E, Fanwick PE, Cushman M. Synthesis, anti-HIV activity, and metabolic stability of new alkenyldiarylmethane HIV-1 non-nucleoside reverse transcriptase inhibitors. J Med Chem 2005;48:6140-6155.
    198. Deng BL, Hartman TL, Buckheit RW Jr, Pannecouque C, De Clercq E, Cushman M. Replacement of the metabolically labile methyl esters in the alkenyldiarylmethane series of non-nucleoside reverse transcriptase inhibitors with isoxazolone, isoxazole, oxazolone, or cyano substituents. J Med Chem 2006;49:5316-5323.
    199. Sakamoto T, Cullen MD, Hartman TL, Watson KM, Buckheit RW, Pannecouque C, De Clercq E, Cushman M. Synthesis and anti-HIV activity of new metabolically stable alkenyldiarylmethane non-nucleoside reverse transcriptase inhibitors incorporating N-methoxy imidoyl halide and 1,2,4-oxadiazole systems. J Med Chem 2007;50:3314-3321.
    200. Cullen MD, Deng BL, Hartman TL, Watson KM, Buckheit RW Jr, Pannecouque C, Clercq ED, Cushman M. Synthesis and biological evaluation of alkenyldiarylmethane HIV-1 non-nucleoside reverse transcriptase inhibitors that possess increased hydrolytic stability. J Med Chem 2007;50:4854-4867.
    201. Deng BL, Zhao Y, Hartman TL, Watson K, Buckheit RW Jr, Pannecouque C, De Clercq E, Cushman M. Synthesis of alkenyldiarylmethanes (ADAMs) containing benzo[d]isoxazole and oxazolidin-2-one rings, a new series of potent non-nucleoside HTV-1 reverse transcriptase inhibitors. Eur J Med Chem 2009;44:1210-1214.
    202. Deng BL, Cullen MD, Zhou Z, Hartman TL, Buckheit RW Jr, Pannecouque C, De Clercq E, Fanwick PE, Cushman M. Synthesis and anti-HIV activity of new alkenyldiarylmethane (ADAM) non-nucleoside reverse transcriptase inhibitors (NNRTIs) incorporating benzoxazolone and benzisoxazole rings. Bioorg Med Chem 2006;14:2366-2374.
    203. Viegas-Junior C, Danuello A, da Silva Bolzani V, Barreiro EJ, Fraga CA. Molecular hybridization:a useful tool in the design of new drug prototypes. Curr Med Chem 2007;14:1829-1852.
    204. Terasaka T, Kinoshita T, Kuno M, Nakanishi I. A highly potent non-nucleoside adenosine deaminase inhibitor:efficient drug discovery by intentional lead hybridization. J Am Chem Soc 2004;126:34-35.
    205. Corbett JW, Kresge KJ, Pan S, Cordova BC, Klabe RM, Rodgers JD, Erickson-Viitanen SK. Trifluoromethyl-containing 3-alkoxymethyl-and 3-aryloxymethyl-2-pyridinones are potent inhibitors of HIV-1 non-nucleoside reverse transcriptase. Bioorg Med Chem Lett 2001;11:309-312.
    206. Patel M, McHugh RJ Jr, Cordova BC, Klabe RM, Erickson-Viitanen S, Trainor GL, Rodgers JD. Synthesis and evaluation of quinoxalinones as HIV-1 reverse transcriptase inhibitors. Bioorg Med Chem Lett 2000; 10:1729-1731.
    207. (a) Dolle V, Fan E, Nguyen CH, Aubertin AM, Kirn A, Andreola ML, Jamieson G, Tarrago-Litvak L, Bisagni E. A new series of pyridinone derivatives as potent non-nucleoside human immunodeficiency virus type 1 specific reverse transcriptase inhibitors. J Med Chem 1995;38:4679-4686. (b) Dolle V, Aubertin AM, Ludwig O, Chi HN, Bisagni E, Legraverend M. Synthesis of new non-nucleoside inhibitors of HIV-1. Bioorg Med Chem Lett 1996;6:173-178. (c) Dolle V, Nguyen CH, Legraverend M, Aubertin AM, Kirn A, Andreola ML, Ventura M, Tarrago-Litvak L, Bisagni E. Synthesis and antiviral activity of 4-benzyl pyridinone derivatives as potent and selective non-nucleoside human immunodeficiency virus type 1 reverse transcriptase inhibitors. J Med Chem 2000;43:3949-3962. (d) Benjahad A, Guillemont J, Andries K, Nguyen CH, Grierson DS.3-iodo-4-phenoxypyridinones (IOPY's), a new family of highly potent non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg Med Chem Lett 2003;13:4309-4312.
    208. (a) Benjahad A, Courte K, Guillemont J, Mabire D, Coupa S, Poncelet A, Csoka I, Andries K, Pauwels R, de Bethune MP, Monneret C, Bisagni E, Nguyen CH, Grierson DS.4-benzyl-and 4-benzoyl-3-dimethylaminopyridin-2(1H)-ones, a new family of potent anti-HIV agents: optimization and in vitro evaluation against clinically important HIV mutant strains. J Med Chem 2004;47:5501-5514. (b) Benjahad A, Croisy M, Monneret C, Bisagni E, Mabire D, Coupa S, Poncelet A, Csoka I, Guillemont J, Meyer C, Andries K, Pauwels R, de Bethune MP, Himmel DM, Das K, Arnold E, Nguyen CH, Grierson DS.4-Benzyl and 4-benzoyl-3-dimethylaminopyridin-2(lH)-ones:in vitro evaluation of new C-3-amino-substituted and C-5,6-alkyl-substituted analogues against clinically important HIV mutant strains. J Med Chem 2005;48:1948-1964.
    209. (a) Storer R, Alexandre FR, Dousson C, Moussa AM, Bridges E. Enantiomerically pure phosphoindoles as HIV inhibitors. PCT Int. Appl. WO2008042240,2008. (b) Zhou XJ, Pietropaolo K, Damphousse D, Belanger B, Chen J, Sullivan-Bolyai J, Mayers D. Single-dose escalation and multiple-dose safety, tolerability, and pharmacokinetics of IDX899, a candidate human immunodeficiency virus type 1 nonnucleoside reverse transcriptase inhibitor, in healthy subjects. Antimicrob Agents Chemother 2009;53:1739-46. (c) Klibanov OM, Kaczor RL. IDX-899, an aryl phosphinate-indole non-nucleoside reverse transcriptase inhibitor for the potential treatment of HIV infection. Curr Opin Investig Drugs 2010;11:237-45.
    210. (a) Brown N, Jacoby E. On scaffolds and hopping in medicinal chemistry. Mini Rev Med Chem 2006;6:1217-1229. (b) Tsunoyama K, Amini A, Sternberg MJ, Muggleton SH. Scaffold hopping in drug discovery using inductive logic programming. J Chem Inf Model 2008;48:949-957. (c) Zhao H. Scaffold selection and scaffold hopping in lead generation:a medicinal chemistry perspective. Drug Discov Today 2007;12:149-155. (d) Mauser H, Guba W. Recent developments in de novo design and scaffold hopping. Curr Opin Drug Discov Devel 2008;11:365-374. (e) Renner S, Schneider G. Scaffold-hopping potential of ligand-based similarity concepts. ChemMedChem 2006;l:181-185.
    211. Mai A, Sbardella G, Artico M, Ragno R, Massa S, Novellino E, Greco G, Lavecchia A, Musiu C, La Colla M, Murgioni C, La Colla P, Loddo R. Structure-based design, synthesis, and biological evaluation of conformationally restricted novel 2-alkylthio-6-[1-(2,6-difluorophenyl) alkyl]-3,4-dihydro-5-alkylpyrimidin-4(3H)-ones as non-nucleoside inhibitors of HIV-1 reverse transcriptase. J Med Chem 2001;44:2544-2554.
    212. Su DS, Lim JJ, Tinney E, Wan BL, Young MB, Anderson KD, Rudd D, Munshi V, Bahnck C, Felock PJ, Lu M, Lai MT, Touch S, Moyer G, Distefano DJ, Flynn JA, Liang Y, Sanchez R, Prasad S, Yan Y, Perlow-Poehnelt R, Torrent M, Miller M, Vacca JP, Williams TM, Anthony NJ. Substituted tetrahydroquinolines as potent allosteric inhibitors of reverse transcriptase and its key mutants. Bioorg Med Chem Lett 2009;19:5119-5123.
    213. http://www.natap.org/2007/ResisWksp/ResisWksp 42.htm
    214. De Clercq E. The next ten stories on antiviral drug discovery (part E):Advents, Advances, and Adventures. Med Res Rev 2009 Oct 20. on line.
    215. Cullen MD, Ho WC, Bauman JD, Das K, Arnold E, Hartman TL, Watson KM, Buckheit RW, Pannecouque C, De Clercq E, Cushman M. Crystallographic study of a novel subnanomolar inhibitor provides insight on the binding interactions of alkenyldiarylmethanes with human immunodeficiency virus-1 reverse transcriptase. J Med Chem 2009;52:6467-73.
    216. Ferris RG, Hazen RJ, Roberts GB, St Clair MH, Chan JH, Romines KR, Freeman GA, Tidwell JH, Schaller LT, Cowan JR, Short SA, Weaver KL, Selleseth DW, Moniri KR, Boone LR. Antiviral activity of GW678248, a novel benzophenone nonnucleoside reverse transcriptase inhibitor. Antimicrob Agents Chemother 2005;49:4046-4051.
    217. Elworthy TR, Dunn JP, Hogg JH, Lam G, Saito YD, Silva TM, Stefanidis D, Woroniecki W, Zhornisky E, Zhou AS, Klumpp K. Orally bioavailable prodrugs of a BCS class 2 molecule, an inhibitor of HIV-1 reverse transcriptase. Bioorg Med Chem Lett 2008;18:6344-6347.
    218. (a) Guo H, Kim CH, Kim HS, Lee CK, Lee IY, Mitchell ML, Son JC, Xu L. Novel HIV reverse transcriptase inhibitors. WO 2008016522A2. (b) Mitchell ML, Son JC, Lee IY, Lee CK, Kim HS, Wang J, Hayes J, Wang M, Paul A, Lansdon EB, Chen JM, Eisenberg G, Geleziunas R, Xu L, Kim CU. N1-Heterocyclic pyrimidinediones as non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg Med Chem Lett 2010. on line, (c) Mitchell ML, Son JC, Guo H, Im YA, Cho EJ, Wang J, Hayes J, Wang M, Paul A, Lansdon EB, Chen JM, Graupe D, Rhodes G, He GX, Geleziunas R, Xu L, Kim CU. N1-Alkyl pyrimidinediones as non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg Med Chem Lett 2010. on line.
    219. (a) Wang Z, Bennett EM, Wilson DJ, Salomon C, Vince R. Rationally designed dual inhibitors of HIV reverse transcriptase and integrase. J Med Chem 2007;50:3416-3419. (b) Wang Z, Vince R. Synthesis of pyrimidine and quinolone conjugates as a scaffold for dual inhibitors of HIV reverse transcriptase and integrase. Bioorg Med Chem Lett 2008;18:1293-1296. (c) Wang Z, Vince R. Design and synthesis of dual inhibitors of HIV reverse transcriptase and integrase:introducing a diketoacid functionality into delavirdine. Bioorg Med Chem 2008;16:3587-3595.
    220. Zhou Z, Madrid M, Evanseck JD, Madura JD. Effect of a bound non-nucleoside RT inhibitor on the dynamics of wild-type and mutant HIV-1 reverse transcriptase. J Am Chem Soc 2005;127:17253-17260.
    221. Grob PM, Wu JC, Cohen KA, Ingraham RH, Shih CK, Hargrave KD, McTague TL, Merluzzi VJ. Nonnucleoside inhibitors of HIV-1 reverse transcriptase:nevirapine as a prototype drug. AIDS Res Hum Retroviruses 1992;8:145-152.
    222. Vance D, Shah M, Joshi A, Kane RS. Polyvalency:a promising strategy for drug design. Biotechnol Bioeng 2008;101:429-434.
    223. Choi SK. Synthetic multivalent molecules:concepts and biomedical applications. New York: John Wiley & Sons; 2004.418 p.
    224. Klunder JM, Hoermann M, Cywin CL, David E, Brickwood JR, Schwartz R, Barringer KJ, Pauletti D, Shih CK, Erickson DA, Sorge CL, Joseph DP, Hattox SE, Adams J, Grob PM. Novel nonnucleoside inhibitors of HIV-1 reverse transcriptase.7.8-Arylethyldipyrido diazepinones as potent broad-spectrum inhibitors of wild-type and mutant enzymes. J Med Chem 1998;41:2960-2971.
    225. Cywin CL, Klunder JM, Hoermann M, Brickwood JR, David E, Grob PM, Schwartz R, Pauletti D, Barringer KJ, Shih CK, Sorge CL, Erickson DA, Joseph DP, Hattox SE. Novel nonnucleoside inhibitors of HIV-1 reverse transcriptase.8.8-Aryloxymethyl-and 8-arylthio methyldipyridodiazepinones. J Med Chem 1998;41:2972-2984.
    226. Yoakim C, Bonneau PR, Deziel R, Doyon L, Duan J, Guse I,.Landry S, Malenfant E, Naud J, Ogilvie WW, O'Meara JA, Plante R, Simoneau B, Thavonekham B, Bos M, Cordingley MG. Novel nevirapine-like inhibitors with improved activity against NNRTI-resistant HIV: 8-heteroarylthiomethyldipyridodiazepinone derivatives. Bioorg Med Chem Lett 2004;14:739-742.
    227. O'Meara JA, Yoakim C, Bonneau PR, Bos M, Cordingley MG, Deziel R, Doyon L, Duan J, Garneau M, Guse I, Landry S, Malenfant E, Naud J, Ogilvie WW, Thavonekham B, Simoneau B. Novel 8-substituted dipyridodiazepinone inhibitors with a broad-spectrum of activity against HIV-1 strains resistant to non-nucleoside reverse transcriptase inhibitors. J Med Chem 2005;48:5580-5588.
    228. Coulombe R, Fink D, Landry S, Lessard IAD, McCollum R, Naud J, O'Meara J, Simoneau B, Yoakim C, Bonneau PR. Crystallographic study with BILR 355 BS, A novel nonnucleoside reverse transcriptase inhibitor (NNRTI) with a broad anti HIV-1 profile.3rd International AIDS Society Conference on HIV Pathogenesis and Treatment. Rio de Janeiro-July 24-27,2005.
    229. Nawrozkij MB, Rotili D, Tarantino D, Botta G, Eremiychuk AS, Musmuca I, Ragno R, Samuele A, Zanoli S, Armand-Ugon M, Clotet-Codina I, Novakov IA, Orlinson BS, Maga G, Este JA, Artico M, Mai A.5-Alkyl-6-benzyl-2-(2-oxo-2-phenylethylsulfanyl)pyrimidin-4(3H)-ones, a series of anti-HIV-1 agents of the dihydro-alkoxy-benzyl-oxopyrimidine family with peculiar structure-activity relationship profile. J Med Chem 2008;51:4641-52.
    230. Radi M, Maga G, Alongi M, Angeli L, Samuele A, Zanoli S, Bellucci L, Tafi A, Casaluce G, Giorgi G, Armand-Ugon M, Gonzalez E, Este JA, Baltzinger M, Bee G, Dumas P, Ennifar E, Botta M. Discovery of chiral cyclopropyl dihydro-alkylthio-benzyl-oxopyrimidine (S-DABO) derivatives as potent HIV-1 reverse transcriptase inhibitors with high activity against clinically relevant mutants. J Med Chem 2009;52:840-51.
    231. Zhao Z, Wolkenberg SE, Lu M, Munshi V, Moyer G, Feng M, Carella AV, Ecto LT, Gabryelski LJ, Lai MT, Prasad SG, Yan Y, McGaughey GB, Miller MD, Lindsley CW, Hartman GD, Vacca JP, Williams TM. Novel indole-3-sulfonamides as potent HIV non-nucleoside reverse transcriptase inhibitors (NNRTIs). Bioorg Med Chem Lett 2008;18:554-9.
    232. Piscitelli F, Coluccia A, Brancale A, La Regina G, Sansone A, Giordano C, Balzarini J, Maga G, Zanoli S, Samuele A, Cirilli R, La Torre F, Lavecchia A, Novellino E, Silvestri R. Indolylarylsulfones bearing natural and unnatural amino acids. Discovery of potent inhibitors of HIV-1 non-nucleoside wild type and resistant mutant strains reverse transcriptase and coxsackie B4 virus. J Med Chem 2009;52:1922-34.
    233. Pontikis R, Dolle V, Guillaumel J, Dechaux E, Note R, Nguyen CH, Legraverend M, Bisagni E, Aubertin AM, Grierson DS, Monneret C. Synthesis and evaluation of "AZT-HEPT", "AZT-pyridinone", and "ddC-HEPT" conjugates as inhibitors of HIV reverse transcriptase. J Med Chem 2000;43:1927-1939.
    234. (a) Venkatachalam TK, Sudbeck EA, Mao C, Uckun FM. Stereochemistry of halopyridyl and thiazolyl thiourea compounds is a major determinant of their potency as nonnucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg Med Chem Lett 2000; 10:2071-4. (b) Venkatachalam TK, Mao C, Uckun FM. Stereochemistry as a major determinant of the anti-HIV activity of chiral naphthyl thiourea compounds. Antivir Chem Chemother 2001;12:213-21. (c) Venkatachalam TK, Mao C, Uckun FM. Effect of stereochemistry on the anti-HIV activity of chiral thiourea compounds. Bioorg Med Chem 2004; 12:4275-84. (d) Venkatachalam TK, Mao C, Uckun FM. Effect of stereo and regiochemistry towards wild and multidrug resistant HIV-1 virus:viral potency of chiral PETT derivatives. Biochem Pharmacol 2004;67:1933-46.
    235. Hannongbua S. Structural information and drug-enzyme interaction of the non-nucleoside reverse transcriptase inhibitors based on computational chemistry approaches. Top Heterocycl Chem 2006;4:55-84
    236. Pornpan P, Punkvang A, Saparpakorn P, Wolschann P, Hannongbua S. Recent advances in NNRTI design:computer-aided molecular design approaches. Current Computer-Aided Drug Design 2009;5:174-199.
    237. Smith MB, Smith RH Jr, Jorgensen WL. Assault on resistance:the use of computational chemistry in the development of anti-HIV drugs. Curr Pharm Des 2006;12:1843-1856.
    238. Debnath AK. Application of 3D-QSAR techniques in anti-HIV-1 drug design-an overview. Curr Pharm Des 2005; 11:3091-3110.
    239. Hannongbua S, Lawtrakul L, Sotriffer CA, Rode BM. Comparative Molecular Field Analysis of HIV-1 Reverse Transcriptase Inhibitors in the Class if l[(2-Hydroxyethoxy)-methyl]-6-(phenylthio)thymine. Quant Struct-Act Rel 1996;15:389-394.
    240. Kireev DB, Chretien JR, Grierson DS, Monneret C. A 3D QSAR study of a series of HEPT analogues:the influence of conformational mobility on HIV-1 reverse transcriptase inhibition. J Med Chem 1997;40:4257-4264.
    241. Hannongbua S, Nivesanond K, Lawtrakul L, Pungpo P, Wolschann P.3D-quantitative structure-activity relationships of HEPT derivatives as HIV-1 reverse transcriptase inhibitors based on Ab initio calculations. J Chem Inf Comput Sci 2001;41:848-855.
    242. Hannongbua S, Pungpo P, Limtrakul J, Wolschann P. Quantitative structure-activity relationships and comparative molecular field analysis of TIBO derivatised HIV-1 reverse transcriptase inhibitors. J Comput Aid Mol Des 1999;13:563-577.
    243. Chen HF, Yao XJ, Li Q, Yuan SG, Panaye A, Doucet JP, Fan BT. Comparative study of non nucleoside inhibitors with HIV-1 reverse transcriptase based on 3D-QSAR and docking. SAR QSAR Environ Res 2003; 14:455-474.
    244. Gussio R, Pattabiraman N, Zaharevitz DW, Kellogg GE, Topol IA, Rice WG, Schaeffer CA, Erickson JW, Burt SK. All-atom models for the non-nucleoside binding site of HIV-1 reverse transcriptase complexed with inhibitors:a 3D QSAR approach. J Med Chem 1996;39:1645-1650.
    245. Pungpo P, Hannongbua S. Three-dimensional quantitative structure-activity relationships study on HIV-1 reverse transcriptase inhibitors in the class of dipyridodiazepinone derivatives using comparative molecular field analysis. J Mol Graph Model 2000;18:581-590,601.
    246. Filipponi E, Cruciani G, Tabarrini O, Cecchetti V, Fravolini A. QSAR study and VolSurf characterization of anti-HIV quinolone library. J Comput Aid Mol Des 2001;15;203-217.
    247. Samee W, Ungwitayatom J, Matayatsuk C, Pimthon J.3D-QSAR studies on phthalimide derivatives as HIV-1 reverse transcriptase inhibitors. ScienceAsia 2004;30:81-88.
    248. Ragno R, Frasca S, Manetti F, Brizzi A, Massa S. HIV-reverse transcriptase inhibition: inclusion of ligand-induced fit by cross-docking studies. J Med Chem 2005;48:200-12.
    249. Sengupta D, Verma D, Naik PK. Docking mode of delvardine and its analogues into the p66 domain of HIV-1 reverse transcriptase:screening using molecular mechanics-generalized born/surface area and absorption, distribution, metabolism and excretion properties. J Biosci 2007;32:1307-1316.
    250. Sengupta D, Verma D, Naik PK. Docking-MM-GB/SA and ADME screening of HIV-1 NNRTI inhibitor:nevirapine and its analogues. In Silico Biol 2008;8:275-289.
    251. Park H, Lee S. Free energy perturbation approach to the critical assessment of selective cyclooxygenase-2 inhibitors. J Comput Aided Mol Des 2005; 19:17-31.
    252. Kim JT, Hamilton AD, Bailey CM, Domaoal RA, Wang L, Anderson KS, Jorgensen WL. FEP-guided selection of bicyclic heterocycles in lead optimization for non-nucleoside inhibitors of HIV-1 reverse transcriptase. J Am Chem Soc 2006;128:15372-15373.
    253. Jorgensen WL. Efficient drug lead discovery and optimization. Ace Chem Res 2009;42:724-733.
    254. Varnek A, Solov'ev VP. "In silico" design of potential anti-HIV actives using fragment descriptors. Comb Chem High Throughput Screen 2005;8:403-416.
    255. Janssen PA, Lewi PJ, Arnold E, Daeyaert F, de Jonge M, Heeres J, Koymans L, Vinkers M, Guillemont J, Pasquier E, Kukla M, Ludovici D, Andries K, de Bethune MP, Pauwels R, Das K, Clark AD Jr, Frenkel YV, Hughes SH, Medaer B, De Knaep F, Bohets H, De Clerck F, Lampo A, Williams P, Stoffels P. In search of a novel anti-HIV drug:multidisciplinary coordination in the discovery of 4-[[4-[[4-[(lE)-2-cyanoethenyl]-2,6-dimethylphenyl]amino]-2-pyrimidinyl] amino]benzonitrile (R278474, rilpivirine). J Med Chem 2005;48:1901-1909.
    256. De Corte BL. From 4,5,6,7-tetrahydro-5-methylimidazo[4,5,1-jk](1,4)benzodiazepin-2(1H)-one (TIBO) to etravirine (TMC125):fifteen years of research on non-nucleoside inhibitors of HIV-1 reverse transcriptase. J Med Chem 2005;48:1689-1696.
    [1]Das, K.; Lewi, P.J.; Hughes, S.H.; Arnold, E. Crystallography and the design of anti-AIDS drugs:conformational flexibility and positional adaptability are important in the design of non-nucleoside HIV-1 reverse transcriptase inhibitors. Prog. Biophys. Mol. Biol.,2005,88, 209-31.
    [2]Das, K.; Clark, A.D.Jr.; Lewi, P.J.; Heeres, J.; De Jonge, M.R.; Koymans, L.M.; Vinkers, H.M.; Daeyaert, F.; Ludovici, D.W.; Kukla, M.J.; De Corte, B.; Kavash, R.W.; Ho, C.Y.; Ye, H.; Lichtenstein, M.A.; Andries, K.; Pauwels, R.; De Bethune, M.P.; Boyer, P.L.; Clark, P.; Hughes, S.H.; Janssen, P.A.; Arnold, E. Roles of conformational and positional adaptability in structure-based design of TMC125-R165335 (etravirine) and related non-nucleoside reverse transcriptase inhibitors that are highly potent and effective against wild-type and drug-resistant HIV-1 variants. J. Med. Chem.,2004,47,2550-60.
    [3]Pauwels, R. Aspects of successful drug discovery and development. Antiviral Res.,2006,71, 77-89.
    [4]De Corte, B.L. From 4,5,6,7-tetrahydro-5-methylimidazo[4,5,1-jk](1,4)benzodiazepin-2(1H)-one (TIBO) to etravirine (TMC125):fifteen years of research on non-nucleoside inhibitors of HIV-1 reverse transcriptase. J. Med. Chem.,2005,48,1689-96.
    [5]Janssen, P.A.; Lewi, P.J.; Arnold, E.; Daeyaert, F.; de Jonge, M.; Heeres, J.; Koymans, L. Vinkers, M.; Guillemont, J.; Pasquier, E.; Kukla, M.; Ludovici, D.; Andries, K.; de Bethune, M.P.; Pauwels, R.; Das, K.; Clark, A.D.Jr.; Frenkel, Y.V.; Hughes, S.H.; Medaer, B.; De Knaep, F.; Bohets, H.; De Clerck, F.; Lampo, A.; Williams, P.; Stoffels, P. In search of a novel anti-HIV drug:multidisciplinary coordination in the discovery of 4-[[4-[[4-[(1E)-2-cyanoethenyl]-2,6-dimethylphenyl]amino]-2-pyrimidinyl]amino]benzonitrile-(R278474, rilpivirine). J. Med. Chem.,2005,48,1901-9.
    [6]Das, K.; Bauman, J.D.; Clark, A.D.Jr.; Frenkel, Y.V.; Lewi, P.J.; Shatkin, A.J.; Hughes, S.H.; Arnold, E. High-resolution structures of HIV-1 reverse transcriptase/TMC278 complexes: Strategic flexibility explains potency against resistance mutations. Proc. Natl. Acad. Sci. USA, 2008,705,1466-71.
    [7]Das, K.; Sarafianos, S.G.; Clark, A.D.Jr.; Boyer, P.L.; Hughes, S.H.; Arnold, E. Crystal structures of clinically relevant Lys103Asn/Tyr181Cys double mutant HIV-1 reverse transcriptase in complexes with ATP and non-nucleoside inhibitor HBY 097. J. Mol. Biol.,2007, 365,77-89.
    [8]Hsiou, Y.; Das, K.; Ding, J.; Clark, A.D.Jr.; Kleim, J-P.; Roesner, M.; Winkler, I.; Riess, G.; Hughes, S.H.; Arnold, E. Structures of Tyr188Leu mutant and wild-type HIV-1 reverse transcriptase complexed with the non-nucleoside inhibitor HBY 097:inhibitor flexibility is a useful design feature for reducing drug resistance. J. Mol. Biol.,1998,284,313-23.
    [9]Ahgren, C; Backro, K.; Bell, F.W.; Cantrell, A.S.; Clemens, M.; Colacino, J.M.; Deeter, J.B.; Engelhardt, J.A.; Hogberg, M.; Jaskunas, S.R.; et al. The PETT series, a new class of potent nonnucleoside inhibitors of human immunodeficiency virus type 1 reverse transcriptase. Antimicrob. Agents Chemother.,1995,39,1329-35.
    [10]Fujiwara, T.; Sato, A.; el-Farrash, M.; Miki, S.; Abe, K.; Isaka, Y.; Kodama, M.; Wu, Y.; Chen, L.B.; Harada, H.; Sugimoto, H.; Hatanaka, M.; Hinuma, Y. S-1153 inhibits replication of known drug-resistant strains of human immunodeficiency virus type 1. Antimicrob. Agents Chemother.,1998,42,1340-5.
    [11]Ren, J.; Nichols, C; Bird, L.E.; Fujiwara, T.; Sugimoto, H.; Stuart, D.I.; Stammers, D.K. Binding of the second generation non-nucleoside inhibitor S-1153 to HIV-1 reverse transcriptase involves extensive main chain hydrogen bonding.J. Biol. Chem.,2000,275, 14316-20.
    [12]Ghosh, A.K.; Chapsal, B.D.; Weber, I.T.; Mitsuya, H. Design of HIV protease inhibitors targeting protein backbone:an effective strategy for combating drug resistance. Ace. Chem. Res.,2008,41,78-86.
    [13]Smerdon, S.J.; Jager, J.; Wang, J.; Kohlstaedt, L.A.; Chirino, A.J.; Friedman, J.M.; Rice, P.A.; Steitz, T.A. Structure of the binding site for nonnucleoside inhibitors of the reverse transcriptase of human immunodeficiency virus type 1.Proc. Natl. Acad. Sci. USA,1994,91,3911-5.
    [14]Ren, J.; Nichols, C.; Bird, L.; Chamberlain, P.; Weaver, K.; Short, S.; Stuart, D.I.; Stammers, D.K. Structural mechanisms of drug resistance for mutations at codons 181 and 188 in HIV-1 reverse transcriptase and the improved resilience of second generation non-nucleoside inhibitors. J. Mol. Biol,2001,312,795-805.
    [15]Balzarini, J.; Pelemans, H.; Aquaro, S.; Perno, C.F.; Witvrouw, M.; Schols, D.; De Clercq, E.; Karlsson, A. Highly favorable antiviral activity and resistance profile of the novel thiocarboxanilide pentenyloxy ether derivatives UC-781 and UC-82 as inhibitors of human immunodeficiency virus type 1 replication. Mol. Pharmacol.,1996,50,394-401.
    [16]Pelemans, H.; Esnouf, R.; De Clercq, E.; Balzarini, J. Mutational analysis of trp-229 of human immunodeficiency virus type 1 reverse transcriptase (RT) identifies this amino acid residue as a prime target for the rational design of new non-nucleoside RT inhibitors. Mol. Pharmacol,2000,57,954-60.
    [17]Campiani, G.; Nacci, V.; Fiorini, I.; De Filippis, M.P.; Garofalo, A.; Greco, G.; Novellino, E.; Altamura, S.; Di Renzo, L. Pyrrolobenzothiazepinones and pyrrolobenzoxazepinones:novel and specific non-nucleoside HIV-1 reverse transcriptase inhibitors with antiviral activity.J. Med. Chem.,1996,39,2672-80.
    [18]Campiani, G.; Morelli, E.; Fabbrini, M.; Nacci, V.; Greco, G.; Novellino, E.; Ramunno, A.; Maga, G.; Spadari, S.; Caliendo, G.; Bergamini, A.; Faggioli, E.; Uccella, I.; Bolacchi, F.; Marini, S.; Coletta, M.; Nacca, A.; Caccia, S. Pyrrolobenzoxazepinone derivatives as non-nucleoside HIV-1 RT inhibitors:further structure-activity relationship studies and identification of more potent broad-spectrum HIV-1 RT inhibitors with antiviral activity. J. Med. Chem.,1999,42,4462-70.
    [19]Fattorusso, C; Gemma, S.; Butini, S.; Huleatt, P.; Catalanotti, B.; Persico, M.; De Angelis, M.; Fiorini, I.; Nacci, V; Ramunno, A.; Rodriquez, M.; Greco, G.; Novellino, E.; Bergamini, A.; Marini, S.; Coletta, M.; Maga, G.; Spadari, S.; Campiani, G Specific targeting highly conserved residues in the HIV-1 reverse transcriptase primer grip region, design, synthesis, and biological evaluation of novel, potent, and broad spectrum NNRTIs with antiviral activity. J. Med. Chem., 2005,45,7153-65.
    [20]Zanoli, S.; Gemma, S.; Butini, S.; Brindisi, M.; Joshi, B.P.; Campiani, G.; Fattorusso, C.; Persico, M.; Crespan, E.; Cancio, R.; Spadari, S.; Hubscher, U.; Maga, G. Selective targeting of the HIV-1 reverse transcriptase catalytic complex through interaction with the "primer grip" region by pyrrolobenzoxazepinone non-nucleoside inhibitors correlates with increased activity towards drug-resistant mutants. Biochem. Pharmacol,2008,76,156-68.
    [21]Butini, S.; Brindisi, M.; Cosconati, S.; Marinelli, L.; Borrelli, G.; Coccone, S.S.; Ramunno, A.; Campiani, G.; Novellino, E.; Zanoli, S.; Samuele, A.; Giorgi, G.; Bergamini, A.; Mattia, M.D.; Lalli, S.; Galletti, B.; Gemma, S.; Maga, G. Specific targeting of highly conserved residues in the HIV-1 reverse transcriptase primer grip region.2. stereoselective interaction to overcome the effects of drug resistant mutations. J. Med. Chem.,2009 Jan 26. on line.
    [22]Zhan, P.; Li, Z.; Liu, X.; De Clercq, E. Sulfanyltriazole/tetrazoles:a promising class of HIV-1 NNRTIs. Mini. Rev. Med. Chem.,2009,9,1014-1023.
    [23]O'Meara, J.A.; Jakalian, A.; LaPlante, S.; Bonneau, P.R.; Coulombe, R.; Faucher, A.M.; Guse, I.; Landry, S.; Racine, J.; Simoneau, B.; Thavonekham, B.; Yoakim, C. Scaffold hopping in the rational design of novel HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem. Lett.,2007,17,3362-6.
    [24]Gagnon, A.; Amad, M.H.; Bonneau, P.R.; Coulombe, R.; DeRoy, P.L.; Doyon, L.; Duan, J.; Garneau, M.; Guse, I.; Jakalian, A.; Jolicoeur, E.; Landry, S.; Malenfant, E.; Simoneau, B.; Yoakim, C. Thiotetrazole alkynylacetanilides as potent and bioavailable non-nucleoside inhibitors of the HIV-1 wild type and K1O3N/Y181C double mutant reverse transcriptases. Bioorg. Med. Chem. Lett.,2007,17,4437-41.
    [25]Hopkins, A.L.; Ren, J.; Tanaka, H.; Baba, M.; Okamato, M; Stuart, D.I.; Stammers, D.K. Design of MKC-442 (emivirine) analogues with improved activity against drug-resistant HIV mutants. J. Med. Chem.,1999,42,4500-5.
    [26]Ren, J.; Stammers, D.K. HIV reverse transcriptase structures:designing new inhibitors and understanding mechanisms of drug resistance. Trends Pharmacol. Sci.,2005,26,4-7.
    [27]Pata, J.D.; Stirtan, W.G.; Goldstein, S.W.; Steitz, T.A. Structure of HIV-1 reverse transcriptase bound to an inhibitor active against mutant reverse transcriptases resistant to other nonnucleoside inhibitors. Proc. Natl. Acad. Sci. USA,2004,101,10548-53.
    [28]Hsiou, Y.; Ding, J.; Das, K.; Clark, A.D.; Boyer, P.L.; Lewi, P.; Janssen, P.A.; Kleim, J.P.; Rosner, M.; Hughes, S.H.; Arnold, E. The Lys103Asn mutation of HIV-1 RT:a novel mechanism of drug resistance. J. Mol. Bioi,2001,309,437-45.
    [29]Lindberg, J.; Sigurdsson, S.; Lowgren, S; Andersson, H.O.; Sahlberg, C; Noreen, R.; Fridborg, K.; Zhang, H.; Unge, T. Structural basis for the inhibitory efficacy of efavirenz (DMP-266), MSC194 and PNU142721 towards the HIV-1 RT K103N mutant. Eur. J. Biochem., 2002,269,1670-7.
    [30]Himmel, D.M.; Sarafianos, S.G.; Dharmasena, S.; Hossain, M.M.; McCoy-Simandle, K.; Ilina, T.; Clark, A.D.Jr.; Knight, J.L.; Julias, J.G; Clark, P.K.; Krogh-Jespersen, K.; Levy, R.M.; Hughes, S.H.; Parniak, M.A.; Arnold, E. HIV-1 reverse transcriptase structure with RNase H inhibitor dihydroxy benzoyl naphthyl hydrazone bound at a novel site. ACS. Chem. Biol.,2006, 1,702-12.
    [31]Zhang, Z.; Walker, M.; Xu, W.; Shim, J.H.; Girardet, J.L.; Hamatake, R.K.; Hong, Z. Novel nonnucleoside inhibitors that select nucleoside inhibitor resistance mutations in human immunodeficiency virus type 1 reverse transcriptase. Antimicrob. Agents Chemother.,2006,50, 2772-81.
    [32]Jochmans, D.; Deval, J.; Kesteleyn, B.; Van Marck, H.; Bettens, E.; De Baere, I.; Dehertogh, P.; Ivens, T.; Van Ginderen, M.; Van Schoubroeck, B.; Ehteshami, M.; Wigerinck, P.; Gotte, M.; Hertogs, K. Indolopyridones inhibit human immunodeficiency virus reverse transcriptase with a novel mechanism of action. J. Virol,2006,80,12283-92.
    [33]Wang, L.Z.; Kenyon, GL.; Johnson, K.A. Novel mechanism of inhibition of HIV-1 reverse transcriptase by a new non-nucleoside analog, KM-1. J. Biol. Chem.,2004,279,38424-32.
    [34]Skillman, A.G; Maurer, K.W.; Roe, D.C.; Stauber, M.J.; Eargle, D.; Ewing, T.J.; Muscate, A.; Davioud-Charvet, E.; Medaglia, M.V.; Fisher, R.J.; Arnold, E.; Gao, H.Q.; Buckheit, R.; Boyer, PL.; Hughes, S.H.; Kuntz, I.D.; Kenyon, GL. A novel mechanism for inhibition of HIV-1 reverse transcriptase. Bioorg. Chem.,2002,30,443-58.
    [35]Basavapathruni, A.; Anderson, K.S. Developing novel nonnucleoside HIV-1 reverse transcriptase inhibitors:beyond the butterfly. Curr. Pharm. Des.,2006,12,1857-65.
    [36]Yamazaki, S.; Tan, L.; Mayer, G.; Hartig, J.S.; Song, J.N.; Reuter, S.; Restle, T.; Laufer, S.D.; Grohmann, D.; Krausslich, H.G.; Bajorath, J.; Famulok, M. Aptamer displacement identifies alternative small-molecule target sites that escape viral resistance. Chem. Biol,2007,14, 804-12.
    [37]Camarasa, M.J.; Velazquez, S.; San-Felix, A.; Perez-Perez, M.J.; Gago, F. Dimerization inhibitors of HIV-1 reverse transcriptase, protease and integrase:a single mode of inhibition for the three HIV enzymes? Antiviral Res.,2006,71,260-7.
    [38]Camarasa, M.J.; Velazquez, S.; San-Felix, A.; Perez-Perez, M.J.; Bonache, M.C.; De Castro, S. TSAO derivatives, inhibitors of HIV-1 reverse transcriptase dimerization:recent progress. Curr. Pharm. Des.,2006,12,1895-907.
    [39]Camarasa, M.J.; Velazquez, S.; San-Felix, A.; Perez-Perez, M.J. TSAO derivatives the first non-peptide inhibitors of HIV-1 RT dimerization. Antivir. Chem. Chemother.,2005,16,147-53.
    [40]Camarasa, M.J.; San-Felix, A.; Velazquez, S.; Perez-Perez, M.J.; Gago, F.; Balzarini, J. TSAO compounds:the comprehensive story of a unique family of HIV-1 specific inhibitors of reverse transcriptase. Curr. Top Med. Chem.,2004,4,945-63.
    [41]Bonache, M.C.; Quesada, E.; Sheen, C.W.; Balzarini, J.; Sluis-Cremer, N.; Perez-Perez, M.J.; Camarasa, M.J.; San-Felix, A. Novel N-3 substituted TSAO-T derivatives:synthesis and anti-HIV-evaluation. Nucleosides Nucleotides Nucleic Acids,2008,27,351-67.
    [42]Tomassi, C.; Nguyen, V.N.; Marco-Contelles, J.; Balzarini, J.; Pannecouque, C.; De Clercq, E.; Soriano, E.; Postel, D. Synthesis, anti-HIV-1 activity, and modeling studies of N-3 Boc TSAO compound. Bioorg. Med. Chem. Lett,2008,18,2277-81.
    [43]Tomassi, C.; Nguyen Van Nhien, A.; Marco-Contelles, J.; Balzarini, J.; Pannecouque, C.; De Clercq, E.; Postel, D. Synthesis and anti-HTV1 biological activity of novel 5"-ATSAO compounds. Bioorg. Med. Chem.,2008,16,4733-41.
    [44]de Castro, S.; Andrei, G.; Snoeck, R.; Balzarini, J.; Camarasa, M.J.; Velazquez, S. Novel non-nucleoside human cytomegalovirus inhibitors based upon TSAO nucleoside derivatives: structure-activity relationships. Nucleosides Nucleotides Nucleic Acids,2007,26,625-8.
    [45]Sluis-Cremer, N.; Hamamouch, N.; San Felix, A.; Velazquez, S.; Balzarini, J.; Camarasa, M.J. Structure-activity relationships of [2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]-3'-spiro-5"-(4"-amino-1",2"-oxathiole-2",2"-dioxide)thymine derivatives as inhibitors of HIV-1 reverse transcriptase dimerization. J. Med. Chem.,2006,49,4834-41.
    [46]Soriano, E.; Marco-Contelles, J.; Tomassi, C; Nguyen Van Nhien, A.; Postel,. D. Computational analysis of aza analogues of [2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranose]-3'-spiro-5"-(4"-amino-l",2"-oxathiole-2",2"-dioxide) (TSAO) as HIV-1 reverse transcriptase inhibitors:relevance of conformational properties on the inhibitory activity. J. Chem. Inf. Model,2006,46,1666-77.
    [47]de Castro, S.; Garcia-Aparicio, C.; Van Laethem, K.; Gago, F.; Lobaton, E.; De Clercq, E.; Balzarini, J.; Camarasa, M.J.; Velazquez, S. Discovery of TSAO derivatives with an unusual HIV-1 activity/resistance profile. Antiviral Res.,2006,71,15-23.
    [48]Bonache, M.C.; Chamorro, C.; Velazquez, S.; De Clercq, E.; Balzarini, J.; Barrios, F.R.; Gago, F.; Camarasa, M.J.; San-Felix, A. Improving the antiviral efficacy and selectivity of HIV-1 reverse transcriptase inhibitor TSAO-T by the introduction of functional groups at the N-3 position. J. Med. Chem.,2005,48,6653-60.
    [49]Nguyen Van Nhien, A.; Tomassi, C.; Len, C.; Marco-Contelles, J.L.; Balzarini, J.; Pannecouque, C.; De Clercq, E.; Postel, D. First synthesis and evaluation of the inhibitory effects of aza analogues of TSAO on HIV-1 replication. J. Med. Chem.,2005,48,4276-84.
    [50]Bonache, M.C.; Chamorro, C.; Velazquez, S.; De Clercq, E.; Balzarini, J.; Camarasa, M.J.; San-Felix, A. N-3 substituted TSAO derivatives as a probe to explore the dimeric interface of HIV-1 reverse transcriptase. Nucleosides Nucleotides Nucleic Acids,2003,22,947-9.
    [51]Rodriguez-Barrios, F.; Perez, C.; Lobaton, E.; Velazquez, S.; Chamorro, C.; San-Felix, A.; Perez-Perez, M.J.; Camarasa, M.J.; Pelemans, H.; Balzarini, J.; Gago, F. Identification of a putative binding site for [2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]-3'-spiro-5"-(4"-amino-1",2"-oxathiole-2",2"-dioxide)thymine (TSAO) derivatives at the p51-p66 interface of HIV-1 reverse transcriptase. J. Med. Chem.,2001,44,1853-65.
    [52]Sluis-Cremer, N.; Arion, D.; Parniak, M.A. Destabilization of the HTV-1 reverse transcriptase dimer upon interaction with N-acyl hydrazone inhibitors. Mol. Pharmacol.,2002,62,398-405.
    [53]Grohmann, D.; Corradi, V.; Elbasyouny, M.; Baude, A.; Horenkamp, F.; Laufer, S.D.; Manetti, F.; Botta, M.; Restle, T. Small molecule inhibitors targeting HIV-1 reverse transcriptase dimerization. Chembiochem,2008,9,916-22.
    [54]Balzarini, J.; Auwerx, J.; Rodriguez-Barrios, F.; Chedad, A.; Farkas, V.; Ceccherini-Silberstein, F.; Garcia-Aparicio, C.; Velazquez, S.; De Clercq, E.; Perno, C.F.; Camarasa, M.J.; Gago, F. The amino acid Asn136 in HIV-1 reverse transcriptase (RT) maintains efficient association of both RT subunits and enables the rational design of novel RT inhibitors. Mol. Pharmacol,2005,68,49-60.
    [55]Mulky, A.; Vu, B.C.; Conway, J.A.; Hughes, S.H.; Kappes, J.C. Analysis of amino acids in the (37-08 loop of human immunodeficiency virus type 1 reverse transcriptase for their role in virus replication. J. Mol. Biol,2007,365,1368-78.
    [56]Zhou, Z.; Madrid, M.; Evanseck, J.D.; Madura, J.D. Effect of a bound non-nucleoside RT inhibitor on the dynamics of wild-type and mutant HIV-1 reverse transcriptase. J. Am. Chem. Soc,2005,127,17253-60.
    [57]Grob, P.M.; Wu, J.C.; Cohen, K.A.; Ingraham, R.H.; Shih, C.K.; Hargrave, K.D.; McTague, T.L.; Merluzzi, V.J. Nonnucleoside inhibitors of HIV-1 reverse transcriptase:nevirapine as a prototype drug. AIDS Res. Hum. Retroviruses,1992,8,145-52.
    [58]Klunder, J.M.; Hoermann,'M.; Cywin, C.L.; David, E.; Brickwood, J.R.; Schwartz, R.; Barringer, K.J.; Pauletti, D.; Shih, C.K.; Erickson, D.A.; Sorge C.L.; Joseph, D.P.; Hattox, S.E.; Adams, J.; Grob, P.M. Novel nonnucleoside inhibitors of HIV-1 reverse transcriptase.7. 8-Arylethyldipyridodiazepinones as potent broad-spectrum inhibitors of wild-type and mutant enzymes. J. Med. Chem.,1998,41,2960-71.
    [59]Cywin, C.L.; Klunder, J.M.; Hoermann, M.; Brickwood, J.R.; David, E.; Grob, P.M.; Schwartz, R.; Pauletti, D.; Barringer, K.J.; Shih, C.K.; Sorge, C.L.; Erickson, D.A.; Joseph, D.P.; Hattox, S.E. Novel nonnucleoside inhibitors of HIV-1 reverse transcriptase.8. 8-Aryloxymethyl-and 8-arylthiomethyldipyridodiazepinones. J. Med. Chem.,1998,41, 2972-84.
    [60]Yoakim, C; Bonneau, P.R.; Deziel, R.; Doyon, L.; Duan, J.; Guse, I.; Landry, S.; Malenfant, E.; Naud, J.; Ogilvie, W.W.; O'Meara, J.A.; Plante, R.; Simoneau, B.; Thavonekham, B.; Bos, M.; Cordingley, M.G. Novel nevirapine-like inhibitors with improved activity against NNRTI-resistant HIV:8-heteroarylthiomethyldipyridodiazepinone derivatives. Bioorg. Med. Chem. Lett,2004,14,739-42.
    [61]O'Meara, J.A.; Yoakim, C.; Bonneau, P.R.; Bos, M.; Cordingley, M.G.; Deziel, R.; Doyon, L.; Duan, J.; Garneau, M.; Guse, I.; Landry, S.; Malenfant, E.; Naud, J.; Ogilvie, W.W.; Thavonekham, B.; Simoneau, B. Novel 8-substituted dipyridodiazepinone inhibitors with a broad-spectrum of activity against HIV-1 strains resistant to non-nucleoside reverse transcriptase inhibitors.J. Med. Chem.,2005,48,5580-8.
    [62]Coulombe, R.; Fink, D.; Landry, S.; Lessard, I.A.D.; McCollum, R.; Naud, J.; O'Meara, J.; Simoneau, B.; Yoakim, C.; Bonneau, P.R. Crystallographic study with BILR 355 BS, A novel nonnucleoside reverse transcriptase inhibitor (NNRTI) with a broad anti HIV-1 profile.3rd International AIDS Society Conference on HIV Pathogenesis and Treatment. Rio de Janeiro-July 24-27,2005.
    [63]Sweeney, Z.K.; Harris, S.F.; Arora, N.; Javanbakht, H.; Li, Y.; Fretland, J.; Davidson, J.P.; Billedeau, J.R.; Gleason, S.K.; Hirschfeld, D.; Kennedy-Smith, J.J.; Mirzadegan, T.; Roetz, R.; Smith, M.; Sperry, S.; Suh, J.M.; Wu, J.; Tsing, S.; Villasenor, A.G.; Paul, A.; Su, G.; Heilek, G.; Hang, J.Q.; Zhou, A.S.; Jernelius, J.A.; Zhang, F.J.; Klumpp, K. Design of annulated pyrazoles as inhibitors of HTV-1 reverse transcriptase. J. Med. Chem.,2008,57,7449-58
    [64]Ren, J.; Milton, J.; Weaver, K.L.; Short, S.A.; Stuart, D.I.; Stammers, D.K. Structural basis for the resilience of efavirenz (DMP-266) to drug resistance mutations in HTV-1 reverse transcriptase. Structure,2000,8,1089-94.
    [65]Griffith, R.; Luu, T.T.; Garner, J.; Keller, P.A. Combining structure-based drug design and pharmacophores. J. Mol. Graph. Model,2005,23,439-46.
    [66]D'Cruz, O.J.; Uckun, F.M. Novel tight binding PETT, HEPT and DABO-based non-nucleoside inhibitors of HIV-1 reverse transcriptase. J. Enzyme. Inhib. Med. Chem.,2006, 21,329-50.
    [67]D'Cruz, O.J.; Uckun, F.M. Novel broad-spectrum thiourea non-nucleoside inhibitors for the prevention of mucosal HIV transmission. Curr. HIV Res.,2006,4,329-45.
    [68]Vig, R.; Mao, C.; Venkatachalam, T.K.; Tuel-Ahlgren, L.; Sudbeck, E.A.; Uckun, F.M. Rational design and synthesis of phenethyl-5-bromopyridyl thiourea derivatives as potent non-nucleoside inhibitors of HIV reverse transcriptase. Bioorg. Med. Chem.,1998,6,1789-97.
    [69]Mao, C.; Vig, R.; Venkatachalam, T.K.; Sudbeck, E.A.; Uckun, F.M. Structure-based design of N-[2-(l-piperidinylethyl)]-N'-[2-(5-bromopyridyl)]-thiourea and N-[2-(1-piperazinylethyl)]-N'-[2-(5-bromopyridyl)]-thiourea as potent non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg. Med. Chem. Lett,1998,8,2213-8.
    [70]Vig, R.; Mao, C.; Venkatachalam, T.K.; Tuel-Ahlgren, L.; Sudbeck, E.A.; Uckun, F.M. Rational design and synthesis of phenethyl-5-bromopyridyl thiourea derivatives as potent non-nucleoside inhibitors of HIV reserve transcriptase. Bioorg. Med. Chem.,1998,6,1789-97.
    [71]Mao, C.; Sudbeck, E.A.; Venkatachalam, T.K.; Uckun, F.M. Structure-based drug design of non-nucleoside inhibitors for wild-type and drug-resistant HIV reverse transcriptase. Biochem. Pharmacol,2000,60,1251-65.
    [72]Vig, R.; Mao, C. Nonnucleoside inhibitors of reverse transcriptase, composite binding pocket and methods for use thereof. WO9947501A (1999); US6380190B (2002); US2005153995A (2005).
    [73]Esnouf, R.M.; Ren, J.; Hopkins, A.L.; Ross, C.K.; Jones, E.Y.; Stammers, D.K.; Stuart, D.I. Unique features in the structure of the complex between HIV-1 reverse transcriptase and the bis(heteroaryl)piperazine (BHAP) U-90152 explain resistance mutations for this nonnucleoside inhibitor. Proc. Natl. Acad. Sci. USA,1997,94,3984-9.
    [74]Hopkins, A.L.; Ren, J.; Esnouf, R.M.; Willcox, B.E.; Jones, E.Y.; Ross, C; Miyasaka, T.; Walker, R.T.; Tanaka, H.; Stammers, D.K.; Stuart, D.I. Complexes of HIV-1 reverse transcriptase with inhibitors of the HEPT series reveal conformational changes relevant to the design of potent non-nucleoside inhibitors. J. Med. Chem.,1996,39,1589-600.
    [75]Morphy, R.; Rankovic, Z. Designed multiple ligands. An emerging drug discovery paradigm. J. Med. Chem.,2005,48,6523-43.
    [76]Morphy, R.; Kay, C; Rankovic, Z. From magic bullets to designed multiple ligands. Drug Discov. Today,2004,9,641-51.
    [77]Morphy, R.; Rankovic, Z. The physicochemical challenges of designing multiple ligands._J. Med. Chem.,2006,49,4961-70.
    [78]Morphy, R.; Rankovic, Z. Fragments, network biology and designing multiple ligands. Drug Discov. Today,2007,12,156-60.
    [79]Morphy, R.; Rankovic, Z. Designing Multiple Ligands-Medicinal Chemistry Strategies and Challenges. Curr. Pharm. Des.,2009,15,587-600.
    [80]Zhan, P.; Liu, X. Designed multiple ligands:an emerging anti-HIV drug discovery paradigm. Curr. Pharm. Des.,2009,15,1893-917.
    [81]Wang, Z.; Bennett, E.M.; Wilson, D.J.; Salomon, C; Vince, R. Rationally designed dual inhibitors of HIV reverse transcriptase and integrase.,J. Med. Chem.,2007,50,3416-9.
    [82]Wang, Z.; Vince, R. Synthesis of pyrimidine and quinolone conjugates as a scaffold for dual inhibitors of HIV reverse transcriptase and integrase. Bioorg. Med. Chem. Lett.,2008,1118, 1293-1296
    [83]Wang, Z.; Vince, R. Design and synthesis of dual inhibitors of HIV reverse transcriptase and integrase:introducing a diketoacid functionality into delavirdine. Bioorg. Med. Chem.,2008,16, 3587-95.
    [84]Tucker, T.J.; Saggar, S.; Sisko, J.T.; Tynebor, R.M.; Williams, T.M.; Felock, P.J.; Flynn, J.A.; Lai, M.T.; Liang, Y.; McGaughey, G.; Liu, M.; Miller, M.; Moyer, G.; Munshi, V.; Perlow-Poehnelt, R.; Prasad, S.; Sanchez, R.; Torrent, M.; Vacca, J.P.; Wan, B.L.; Yan, Y. The design and synthesis of diaryl ether second generation HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) with enhanced potency versus key clinical mutations._Bioorg. Med. Chem. Lett.,2008,18,2959-66.
    [85]Sweeney, Z.K.; Kennedy-Smith, J.J.; Wu, J.; Arora, N.; Billedeau, J.R.; Davidson, J.P.; Fretland, J.; Hang, J.Q.; Heilek, G.M.; Harris, S.F.; Hirschfeld, D.; Inbar, P.; Javanbakht, H.; Jernelius, J.A.; Jin, Q.; Li, Y.; Liang, W.; Roetz, R.; Sarma, K.; Smith, M.; Stefanidis, D.; Su, G.; Suh, J.M.; Villasenor, A.G.; Welch, M.; Zhang, F.J.; Klumpp, K. Diphenyl ether non-nucleoside reverse transcriptase inhibitors with excellent potency against resistant mutant viruses and promising pharmacokinetic properties. ChemMedChem,2008,4,88-99.
    [86]Romines, K.R.; Freeman, G.A.; Schaller, L.T.; Cowan, J.R.; Gonzales, S.S.; Tidwell, J.H.; Andrews, C.W.3rd.; Stammers, D.K.; Hazen, R.J.; Ferris, R.G.; Short, S.A.; Chan, J.H.; Boone, L.R. Structure-activity relationship studies of novel benzophenones leading to the discovery of a potent, next generation HIV nonnucleoside reverse transcriptase inhibitor. J. Med. Chem., 2006,49,727-39.
    [87]Ren, J.; Chamberlain, P.P.; Stamp, A.; Short, S.A.; Weaver, K.L.; Romines, K.R.; Hazen, R.; Freeman, A.; Ferris, R.G.; Andrews, C.W.; Boone, L.; Chan, J.H.; Stammers, D.K. Structural basis for the improved drug resistance profile of new generation benzophenone non-nucleoside HIV-1 reverse transcriptase inhibitors.J. Med. Chem.,2008,57,5000-8.
    [1]Tucker, T.J.; Saggar, S.; Sisko, J.T.; Tynebor, R.M.; Williams, T.M.; Felock, P.J.; Flynn, J.A.; Lai, M.T.; Liang, Y.; McGaughey, G.; Liu, M.; Miller, M.; Moyer, G.; Munshi, V.; Perlow-Poehnelt, R.; Prasad, S.; Sanchez, R.; Torrent, M.; Vacca, J.P.; Wan, B.L.; Yan, Y. The design and synthesis of diaryl ether second generation HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) with enhanced potency versus key clinical mutations._Bioorg. Med. Chem. Lett,2008,18,2959-66.
    [2]Tucker, T.J.; Sisko, J.T.; Tynebor, R.M.; Williams, T.M.; Felock, P.J.; Flynn, J.A.; Lai, M.T.; Liang, Y.; McGaughey, G.; Liu, M.; Miller, M.; Moyer, G.; Munshi, V.; Perlow-Poehnelt, R.; Prasad, S.; Reid, J.C.; Sanchez, R.; Torrent, M.; Vacca, J.P.; Wan, B.L.; Yan, Y. Discovery of 3-{5-[(6-Amino-lH-pyrazolo[3,4-b]pyridine-3-yl) methoxy]-2-chlorophenoxy}-5-chlorobenzonitrile (MK-4965):a potent, orally bioavailable HIV-1 non-nucleoside reverse transcriptase inhibitor with improved potency against key mutant viruses. J. Med. Chem.,2008,51,6503-11.
    [3]Lai, M.T.; Munshi, V.; Touch, S.; Tynebor, R.M.; Tucker, T.J.; McKenna, P.M.; Williams, T.M.; Distefano, D.J.; Hazuda, D.J.; Miller, M.D. Antiviral activity of MK-4965:a novel non-nucleoside reverse transcriptase inhibitor. Antimicrob. Agents Chemother.,2009 Mar 16. [Epub ahead of print]
    [4]Sweeney, Z.K.; Harris, S.F.; Arora, N.; Javanbakht, H.; Li, Y.; Fretland, J.; Davidson, J.P.; Billedeau, J.R.; Gleason, S.K.; Hirschfeld, D.; Kennedy-Smith, J.J.; Mirzadegan, T.; Roetz, R.; Smith, M.; Sperry, S.; Suh, J.M.; Wu, J.; Tsing, S.; Villasenor, A.G.; Paul, A.; Su, G.; Heilek, G.; Hang, J.Q.; Zhou, A.S.; Jernelius, J.A.; Zhang, F.J.; Klumpp, K. Design of annulated pyrazoles as inhibitors of HIV-1 reverse transcriptase. J. Med. Chem.,2008, Nov 14. [Epub ahead of print]'
    [5]Sweeney, Z.K.; Dunn, J.P.; Li, Y.; Heilek, G.; Dunten, P.; Elworthy, T.R.; Han, X.; Harris, S.F.; Hirschfeld, D.R.; Hogg, J.H.; Huber, W.; Kaiser, A.C.; Kertesz, D.J.; Kim, W.; Mirzadegan, T.; Roepel, M.G.; Saito, YD.; Silva, T.M.; Swallow, S.; Tracy, J.L.; Villasenor, A.; Vora, H.; Zhou, A.S.; Klumpp, K. Discovery and optimization of pyridazinone non-nucleoside inhibitors of HIV-1 reverse transcriptase.Bioorg. Med. Chem. Lett.,2008,18,4352-4.
    [6]Elworthy, T.R.; Dunn, J.P.; Hogg, J.H.; Lam, G.; Saito, YD.; Silva, T.M.; Stefanidis, D.; Woroniecki, W.; Zhornisky, E.; Zhou, A.S.; Klumpp, K. Orally bioavailable prodrugs of a BCS class 2 molecule, an inhibitor of HIV-1 reverse transcriptase. Bioorg. Med. Chem. Lett,2008, 18,6344-7.
    [7]Sweeney, Z.K.; Acharya, S.; Briggs, A.; Dunn, J.P.; Elworthy, T.R.; Fretland, J.; Giannetti, A.M.; Heilek, G.; Li, Y.; Kaiser, A.C.; Martin, M.; Saito, YD.; Smith, M.; Suh, J.M.; Swallow, S.; Wu, J.; Hang, J.Q.; Zhou, A.S.; Klumpp, K. Discovery of triazolinone non-nucleoside inhibitors of HIV reverse transcriptase._Bioorg. Med. Chem. Lett,2008,18,4348-51.
    [8]Sweeney, Z.K.; Kennedy-Smith, J.J.; Wu, J.; Arora, N.; Billedeau, J.R.; Davidson, J.P.; Fretland, J.; Hang, J.Q.; Heilek, G.M.; Harris, S.F.; Hirschfeld, D.; Inbar, P.; Javanbakht, H.; Jernelius, J.A.; Jin, Q.; Li, Y.; Liang, W.; Roetz, R.; Sarma, K.; Smith, M.; Stefanidis, D.; Su, G.; Suh, J.M.; Villasenor, A.G.; Welch, M.; Zhang, F.J.; Klumpp, K. Diphenyl Ether Non-Nucleoside Reverse Transcriptase Inhibitors with Excellent Potency Against Resistant Mutant Viruses and Promising Pharmacokinetic Properties. ChemMedChem,2008,4,88-99.
    [9]Wu, B.; Kuhen, K.; Ngoc Nguyen, T.; Ellis, D.; Anaclerio, B.; He, X.; Yang, K.; Karanewsky, D.; Yi, H.; Wolff, K.; Bieza, K.; Caldwell, J.; He, Y. Synthesis and evaluation of N-aryl pyrrolidinones as novel anti-HIV-1 agents. Part 1._Bioorg. Med. Chem. Lett.,2006,16,3430-3.
    [10]Wyatt, P.G.; Bethell, R.C.; Cammack, N.; Charon, D.; Dodic, N.; Dumaitre, B.; Evans, D.N.; Green, D.V.; Hopewell, P.L.; Humber, D.C.; et al. Benzophenone derivatives:a novel series of potent and selective inhibitors of human immunodeficiency virus type 1 reverse transcriptase. J. Med. Chem.,1995,38,1657-65.
    [11]Chan, J.H.; Freeman, G.A.; Tidwell, J.H.; Romines, K.R.; Schaller, L.T.; Cowan, J.R.; Gonzales, S.S.; Lowell, G.S.; Andrews, C.W.3rd.; Reynolds, D.J.; St Clair, M.; Hazen, R.J.; Ferris, R.G.; Creech, K.L.; Roberts, GB.; Short, S.A.; Weaver, K.; Koszalka, G.W.; Boone, L.R. Novel benzophenones as non-nucleoside reverse transcriptase inhibitors of HIV-1. J. Med. Chem.,2004,47,1175-82.
    [12]Ferris, R.G.; Hazen, R.J.; Roberts, G.B.; St Clair, M.H.; Chan, J.H.; Romines, K.R.; Freeman, G.A.; Tidwell, J.H.; Schaller, L.T.; Cowan, J.R.; Short, S.A.; Weaver, K.L.; Selleseth, D.W.; Moniri, K.R.; Boone, L.R. Antiviral activity of GW678248, a novel benzophenone nonnucleoside reverse transcriptase inhibitor. Antimicrob. Agents Chemother.,2005,49, 4046-51.
    [13]Hazen, R.J.; Harvey, R.J.; St Clair, M.H.; Ferris, R.G.; Freeman, GA.; Tidwell, J.H.; Schaller, L.T.; Cowan, J.R.; Short, S.A.; Romines, K.R.; Chan, J.H.; Boone, L.R. Anti-human immunodeficiency virus type 1 activity of the nonnucleoside reverse transcriptase inhibitor GW678248 in combination with other antiretrovirals against clinical isolate viruses and in vitro selection for resistance. Antimicrob. Agents Chemother,2005,49,4465-73.
    [14]Romines, K.R.; Freeman, G.A.; Schaller, L.T.; Cowan, J.R.; Gonzales, S.S.; Tidwell, J.H.; Andrews, C.W.3rd.; Stammers, D.K.; Hazen, R.J.; Ferris, R.G.; Short, S.A.; Chan, J.H.; Boone, L.R. Structure-activity relationship studies of novel benzophenones leading to the discovery of a potent, next generation HIV nonnucleoside reverse transcriptase inhibitor. J. Med. Chem., 2006,49,727-39.
    [15]Ren, J.; Chamberlain, P.P.; Stamp, A.; Short, S.A.; Weaver, K.L.; Romines, K.R.; Hazen, R.; Freeman, A.; Ferris, R.G.; Andrews, C.W.; Boone, L.; Chan, J.H.; Stammers, D.K. Structural basis for the improved drug resistance profile of new generation benzophenone non-nucleoside HIV-1 reverse transcriptase inhibitors.J. Med. Chem.,2008,57,5000-8.
    [16]Jiang, T; Kuhen, K.L.; Wolff, K.; Yin, H.; Bieza, K.; Caldwell, J.; Bursulaya, B.; Wu, T.Y.; He, Y. Design, synthesis and biological evaluations of novel oxindoles as HIV-1 non-nucleoside reverse transcriptase inhibitors. Part I. Bioorg. Med. Chem. Lett,2006,16,2105-8.
    [17]Jiang, T.; Kuhen, K.L.; Wolff, K.; Yin, H.; Bieza, K.; Caldwell, J.; Bursulaya, B.; Tuntland, T.; Zhang, K.; Karanewsky, D.; He, Y. Design, synthesis, and biological evaluations of novel oxindoles as HIV-1 non-nucleoside reverse transcriptase inhibitors. Part 2. Bioorg. Med. Chem. Lett,2006,76,2109-12.
    [18]Ellis, D.; Kuhen, K.L.; Anaclerio, B.; Wu, B.; Wolff, K.; Yin, H.; Bursulaya, B.; Caldwell, J.; Karanewsky, D.; He, Y. Design, synthesis, and biological evaluations of novel quinolones as HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem. Lett.,2006,16, 4246-51.
    [19]Wang, Z.; Wu, B.; Kuhen, K.L.; Bursulaya, B.; Nguyen, T.N.; Nguyen, D.G.; He, Y. Synthesis and biological evaluations of sulfanyltriazoles as novel HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg. Med.Chem.Lett,.2006,16,4174-7.
    [20]De La Rosa, M.; Kim, H.W.; Gunic, E.; Jenket, C.; Boyle, U.; Koh, Y.H.; Korboukh, I.; Allan, M.; Zhang, W.; Chen, H.; Xu, W.; Nilar, S.; Yao, N.; Hamatake, R.; Lang, S.A.; Hong, Z.; Zhang, Z.; Girardet, J.L. Tri-substituted triazoles as potent non-nucleoside inhibitors of the HIV-1 reverse transcriptase. Bioorg. Med. Chem. Lett,2006,16,4444-9.
    [21]Zhang, Z.; Xu, W; Koh, Y.H.; Shim, J.H.; Girardet, J.L.; Yeh, L.T.; Hamatake, R.K.; Hong, Z. A novel nonnucleoside analogue that inhibits human immunodeficiency virus type 1 isolates resistant to current nonnucleoside reverse transcriptase inhibitors. Antimicrob. Agents. Chemother,2007,57,429-37.
    [22]Muraglia, E.; Kinzel, O.D.; Laufer, R.; Miller, M.D.; Moyer, G; Munshi, V.; Orvieto, R.; Palumbi, M.C.; Pescatore, G.; Rowley, M.; Williams, P.D.; Summa, V. Tetrazole thioacetanilides: potent non-nucleoside inhibitors of WT HIV reverse transcriptase and its K103N mutant. Bioorg. Med. Chem. Lett,2006,16,2748-52.
    [23]O'Meara, J.A.; Jakalian, A.; LaPlante, S.; Bonneau, P.R.; Coulombe, R.; Faucher, A.M.; Guse, I.; Landry, S.; Racine, J.; Simoneau, B.; Thavonekham, B.; Yoakim, C. Scaffold hopping in the rational design of novel HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem. Lett,2007,17,3362-6.
    [24]Gagnon, A.; Amad, M.H.; Bonneau, P.R.; Coulombe, R.; DeRoy, P.L.; Doyon, L.; Duan, J.; Garneau, M.; Guse, I.; Jakalian, A.; Jolicoeur, E.; Landry, S.; Malenfant, E.; Simoneau, B.; Yoakim, C. Thiotetrazole alkynylacetanilides as potent and bioavailable non-nucleoside inhibitors of the HIV-1 wild type and K103N/Y181C double mutant reverse transcriptases. Bioorg. Med. Chem. Lett,2007,17,4437-41.
    [25]Zhan, P.; Li, Z.; Liu, X.; De Clercq, E. Sulfanyltriazole/tetrazoles:a promising class of HIV-1 NNRTIs. Mini. Rev. Med. Chem.,2009,9, in proof.
    [26]Zhan, P.; Liu, X.; Cao, Y.; Wang, Y.; Pannecouque, C.; De Clercq, E.1,2,3-Thiadiazole thioacetanilides as a novel class of potent HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem. Lett,2008,18,5368-71.
    [27]Gewurz, B.E.; Jacobs, M.; Proper, J.A.; Dahl, T.A.; Fujiwara, T.; Dezube, B.J. Capravirine, a nonnucleoside reverse-transcriptase inhibitor in patients infected with HIV-1:a phase 1 study. J. Infect Dis.,2004,190,1957-61.
    [28]Sato, A.; Hammond, J.; Alexander, T.N.; Graham, J.P.; Binford, S.; Sugita, K.; Sugimoto, H.; Fujiwara, T.; Patick, A.K. In vitro selection of mutations in human immunodeficiency virus type 1 reverse transcriptase that confer resistance to capravirine, a novel nonnucleoside reverse transcriptase inhibitor. Antiviral Res.,2006,70,66-74.
    [29]Di Santo, R.; Costi, R.; Artico, M.; Miele, G.; Lavecchia, A.; Novellino, E.; Bergamini, A.; Cancio, R.; Maga, G. Arylthiopyrrole (AThP) derivatives as non-nucleoside HIV-1 reverse transcriptase inhibitors:synthesis, structure-activity relationships, and docking studies (part 1). ChemMedChem,2006,1,1367-78.
    [30]Lavecchia, A.; Costi, R.; Artico, M.; Miele, G.; Novellino, E.; Bergamini, A.; Crespan, E.; Maga, G.; Di Santo, R. Arylthiopyrrole (AThP) derivatives as non-nucleoside HIV-1 reverse transcriptase inhibitors:synthesis, structure-activity relationships, and docking studies (part 2). ChemMedChem,2006,1,1379-90.
    [31]Jones, L.H.; Dupont, T.; Mowbray, C.E.; Newman, S.D. A concise and selective synthesis of novel 5-aryloxyimidazole NNRTIs. Org. Lett.,2006,8,1725-7.
    [32]Jones, L.H.; Allan, G.; Corbau, R.; Hay, D.; Middleton, D.S.; Mowbray, C.E.; Newman, S.D.; Perros, M.; Randall, A.; Vuong, H.; Webster, R.; Westby, M.; Williams, D. Optimization of 5-aryloxyimidazole non-nucleoside reverse transcriptase inhibitors. ChemMedChem,2008,3, 1756-62.
    [33]Reddy, M.R.; Erion, M.D. Relative binding affinities of fructose-1,6-bisphosphatase inhibitors calculated using a quantum mechanics-based free energy perturbation method. J. Am. Chem. Soc.,.2007,129,9296-7.
    [34]Park, H.; Lee, S. Free energy perturbation approach to the critical assessment of selective cyclooxygenase-2 inhibitors. J. Comput. Aided Mol. Des.,2005,19,17-31.
    [35]Jorgensen, W.L.; Ruiz-Caro, J.; Tirado-Rives, J.; Basavapathruni, A.; Anderson, K.S.; Hamilton, A.D. Computer-aided design of non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg. Med. Chem. Lett.,2006,16,663-7.
    [36]Ruiz-Caro, J.; Basavapathruni, A.; Kim, J.T.; Bailey, C.M.; Wang, L.; Anderson, K.S.; Hamilton, A.D.; Jorgensen, W.L. Optimization of diarylamines as non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg. Med. Chem. Lett,2006,16,668-71.
    [37]Thakur, V.V.; Kim, J.T.; Hamilton, A.D.; Bailey, C.M.; Domaoal, R.A.; Wang, L.; Anderson, K.S.; Jorgensen, W.L. Optimization of pyrimidinyl-and triazinyl-amines as non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg. Med. Chem. Lett,2006,16,5664-7.
    [38]Kim, J.T.; Hamilton, A.D.; Bailey, C.M.; Domaoal, R.A.; Wang, L.; Anderson, K.S.; Jorgensen, W.L. FEP-guided selection of bicyclic heterocycles in lead optimization for non-nucleoside inhibitors of HIV-1 reverse transcriptase. J. Am. Chem. Soc,2006,128, 15372-3.
    [39]Barreiro, G.; Kim, J.T.; Guimaraes, C.R.; Bailey, C.M.; Domaoal, R.A.; Wang, L.; Anderson, K.S.; Jorgensen, W.L. From docking false-positive to active anti-HIV agent J. Med. Chem., 2007,50,5324-9.
    [40]Barreiro, G.; Guimaraes, C.R.; Tubert-Brohman, I.; Lyons, T.M.; Tirado-Rives, J.; Jorgensen, W.L. Search for non-nucleoside inhibitors of HIV-1 reverse transcriptase using chemical similarity, molecular docking, and MM-GB/SA scoring. J. Chem. Inf. Model,2007,47, 2416-28.
    [41]Zeevaart, J.G.; Wang, L.; Thakur, V.V.; Leung, C.S.; Tirado-Rives, J.; Bailey, C.M.; Domaoal, R.A.; Anderson, K.S.; Jorgensen, W.L. Optimization of azoles as anti-human immunodeficiency virus agents guided by free-energy calculations. J. Am. Chem. Soc,2008, 130,9492-9.
    [42]Nawrozkij, M.B.; Rotili, D.; Tarantino, D.; Botta, G.; Eremiychuk, A.S.; Musmuca, I.; Ragno, R.; Samuele, A.; Zanoli, S.; Armand-Ugon, M.; Clotet-Codina, I.; Novakov, I.A.; Orlinson, B.S.; Maga, G.; Este, J.A.; Artico, M.; Mai, A.5-Alkyl-6-benzyl-2-(2-oxo-2-phenylethylsulfanyl) pyrimidin-4(3H)-ones, a series of anti-HIV-1 agents of the dihydro-alkoxy-benzyl-oxopyrimidine family with peculiar structure-activity relationship profile.J. Med. Chem.,2008, 51,4641-52.
    [43]Radi, M.; Maga, G.; Alongi, M.; Angeli, L.; Samuele, A.; Zanoli, S.; Bellucci, L.; Tafi, A.; Casaluce, G.; Giorgi, G.; Armand-Ugon, M.; Gonzalez, E.; Este, J.A.; Baltzinger, M.; Bec, G.; Dumas, P.; Ennifar, E.; Botta, M. Discovery of chiral cyclopropyl dihydro-alkylthio-benzyl-oxopyrimidine (S-DABO) derivatives as potent HIV-1 reverse transcriptase inhibitors with high activity against clinically relevant mutants. J. Med. Chem.,2009,52,840-51.
    [44]Ji, L.; Chen, F.E.; De Clercq, E,.; Balzarini, J.; Pannecouque, C. Synthesis and anti-HIV-1 activity evaluation of 5-alkyl-2-alkylthio-6-(arylcarbonyl or alpha-cyanoarylmethyl)-3,4-dihydropyrimidin-4(3H)-ones as novel non-nucleoside HTV-1 reverse transcriptase inhibitors.J. Med. Chem.,2007,50,1778-86.
    [45]Radi, M.; Contemori, L.; Castagnolo, D.; Spinosa, R.; Este, J.A.; Massa, S.; Botta, M. A versatile route to C-6 arylmethyl-functionalized S-DABO and related analogues. Org. Lett, 2007,9,3157-60.
    [46]Radi, M.; Angeli, L.; Franchi, L.; Contemori, L.; Maga, G.; Samuele, A.; Zanoli, S.; Armand-Ugon, M.; Gonzalez, E.; Llano, A.; Este, J.A.; Botta, M. Towards novel S-DABOC inhibitors:Synthesis, biological investigation, and molecular modeling studies. Bioorg. Med. Chem. Lett,2008,18,5777-5780.
    [47]Ripamonti, D.; Maggiolo, F. Rilpivirine, a non-nucleoside reverse transcriptase inhibitor for the treatment of HIV infection. Curr. Opin. Investig. Drugs,2008,9,899-912.
    [48]Qin, H.; Liu, C.; Zhang, J.; Guo, Y.; Zhang, S.; Zhang, Z.; Wang, X.; Zhang, L.; Liu, J. Synthesis and biological evaluation of novel 2-arylalkylthio-4-amino-6-benzyl pyrimidines as potent HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem. Lett,2009, In Press, Accepted Manuscript, doi:10.1016/j.bmcl.2009.04.051
    [49]Radi, M.; Falciani, C.; Contemori, L.; Petricci, E.; Maga, G.; Samuele, A.; Zanoli, S.; Terrazas, M.; Castria, M.; Togninelli, A.; Este, J.A.; Clotet-Codina, I.; Armand-Ugon, M.; Botta, M. A multidisciplinary approach for the identification of novel HIV-1 non-nucleoside reverse transcriptase inhibitors:S-DABOCs and DAVPs. ChemMedChem.2008,3,573-93.
    [50]Barreca, M.L.; Rao, A.; De Luca, L.; Iraci, N.; Monforte, A.M.; Maga, G.; De Clercq, E.; Pannecouque, C.; Balzarini, J.; Chimirri, A. Discovery of novel benzimidazolones as potent non-nucleoside reverse transcriptase inhibitors active against wild-type and mutant HIV-1 strains._Bioorg. Med. Chem. Lett,2007,17,1956-60.
    [51]Krajewski, K.; Zhang, Y.; Parrish, D.; Deschamps, J.; Roller, P.P.; Pathak, V.K. New HIV-1 reverse transcriptase inhibitors based on a tricyclic benzothiophene scaffold:synthesis, resolution, and inhibitory activity. Bioorg. Med. Chem. Lett,2006,16,3034-8.
    [52]Zhang, Z.; Walker, M.; Xu, W.; Shim, J.H.; Girardet, J.L.; Hamatake, R.K.; Hong, Z. Novel nonnucleoside inhibitors that select nucleoside inhibitor resistance mutations in human immunodeficiency virus type 1 reverse transcriptase._Antimicrob. Agents Chemother.,2006,50, 2772-81.
    [53]Jones, L.H.; Allan, G.; Barba, O.; Burt, C.; Corbau, R.; Dupont, T.; Knochel, T.; Irving, S.; Middleton, D.S.; Mowbray, C.E.; Perros, M.; Ringrose, H.; Swain, N.A.; Webster, R.; Westby, M.; Phillips, C. Novel indazole non-nucleoside reverse transcriptase inhibitors using molecular hybridization based on crystallographic overlays (dagger). J. Med. Chem.,2009 Jan 28. [Epub ahead of print]
    [54]Zhou, Z.; Madrid, M.; Evanseck, J.D.; Madura, J.D. Effect of a bound non-nucleoside RT inhibitor on the dynamics of wild-type and mutant HTV-1 reverse transcriptase. J. Am. Chem. Soc,2005,727,17253-60.
    [55]Teague, S.J. Implications of protein flexibility for drug discovery._Nat. Rev. Drug Discov., 2003,2,527-41.
    [56]Das, K.; Lewi, P.J.; Hughes, S.H.; Arnold, E. Crystallography and the design of anti-AIDS drugs:conformational flexibility and positional adaptability are important in the design of non-nucleoside HIV-1 reverse transcriptase inhibitors. Prog. Biophys. Mol. Biol,2005,88, 209-31.
    [57]Wang, Z.; Bennett, E.M.; Wilson, D.J.; Salomon, C.; Vince, R. Rationally designed dual inhibitors of HIV reverse transcriptase and integrase._J. Med. Chem.,2007,50,3416-9.
    [58]Wang, Z.; Vince, R. Synthesis of pyrimidine and quinolone conjugates as a scaffold for dual inhibitors of HIV reverse transcriptase and integrase._Bioorg. Med. Chem. lett.,.2008,1118, 1293-1296
    [59]Wang, Z.; Vince, R. Design and synthesis of dual inhibitors of HIV reverse transcriptase and integrase:introducing a diketoacid functionality into delavirdine. Bioorg. Med. Chem.,2008,16, 3587-95.
    [1]Zhan P, Li Z, Liu X, De Clercq E. Sulfanyltriazole/tetrazoles:a promising class of HIV-1 NNRTIs. Mini Rev Med Chem.2009; 9(8):1014-23.
    [2]Wang, Z.; Wu, B.; Kuhen, K.L.; Bursulaya, B.; Nguyen, T.N.; Nguyen, D.G.; He, Y. Synthesis and biological evaluations of sulfanyltriazoles as novel HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem. Lett,2006,16,4174-7.
    [3]De La Rosa, M.; Kim, H.W.; Gunic, E.; Jenket, C.; Boyle, U.; Koh, Y.H.; Korboukh, I.; Allan, M.; Zhang, W.; Chen, H.; Xu, W.; Nilar, S.; Yao, N.; Hamatake, R.; Lang, S.A.; Hong, Z.; Zhang, Z.; Girardet, J.L. Tri-substituted triazoles as potent non-nucleoside inhibitors of the HIV-1 reverse transcriptase. Bioorg. Med. Chem. Lett,2006,16,4444-9.
    [4]Muraglia, E.; Kinzel, O.D.; Laufer, R.; Miller, M.D.; Moyer, G.; Munshi, V.; Orvieto, R.; Palumbi, M.C.; Pescatore, G.; Rowley, M.; Williams, P.D.; Summa, V. Tetrazole thioacetanilides: potent non-nucleoside inhibitors of WT HIV reverse transcriptase and its K103N mutant. Bioorg. Med. Chem. Lett,2006,16,2748-52.
    [5]O'Meara, J.A.; Jakalian, A.; LaPlante, S.; Bonneau, P.R.; Coulombe, R.; Faucher, A.M.; Guse, I.; Landry, S.; Racine, J.; Simoneau, B.; Thavonekham, B.; Yoakim, C. Scaffold hopping in the rational design of novel HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem. Lett,2007,17,3362-6.
    [6]Gagnon, A.; Amad, M.H.; Bonneau, P.R.; Coulombe, R.; DeRoy, P.L.; Doyon, L.; Duan, J.; Garneau, M.; Guse, I.; Jakalian, A.; Jolicoeur, E.; Landry, S.; Malenfant, E.; Simoneau, B.; Yoakim, C. Thiotetrazole alkynylacetanilides as potent and bioavailable non-nucleoside inhibitors of the HIV-1 wild type and K103N/Y181C double mutant reverse transcriptases. Bioorg. Med. Chem. Lett 2007,17,4437-41.
    [7]Girardet, J.-L.; Zhang, Z.; Hamatake, R.; de la Rosa Hernandez, M. A.; Gunic, E.; Hong, Z.; Kim, H.; Koh, Y.-H.; Nilar, S.; Shaw, S.; Yao, N. Non-nucleoside reverse transcriptase inhibitors. Patent WO 2004030611,2004.
    [8]Simoneau, B.; Thavonekham, B.; Landry, S.; O'Meara, J.; Yoakim, C.; Faucher, A.-M. Non-nucleoside reverse transcriptase inhibitors. Patent WO 2004050643,2004.
    [9]Shaw-Reid, C. A.; Miller, M. D.; Hazuda, D. J.; Ferrer, M.; Sur, S. M.; Summa, V.; Lyle, T. A.; Kinzel, O.; Pescatore, G.; Muraglia, E.; Orvieto, F.; Williams, P. D. Hiv reverse transcriptase inhibitors. Patent WO 2005115147,2005.
    [10]Girardet, J. L.; Koh, Y. H.; Hernandez M. De la Rosa; Gunic, E.; Kim, H. W.; Hong, W. S-triazolyl a-mercaptoacetanildes as inhibitors of HIV reverse transcriptase. Patent WO 2006026356,2006.
    [11]Simoneau, B.; Thavonekham, B.; Landry, S.; O'Meara, J.; Yoakim, C.; Faucher, A.-M. Non nucleoside reverse transcriptase inhibitors. Patent WO 2005118575,2005.
    [12]Koch, U.; Kinzel, O.; Muraglia, E.; Summa, V. HIV reverse transcriptase inhibitors. Patent WO 2006037468,2006.
    [13]Zhang, Z.; Xu, W.; Koh, Y.H.; Shim, J.H.; Girardet, J.L.; Yeh, L.T.; Hamatake, R.K.; Hong, Z. A novel nonnucleoside analogue that inhibits human immunodeficiency virus type 1 isolates resistant to current nonnucleoside reverse transcriptase inhibitors. Antimicrob. Agents. Chemother.,2007,51,429-37.
    [14]Ren, J.; Nichols, C.; Bird, L.E.; Fujiwara, T.; Sugimoto, H.; Stuart, D.I.; Stammers, D.K. Binding of the second generation non-nucleoside inhibitor S-1153 to HTV-1 reverse transcriptase involves extensive main chain hydrogen bonding. J. Biol. Chem.,2000,275, 14316-20.
    [15]Smerdon, S.J.; Jager, J.; Wang, J.; Kohlstaedt, L.A.; Chirino, A.J.; Friedman, J.M.; Rice, P.A.; Steitz, T.A. Structure of the binding site for nonnucleoside inhibitors of the reverse transcriptase of human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA,1994,91,3911-5.
    [16]Pelemans, H.; Esnouf, R.; De Clercq, E.; Balzarini, J. Mutational analysis of trp-229 of human immunodeficiency virus type 1 reverse transcriptase (RT) identifies this amino acid residue as a prime target for the rational design of new non-nucleoside RT inhibitors. Mol. Pharmacol,2000,57,954-60.
    [17]Fattorusso, C.; Gemma, S.; Butini, S.; Huleatt, P.; Catalanotti, B.; Persico, M.; De Angelis, M.; Fiorini, I.; Nacci, V; Ramunno, A.; Rodriquez, M.; Greco, G.; Novellino, E.; Bergamini, A.; Marini, S.; Coletta, M.; Maga, G.; Spadari, S.; Campiani, G. Specific targeting highly conserved residues in the HIV-1 reverse transcriptase primer grip region, design, synthesis, and biological evaluation of novel, potent, and broad spectrum NNRTIs with antiviral activity. J. Med. Chem., 2005,48,7153-65.
    [18]Hopkins, A.L.; Ren, J.; Tanaka, H.; Baba, M.; Okamato, M.; Stuart, D.I.; Stammers, D.K. Design of MKC-442 (emivirine) analogues with improved activity against drug-resistant HIV mutants. J. Med. Chem.,1999,42,4500-5.
    [19]Zanoli, S.; Gemma, S.; Butini, S.; Brindisi, M.; Joshi, B.P.; Campiani, G.; Fattorusso, C.; Persico, M.; Crespan, E.; Cancio, R.; Spadari, S.; Hiibscher, U.; Maga, G. Selective targeting of the HIV-1 reverse transcriptase catalytic complex through interaction with the "primer grip" region by pyrrolobenzoxazepinone non-nucleoside inhibitors correlates with increased activity towards drug-resistant mutants. Biochem. Pharmacol,2008,76,156-68.
    [20]Butini, S.; Brindisi, M.; Cosconati, S.; Marinelli, L.; Borrelli, G.; Coccone, S.S.; Ramunno, A.; Campiani, G.; Novellino, E.; Zanoli, S.; Samuele, A.; Giorgi, G.; Bergamini, A.; Mattia, M.D.; Lalli, S.; Galletti, B.; Gemma, S.; Maga, G. Specific targeting of highly conserved residues in the HIV-1 reverse transcriptase primer grip region.2. stereoselective interaction to overcome the effects of drug resistant mutations. J. Med. Chem.,2009 Jan 26. on line.
    [21]Esnouf, R.M.; Ren, J.; Hopkins, A.L.; Ross, C.K.; Jones, E.Y.; Stammers, D.K.; Stuart, D.I. Unique features in the structure of the complex between HIV-1 reverse transcriptase and the bis(heteroaryl)piperazine (BHAP) U-90152 explain resistance mutations for this nonnucleoside inhibitor. Proc. Natl. Acad. Sci. USA,1997,94,3984-9.
    [22]Hopkins, A.L.; Ren, J.; Esnouf, R.M.; Willcox, B.E.; Jones, E.Y.; Ross, C.; Miyasaka, T.; Walker, R.T.; Tanaka, H.; Stammers, D.K.; Stuart, D.I. Complexes of HIV-1 reverse transcriptase with inhibitors of the HEPT series reveal conformational changes relevant to the design of potent non-nucleoside inhibitors. J. Med. Chem.,1996,39,1589-600.
    [23]Das, K.; Lewi, P.J.; Hughes, S.H.; Arnold, E. Crystallography and the design of anti-AIDS drugs:conformational flexibility and positional adaptability are important in the design of non-nucleoside HIV-1 reverse transcriptase inhibitors. Prog. Biophys. Mol. Biol.,2005,88, 209-31.
    [24]Das, K.; Clark, A.D.Jr.; Lewi, P.J.; Heeres, J.; De Jonge, M.R.; Koymans, L.M.; Vinkers, H.M.; Daeyaert, E.; Ludovici, D.W.; Kukla, M.J.; De Corte, B.; Kavash, R.W.; Ho, C.Y.; Ye, H.; Lichtenstein, M.A.; Andries, K.; Pauwels, R.; De Bethune, M.P.; Boyer, P.L.; Clark, P.; Hughes, S.H.; Janssen, P.A.; Arnold, E. Roles of conformational and positional adaptability in structure-based design of TMC125-R165335 (etravirine) and related non-nucleoside reverse transcriptase inhibitors that are highly potent and effective against wild-type and drug-resistant HIV-1 variants. J. Med. Chem.,2004,47,2550-60.
    [25]Zhan, P.; Liu, X.; Cao, Y.; Wang, Y.; Pannecouque, C.; De Clercq, E.1,2,3-Thiadiazole thioacetanilides as a novel class of potent HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem. Lett.,2008,18,5368-71.
    [26]Zhan, P.; Liu, X.; Cao, Y.; Pannecouque, C.; Witvrouw, M.; De Clercq, E. Design and synthesis of 1,2,3-thiadiazole thioacetanilides as a novel class of HIV-1 NNRTIs. The 6th International Symposium for Medicinal Chemistry, Shanghai Institute of Materia Medica, CAS. Shanghai July 28-Aug 1,2008. QT1-13, p 240
    [27]Gaghon, A.; Landry, S.; Coulombe, R.; Jakalian, A.; Guse, I.; Thavonekham, B.; Bonneau, P.R.; Yoakim, C.; Simoneau, B. Investigation on the role of the tetrazole in the binding of thiotetrazolylacetanilides with HIV-1 wild type and K103N/Y181C double mutant reverse transcriptases. Bioorg. Med. Chem. Lett,2009,19,1199-205.
    [28]Zhan, P. Design, synthesis and antiviral evaluation of novel N-substituted phenyl-S-azole thioacetanilides derivatives as HIV-1 non-nucleoside reverse transcriptase inhibitors. Shandong University Master's Thesis,2008.
    [29]Lloyd, D.G.; Buenemann, C.L.; Todorov, N.P.; Manallack, D.T.; Dean, P.M. Scaffold hopping in de novo design. Ligand generation in the absence of receptor information. J. Med. Chem.2004,47,493-6.
    [30]Mauser, H.; Guba, W. Recent developments in de novo design and scaffold hopping. Curr. Opin. Drug Discov. Devel.,2008,11,365-74.
    [31]Wu, B.; Kuhen, K.; Ngoc Nguyen, T.; Ellis, D.; Anaclerio, B.; He, X.; Yang, K.; Karanewsky, D.; Yin, H.; Wolff, K.; Bieza, K.; Caldwell, J.; He, Y. Synthesis and evaluation of N-aryl pyrrolidinones as novel anti-HIV-1 agents. Part 1. Bioorg. Med. Chem. Lett.2006,16,3430-3.
    [32]Chan, J.H.; Freeman, G.A.; Tidwell, J.H.; Romines, K.R.; Schaller, L.T.; Cowan, J.R.; Gonzales, S.S.; Lowell, G.S.; Andrews, C. W.3rd.; Reynolds, D. J.; St Clair, M.; Hazen, R.J,; Ferris, R.G.; Creech, K.L.; Roberts, G.B.; Short, S.A.; Weaver, K.; Koszalka, G.W.; Boone, L.R. Novel benzophenones as non-nucleoside reverse transcriptase inhibitors of HIV-1. J. Med. Chem.,2004,47,1175-82.
    [33]Ferris, R.G.; Hazen, R.J.; Roberts, G.B.; St Clair, M.H.; Chan, J.H.; Romines, K.R.; Freeman, G.A.; Tidwell, J.H.; Schaller, L.T.; Cowan, J.R.; Short, S.A.; Weaver, K.L.; Selleseth, D.W.; Moniri, K.R.; Boone, L.R. Antiviral activity of GW678248, a novel benzophenone nonnucleoside reverse transcriptase inhibitor. Antimicrob. Agents Chemother.,2005,49, 4046-51.
    [34]Hazen, R.J.; Harvey, R.J.; St Clair, M.H.; Ferris, R.G.; Freeman, GA.; Tidwell, J.H.; Schaller, L.T.; Cowan, J.R.; Short, S.A.; Romines, K.R.; Chan, J.H.; Boone, L.R. Anti-human immunodeficiency virus type 1 activity of the nonnucleoside reverse transcriptase inhibitor GW678248 in combination with other antiretrovirals against clinical isolate viruses and in vitro selection for resistance. Antimicrob. Agents Chemother.,2005,49,4465-73.
    [35]Romines, K.R.; Freeman, G.A.; Schaller, L.T.; Cowan, J.R.; Gonzales, S.S.; Tidwell, J.H.; Andrews, C.W.3rd.; Stammers, D.K.; Hazen, R.J.; Ferris, R.G.; Short, S.A.; Chan, J.H.; Boone, L.R. Structure-activity relationship studies of novel benzophenones leading to the discovery of a potent, next generation HTV nonnucleoside reverse transcriptase inhibitor. J. Med. Chem., 2006,49,727-39.
    [36]Ren, J.; Chamberlain, P.P.; Stamp, A.; Short, S.A.; Weaver, K.L.; Romines, K.R.; Hazen, R.; Freeman, A.; Ferris, R.G; Andrews, C.W.; Boone, L.; Chan, J.H.; Stammers, D.K. Structural basis for the improved drug resistance profile of new generation benzophenone non-nucleoside HIV-1 reverse transcriptase inhibitors._J. Med. Chem.,2008,57,5000-8.
    [37]http://www.natap.org/2007/ResisWksp/ResisWksp_42.htm
    [38]Tucker, T.J.; Saggar, S.; Sisko, J.T.; Tynebor, R.M.; Williams, T.M.; Felock, P.J.; Flynn, J.A.; Lai, M.T.; Liang, Y.; McGaughey, G.; Liu, M.; Miller, M.; Moyer, G; Munshi, V.; Perlow-Poehnelt, R.; Prasad, S.; Sanchez, R.; Torrent, M.; Vacca, J.P.; Wan, B.L.; Yan, Y. The design and synthesis of diaryl ether second generation HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) with enhanced potency versus key clinical mutations._Bioorg. Med.Chem.Lett,2008,18,2959-66.
    [1]Horton, D.A.; Bourne, G.T.; Smythe, M.L. The combinatoryal synthesis of bicyclic privileged structures or privileged substructures. Chem. Rev.,2003,103,893-930.
    [2]Thompson, L.A.; Ellman, J.A. Synthesis and applications of small molecule libraries. Chem. Rev.,1996,96,555-600.
    [3]Nefzi, A.; Ostresh, J.M.; Houghten, R.A. The current status of heterocyclic combinatorial libraries. Chem. Rev.,1997,97,449-472.
    [4]Zhan, P.; Li, Z.; Liu, X.;, De Clercq, E. Sulfanyltriazole/tetrazoles:a promising class of HIV-1 NNRTIs. Mini. Rev. Med. Chem.,2009,9,1014-23.
    [5]Wang, Z.; Wu, B.; Kuhen, K.L.; Bursulaya, B.; Nguyen, T.N.; Nguyen, D.G.; He, Y. Synthesis and biological evaluations of sulfanyltriazoles as novel HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem. Lett.,2006,16,4174-7.
    [6]De La Rosa, M.; Kim, H.W.; Gunic, E.; Jenket, C.; Boyle, U.; Koh, Y.H.; Korboukh, I.; Allan, M.; Zhang, W.; Chen, H.; Xu, W.; Nilar, S.; Yao, N.; Hamatake, R.; Lang, S.A.; Hong, Z.; Zhang, Z.; Girardet, J.L. Tri-substituted triazoles as potent non-nucleoside inhibitors of the HIV-1 reverse transcriptase. Bioorg. Med. Chem. Lett,2006,16,4444-9.
    [7]Muraglia, E.; Kinzel, O.D.; Laufer, R.; Miller, M.D.; Moyer, G.; Munshi, V.; Orvieto, F.; Palumbi, M.C.; Pescatore, G.; Rowley, M.; Williams, P.D.; Summa, V. Tetrazole thioacetanilides:potent non-nucleoside inhibitors of WT HIV reverse transcriptase and its K103N mutant. Bioorg. Med. Chem. Lett,2006,16,2748-52.
    [8]O'Meara, J.A.; Jakalian, A.; LaPlante, S.; Bonneau, P.R.; Coulombe, R.; Faucher, A.M.; Guse, I.; Landry, S.; Racine, J.; Simoneau, B.; Thavonekham, B.; Yoakim, C. Scaffold hopping in the rational design of novel HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem. Lett,2007,17,3362-6.
    [9]Gagnon, A.; Amad, M.H.; Bonneau, P.R.; Coulombe, R.; DeRoy, P.L.; Doyon, L.; Duan, J.; Garneau, M.; Guse, I.; Jakalian, A.; Jolicoeur, E.; Landry, S.; Malenfant, E.; Simoneau, B,; Yoakim, C. Thiotetrazole alkynylacetanilides as potent and bioavailable non-nucleoside inhibitors of the HIV-1 wild type and K103N/Y181C double mutant reverse transcriptases. Bioorg. Med. Chem. Lett.,2007,17,4437-41.
    [10]Gagnon, A.; Landry, S.; Coulombe, R.; Jakalian, A.; Guse, I.; Thavonekham, B.; Bonneau, P.R.; Yoakim, C.; Simoneau, B. Investigation on the role of the tetrazole in the binding of thiotetrazolylacetanilides with HIV-1 wild type and K103N/Y181C double mutant reverse transcriptases. Bioorg. Med. Chem. Lett,2009,19,1199-205.
    [11]Zhan, P.; Liu, X.; Cao, Y.; Wang, Y.; Pannecouque, C.; De Clercq, E.1,2,3-Thiadiazole thioacetanilides as a novel class of potent HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem. Lett,2008,18,5368-5371.
    [12]Zhan, P.; Liu, X.; Li, Z.; Fang, Z.; Li, Z.; Wang, D.; Pannecouque, C.; Clercq, E.D. Novel 1,2,3-thiadiazole derivatives as HIV-1 NNRTIs with improved potency:synthesis and preliminary SAR studies. Bioorg. Med. Chem.,2009,17,5920-5927.
    [13]Zhan, P.; Liu, X.; Fang, Z.; Li, Z.; Pannecouque, C.; De Clercq, E. Synthesis and anti-HIV activity evaluation of 2-(4-(naphthalen-2-yl)-1,2,3-thiadiazol-5-ylthio)-N-acetamides as novel non-nucleoside HIV-1 reverse transcriptase inhibitors. Eur. J. Med. Chem.,2009,44, 4648-4653.
    [14]Zhan, P.; Liu, X.; Li, Z.; Fang, Z.; Pannecouque, C.; De Clercq, E. Synthesis and biological evaluation of a new series of 2-(4-(3,4-dichlorophenyl)-1,2,3-thiadiazol-5-ylthio)acetamides as HIV-1 inhibitors. Chem. Biodivers.,2010; revised.
    [15]Zhan, P.; Liu, X.; Zhu, J.; Fang, Z.; Li, Z.; Pannecouque, C.; Clercq, E.D. Synthesis and biological evaluation of imidazole thioacetanilides as novel non-nucleoside HIV-1 reverse transcriptase inhibitors. Bioorg. Med. Chem.,2009,17,5775-5781.
    [16]Zhan, P.; Liu, X.; Fang, Z.; Pannecouque, C.; De Clercq, E.1,2,3-Selenadiazole thioacetanilides:Synthesis and anti-HIV activity evaluation. Bioorg. Med. Chem.,2009,17, 6374-6379.
    [17]Zhang, Z.; Xu, W.; Koh, Y.H.; Shim, J.H.; Girardet, J.L.; Yeh, L.T.; Hamatake, R.K.; Hong, Z. A novel nonnucleoside analogue that inhibits human immunodeficiency virus type 1 isolates resistant to current nonnucleoside reverse transcriptase inhibitors. Antimicrob. Agents Chemother.,2007,57,429-37.
    [18]Hanasaki, Y.; Watanabe, H.; Katsuura, K.; Takayama, H.; Shirakawa, S.; Yamaguchi, K.; Sakai, S.; Ijichi, K.; Fujiwara, M.; Konno, K.; et al. Thiadiazole derivatives:highly potent and specific HIV-1 reverse transcriptase inhibitors. J. Med. Chem.,1995,38,2038-40.
    [19]Ijichi, K.; Fujiwara, M.; Hanasaki, Y.; Watanabe, H.; Katsuura, K.; Takayama, H.; Shirakawa, S.; Sakai, S.; Shigeta, S.; Konno, K.; et al. Potent and specific inhibition of human immunodeficiency virus type 1 replication by 4-(2,6-dichlorophenyl)-1,2,5-thiadiazol-3-yl N,N-dialkylcarbamate derivatives. Antimicrob. Agents Chemother.,1995,39,2337-40.
    [20]Takayama, H.; Shirakawa, S.; Kitajima, M.; Aimi, N.; Yamaguchi, K.; Hanasaki, Y; Ide, T.; Katsuura, K.; Fujiwara, M.; Ijichi, K.; Konno, K.; Sigeta, S.; Yokota, T.; Baba, M. Utilization of wieland furoxan synthesis for preparation of 4-aryl-1,2,5-oxadiazole-3-yl carbamate derivatives having potent anti-HIV activity. Bioorg. Med. Chem. Lett.,1996,6, 1993-1996.
    [21]Ijichi, K.; Fujiwara, M.; Nagano, H.; Matsumoto, Y; Hanasaki, Y; Ide, T.; Katsuura, K.; Takayama, H.; Shirakawa, S.; Aimi, N.; Shigeta, S.; Konno, K.; Matsushima, M.; Yokota, T.; Baba, M. Anti-HIV-1 activity of thiadiazole derivatives:structure-activity relationship, reverse transcriptase inhibition, and tipophilicity. Antiviral Res.,1996,31,87-94.
    [22]Ijichi, K.; Fujiwara, M.; Hanasaki, Y.; Katsuura, K.; Shigeta, S.; Konno, K.; Yokota, T.; Baba, M. Inhibitory effect of 4-(2,6-dichlorophenyl)-1,2,5-thiadiazol-3-yl-N-methyl, N-ethyl carbamate on replication of human immunodeficiency virus type 1 and the mechanism of action. Biochem. Mol. Biol. Int.,1996,39,41-52.
    [23]Fujiwara, T.; Sato, A.; el-Farrash, M.; Miki, S.; Abe, K.; Isaka, Y.; Kodama, M.; Wu, Y; Chen, L.B.; Harada, H.; Sugimoto, H.; Hatanaka, M.; Hinuma, Y. S-1153 inhibits replication of known drug-resistant strains of human immunodeficiency virus type 1. Antimicrob. Agents Chemother., 1998,42,1340-5.
    [24]Ren, J.; Nichols, C; Bird, L.E.; Fujiwara, T.; Sugimoto, H.; Stuart, D.I.; Stammers, D.K. Binding of the second generation non-nucleoside inhibitor S-1153 to HTV-1 reverse transcriptase involves extensive main chain hydrogen bonding. J. Biol. Chem.,2000,275, 14316-20.
    [25]Jones, L.H.; Dupont, T; Mowbray, C.E.; Newman, S.D. A Concise and Selective Synthesis of Novel 5-Aryloxyimidazole NNRTIs. Org. Lett,2006,8,1725-7.
    [26]Jochmans, D. Novel HTV-1 reverse transcriptase inhibitors. Virus Res.,2008,134,171-85.
    [27]Gaston, C.R.; Eric, M.C.; Manoussos, Perros.; Anthony, S.P.; Anthony, W. Pyrazole derivatives. WO0204424,2002
    [28]William, D.B.; Stephen, J.P.; Herbert, M.J.; John, P.M. Pyrazole derivatives for the treatment of viral diseases.WO0230907,2002
    [29]William, D.B.; Stephen, J.P.; Herbert, M.J.; Kevin, P.; Burdon, E.; John, P.M.; Simon,W.D. Imidazolone derivativesfor the treatment of viral diseases. WO0242279,2002
    [30]William, D.B.; Stephen, J.P.; Herbert, M.J.; John, P.M. Pyrrole derivatives for treating AIDS. WO0202524,2002
    [31]Di Santo, R.; Costi, R.; Artico, M.; Miele, G; Lavecchia, A.; Novellino, E.; Bergamini, A.; Cancio, R.; Maga, G. Arylthiopyrrole (AThP) derivatives as non-nucleoside HIV-1 reverse transcriptase inhibitors:synthesis, structure-activity relationships, and docking studies (part 1). ChemMedChem.2006,I,1367-78.
    [32]Lavecchia, A.l Costi, R.; Artico, M.; Miele, G.; Novellino, E.; Bergamini, A.; Crespan, E.; Maga, G.; Di Santo, R. Arylthiopyrrole (AThP) derivatives as non-nucleoside HIV-1 reverse transcriptase inhibitors:synthesis, structure-activity relationships, and docking studies (part 2). ChemMedChem.2006,1,1379-90.
    [33]Kirschberg, T.A.; Balakrishnan, M.; Huang, W.; Hluhanich, R.; Kutty, N.; Liclican, A.C.; McColl, D.J.; Squires, N.H.; Lansdon, E.B. Triazole derivatives as non-nucleoside inhibitors of HIV-1 reverse transcriptase-structure activity relationships and crystallographic analysis. Bioorg. Med. Chem. Lett,2008,18,1131-4.
    [34]Lagoja, I.M.; Pannecouque, C; Musumeci, L.; Froeyen, M.; Aerschot, A.V.; Balzarini, J.; Herdewijn, P.; De Clercq, Erik.1,2,4-Triazole derivatives inhibiting the human immunodeficiency virus type 1 (HIV-1) in vitro. Helvetica ChimicaActa.2002,85,1883-1892.
    [35]Genin, M.J.; Biles, C.; Keiser, B.J.; Poppe, S.M.; Swaney, S.M.; Tarpley, W.G.; Yagi, Y.; Romero, D.L. Novel 1,5-diphenylpyrazole nonnucleoside HIV-1 reverse transcriptase inhibitors with enhanced activity versus the delavirdine-resistant P236L mutant:lead identification and SAR of 3-and 4-substituted derivatives. J. Med. Chem.,2000,43,1034-40.
    [36](a) Barreiro, G.; Guimaraes, C.R.; Tubert-Brohman, I.; Lyons, T.M.; Tirado-Rives, J.; Jorgensen, W.L. Search for non-nucleoside inhibitors of HIV-1 reverse transcriptase using chemical similarity, molecular docking, and MM-GB/SA scoring.J. Chem. Inf. Model,2007,47, 2416-2428. (b) Barreiro, G.; Kim, J.T.; Guimaraes, C.R.; Bailey, C.M.; Domaoal, R.A.; Wang, L.; Anderson, K.S.; Jorgensen, W.L. From docking false-positive to active anti-HIV agent. J. Med. Chem.,2007,50,5324-5329. (c) Zeevaart, J.G.; Wang, L.; Thakur, V.V.; Leung, C.S.; Tirado-Rives, J.; Bailey, C.M.; Domaoal, R.A.; Anderson, K.S.; Jorgensen, W.L. Optimization of azoles as anti-human immunodeficiency virus agents guided by free-energy calculations. J. Am. Chem. Soc,2008,130,9492-9499.
    [37]Barreca, M.L.; Chimirri, A.; De Luca, L.; Monforte, A.M.; Monforte, P.; Rao, A.; Zappala, M.; Balzarini, J.; De Clercq, E.; Pannecouque, C.; Witvrouw, M. Discovery of 2,3-Diary 1-1,3-thizolidin-4-ones as Potent Anti-HIV-1 Agents. Bioorg. Med. Chem. Lett,2001,11,1793-6.
    [38]Barreca, M.L.; Balzarini, J.; Chimirri, A.; De Clercq, E.; De Luca, L.; Holtje, H.D.; Holtje, M.; Monforte, A.M.; Monforte, P.; Pannecouque, C; Rao, A.; Zappala, M. Design, Synthesis, Structure-Activity Relationships, and Molecular Modeling Studies of 2,3-Diaryl-1,3-thiazolidin-4-ones as Potent Anti-HIV Agents. J. Med. Chem.,2002,45,5410-3.
    [39]Wu, B.; Kuhen, K.; Ngoc Nguyen, T.; Ellis, D.; Anaclerio, B.; He, X.; Yang, K.; Karanewsky, D.; Yi, H.; Wolff, K.; Bieza, K.; Caldwell, J.; He, Y. Synthesis and evaluation of N-aryl pyrrolidinones as novel anti-HIV-1 agents. Part X.Bioorg. Med. Chem.Lett.,2006,16,3430-3.
    [40]Silvestri, R.; Artico, M.; De Martino, G.; Ragno, R.; Massa, S.; Loddo, R.; Murfioni, C; Loi, A.; La Colla, P.; Pani, A. Synthesis, Biological Evaluation and Binding Mode of Novel 1-[2-(Di arylmethoxy)ethyl]-2-methyl-5-nitroimidazoles Targeted at the HFV-1 Reverse Transcriptase. J. Med. Chem.2002,45,1567-1576.
    [41]De Martino, G.; La Regina, G.; Di Pasquali, A.; Ragno, R.; Bergamini, A.; Ciaprini, C.; Sinistro, A.; Maga, G.; Crespan, E.; Artico, M.; Silvestri, R. Novel 1-[2-(diarylmethoxy)ethyl]-2-methyl-5-nitroimidazoles as HIV-1 non-nucleoside reverse transcriptase inhibitors. A structure-activity relationship investigation.J. Med. Chem.,2005,48, 4378-88.
    [42]Williams, T.M.; Ciccarone, T.M.; MacTough, S.C.; Rooney, C.S.; Balani, S.K.; Condra, J.H.; Emini, E.A.; Goldman, M.E.; Greenlee, W.J.; Kauffman, L.R.; et al.5-chloro-3-(phenylsulfonyl) indole-2-carboxamide:a novel, non-nucleoside inhibitor of HIV-1 reverse transcriptase. J. Med. Chem.,1993,56,1291-4.
    [43]Silvestri, R.; Artico, M.; Bruno, B.; Massa, S.; Novellino, E.; Greco, G.; Marongiu, M.E.; Pani, A.; De Montis, A.; La Colla, P. Synthesis and biological evaluation of 5H-indolo [3,2-b][1,5] benzothiazepine derivatives, designed as conformationally constrained analogues of the human immunodeficiency virus type 1 reverse transcriptase inhibitor L-737,126. Antivir. Chem. Chemother.,1998,9,139-48.
    [44]Young, S.D.; Amblard, M.C.; Britcher, S.F.; Grey, V.E.; Tran, L.O.;Lumma, W.C.; Huff, J.R.; Schleif, W.A.; Emini, E.E.; O'Brien, J.A.; Pettibone, D.J.2-Heterocyclicindole-3-sulfonesasinhibitDrs ofHTV-1 reversetranscriptase.Bioorg. Med. Chem. Lett.1995,5,491-496.
    [45]Livermore, D.G.; Bethell, R.C.; Cammack, N.; Hancock, A.P.; Hann, M.M.; Green, D.V.; Lamont, R.B.; Noble, S.A.; Orr, D.C.; Payne, J.J.; et al. Synthesis and anti-HIV-1 activity of a series of imidazo[1,5-b]pyridazines. J. Med. Chem.,1993,36,3784-94.
    [46]Venkatachalam, T.K.; Sudbeck, E.A.; Mao, C; Uckun, F.M. Anti-HIV activity of aromatic and heterocyclic thiazolyl thiourea compounds. Bioorg. Med. Chem. Lett.,2001,11,523-8.
    [47]Sweeney, Z.K.; Acharya, S.; Briggs, A.; Dunn, J.P.; Elworthy, T.R.; Fretland, J.; Giannetti, A.M.; Heilek, G.; Li, Y.; Kaiser, A.C.; Martin, M.; Saito, Y.D.; Smith, M.; Suh, J.M.; Swallow, S.; Wu, J.; Hang, J.Q.; Zhou, A.S.; Klumpp, K. Discovery of triazolinone non-nucleoside inhibitors of HIV reverse transcriptase. Bioorg. Med. Chem. Lett.,2008,18,4348-4351.
    [48]Sweeney, Z.K.; Kennedy-Smith, J.J.; Wu, J.; Arora, N.; Billedeau, J.R.; Davidson, J.P.; Fretland, J.; Hang, J.Q.; Heilek, G.M.; Harris, S.F.; Hirschfeld, D.; Inbar, P.; Javanbakht, H.; Jernelius, J.A.; Jin, Q.; Li, Y.; Liang, W.; Roetz, R.; Sarma, K.; Smith, M.; Stefanidis, D.; Su, G.; Suh, J.M.; Villasenor, A.G.; Welch, M.; Zhang, F.J.; Klumpp, K. Diphenyl ether non-nucleoside reverse transcriptase inhibitors with excellent potency against resistant mutant viruses and promising pharmacokinetic properties. ChemMedChem,2009,4,88-99.
    [49]Silvestri, M.A.; Nagarajan, M.; De Clercq, E.; Pannecouque, C.; Cushman, M. Design, synthesis, anti-HIV activities, and metabolic stabilities of alkenyldiarylmethane (ADAM) non-nucleoside reverse transcriptase inhibitors. J. Med. Chem.,2004,47,3149-3162.
    [50]Deng, B.L.; Hartman, T.L.; Buckheit, R.W.Jr.; Pannecouque, C.; De Clercq, E.; Fanwick, P.E.; Cushman, M. Synthesis, anti-HIV activity, and metabolic stability of new alkenyldiarylmethane HIV-1 non-nucleoside reverse transcriptase inhibitors. J. Med. Chem., 2005,48,6140-55.
    [51]Sakamoto, T.; Cullen, M.D.; Hartman, T.L.; Watson, K.M.; Buckheit, R.W.; Pannecouque, C.; De Clercq, E.; Cushman, M. Synthesis and anti-HIV activity of new metabolically stable alkenyldiarylmethane non-nucleoside reverse transcriptase inhibitors incorporating N-methoxy imidoyl halide and 1,2,4-oxadiazole systems. J. Med. Chem.,2007,50,3314-3321.
    [52]Cullen, M.D.; Deng, B.L.; Hartman, T.L.; Watson, K.M.; Buckheit, R.W.Jr.; Pannecouque, C; Clercq, E.D.; Cushman, M. Synthesis and biological evaluation of alkenyldiarylmethane HIV-1 non-nucleoside reverse transcriptase inhibitors that possess increased hydrolytic stability. J. Med. Chem.,2007,50,4854-4867.
    [53]Cullen, M.D.; Ho, W.C.; Bauman, J.D.; Das, K.; Arnold, E.; Hartman, T.L.; Watson, K.M.; Buckheit, R.W.; Pannecouque, C.; De Clercq, E.; Cushman, M. Crystallographic study of a novel subnanomolar inhibitor provides insight on the binding interactions of alkenyldiarylmethanes with human immunodeficiency virus-1 reverse transcriptase. J. Med. Chem.,2009,52,6467-73.
    [54]Henao-Mejia, J.; Goez, Y.; Patino, P.; Rugeles, M.T. Diketo acids derivatives as integrase inhibitors:the war against the acquired immunodeficiency syndrome. Recent Pat. Antiinfect. Drug Discov.,2006,1,255-65.
    [55]Kawasuji, T.; Fuji, M; Yoshinaga, T.; Sato, A.; Fujiwara, T.; Kiyama, R. A platform for designing HIV integrase inhibitors. Part 2:a two-metal binding model as a potential mechanism of HIV integrase inhibitors. Bioorg. Med. Chem.,2006,14,8420-9.
    [56]Billich, A. S-1360 Shionogi-GlaxoSmithKline. Curr. Opin. Investig. Drugs,2003,4,206-9.
    [57]Goldgur, Y.; Craigie, R.; Cohen, G.H.; Fujiwara, T.; Yoshinaga, T.; Fujishita, T.; Sugimoto, H.; Endo, T.; Murai, H.; Davies, D.R. Structure of the HIV-1 integrase catalytic domain complexed with an inhibitor:a platform for antiviral drug design. Proc. Natl. Acad. Sci. USA., 1999,96,13040-3.
    [58]Zeng, L.F.; Zhang, H.S.; Wang, Y.H.; Sanchez, T.; Zheng, Y.T.; Neamati, N.; Long, Y.Q. Efficient synthesis and utilization of phenyl-substituted heteroaromatic carboxylic acids as aryl diketo acid isosteres in the design of novel HIV-1 integrase inhibitors. Bioorg. Med. Chem. Lett., 2008,18,4521-4.
    [59]Dayam, R.; Al-Mawsawi, L.Q.; Zawahir, Z.; Witvrouw, M.; Debyser, Z.; Neamati, N. Quinolone 3-carboxylic acid pharmacophore:design of second generation HIV-1 integrase inhibitors. J. Med. Chem.,2008,51,1136-44.
    [60]Cotelle, P. Patented HIV-1 Integrase Inhibitors (1998-2005). Recent Patents Anti-Infect. Drug Disc,2006,1,1-15.
    [61]Johns, B.A.; Weatherhead, J.G.; Allen, S.H.; Thompson, J.B.; Garvey, E.P.; Foster, S.A.; Jeffrey, J.L.; Miller, W.H. The use of oxadiazole and triazole substituted naphthyridines as HIV-1 integrase inhibitors. Part 1:Establishing the pharmacophore. Bioorg. Med. Chem. Lett., 2009,79,1802-6.
    [62]Johns, B.A.; Weatherhead, J.G.; Allen, S.H.; Thompson, J.B.; Garvey, E.P.; Foster, S.A.; Jeffrey, J.L.; Miller, W.H.1,3,4-Oxadiazole substituted naphthyridines as HIV-1 integrase inhibitors. Part 2:SAR of the C5 position. Bioorg. Med. Chem. Lett.,2009,19,1807-10.
    [63]Wai, J.S.; Williams, P.D.; Lyle, T.A.2007. WO 2007050510.
    [64]Dayam, R.; Al-Mawsawi, L.Q.; Neamati, N. Substituted 2-pyrrolinone inhibitors of HIV-1 integrase. Bioorg. Med. Chem. Lett,2007,17,6155-9.
    [65]Al-Mawsawi, L.Q.; Dayam, R.; Taheri, L.; Witvrouw, M.; Debyser, Z.; Neamati, N. Discovery of novel non-cytotoxic salicylhydrazide containing HIV-1 integrase inhibitors. Bioorg. Med. Chem. Lett.,2007,17,6472-5.
    [66]Brzozowski, Z.2-mercapto N-(azolyl)benzenesulfonamides. VI. Synthesis and anti-HIV activity of some new 2-mercapto-N-(1,2,4-triazol-3-yl)benzenesulfonamide derivatives containing the 1,2,4-triazole moiety fused with a variety of heteroaromatic rings. Acta. Pol. Pharm.,1998,55,473-80.
    [67]Pomarnacka, E.; Kozlarska-Kedra, I. Synthesis of 1-(6-chloro-1,1-dioxo-1,4,2-benzodithiazin-3-yl) semi-carbazides and their transformation into 4-chloro-2-mercapto-N-(4,5-dihydro-5-oxo-4-phenyl-1H-1,2,4-triazol-3-yl)benzenesulfonamides as potential anticancer and anti-HIV agents. Farmaco,2003,58,423-9.
    [68]Kuo, C.L.; Assefa, H.; Kamath, S.; Brzozowski, Z.; Slawinski, J.; Saczewski, F.; Buolamwini, J.K.; Neamati, N. Application of CoMFA and CoMSIA 3D-QSAR and docking studies in optimization of mercaptobenzenesulfonamides as HIV-1 integrase inhibitors. J. Med. Chem., 2004,47,385-99.
    [69]Whiting, M; Muldoon, J.; Lin, Y.C.; Silverman, S.M.; Lindstrom, W.; Olson, A.J.; Kolb, H.C.; Finn, M.G.; Sharpless, K.B.; Elder, J.H.; Fokin, V.V. Inhibitors of HIV-1 protease by using in situ click chemistry. Angew. Chem. Int. Ed. Engl.,2006,45,1435-9.
    [70]Giffin, M.J.; Heaslet, H.; Brik, A.; Lin, Y.C.; Cauvi, G.; Wong, C.H.; McRee, D.E.; Elder, J.H.; Stout, C.D.; Torbett, B.E. A copper(I)-catalyzed 1,2,3-triazole azide-alkyne click compound is a potent inhibitor of a multidrug-resistant HIV-1 protease variant. J. Med. Chem., 2008,51,6263-70.
    [71]Brik, A.; Muldoon, J.; Lin, Y.C.; Elder, J.H.; Goodsell, D.S.; Olson, A.J.; Fokin, V.V.; Sharpless, K.B.; Wong, C.H. Rapid diversity-oriented synthesis in microtiter plates for in situ screening of HTV protease inhibitors. Chembiochem,2003,4,1246-8.
    [72]Brik, A.; Alexandratos, J.; Lin, Y.C.; Elder, J.H.; Olson, A.J.; Wlodawer, A.; Goodsell, D.S.; Wong, C.H.1,2,3-triazole as a peptide surrogate in the rapid synthesis of HIV-1 protease inhibitors. Chembiochem,2005,6,1167-9.
    [73]Kim, R.M.; Rouse, E.A.; Chapman, K.T.; Schleif, W.A.; Olsen, D.B.; Stahlhut, M.; Rutkowski, C.A.; Emini, E.A.; Tata, J.R. PI'oxadiazole protease inhibitors with excellent activity against native and protease inhibitor-resistant HIV-1. Bioorg. Med. Chem. Lett.,2004, 14,4651-4.
    [74]Kellenberger, E.; Springael, J.Y.; Parmentier, M.; Hachet-Haas, M.; Galzi, J.L.; Rognan, D. Identification of nonpeptide CCR5 receptor agonists by structure-based virtual screening. J. Med. Chem.,2007,50,1294-303.
    [75]Dorr, P.; Westby, M; Dobbs, S.; Griffin, P.; Irvine, B.; Macartney, M.; Mori, J.; Rickett, G.; Smith-Burchnell, C.; Napier, C.; Webster, R.; Armour, D.; Price, D.; Stammen, B.; Wood, A.; Perros, M. Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob. Agents Chemother.,2005,49,4721-32.
    [76]Shiraishi, M.; Baba, M.; Aikawa, K.; Kanzaki, N.; Seto, M.; Iizawa, Y. (Takeda Chemical Industries Ltd.) Preparation of l-benzazocine-5-carboxamides and related bicyclic compounds as CCR-5 antagonists for use against HIV infections and other diseases. Patent Application WO-00314105,2003.
    [77]Veazey, R.S.; Klasse, P.J.; Ketas, T.J.; Reeves, J.D.; Piatak, M.Jr.; Kunstman, K.; Kuhmann, S.E.; Marx, P.A.; Lifson, J.D.; Dufour, J.; Mefford, M.; Pandrea, I.; Wolinsky, S.M.; Doms, R.W.; DeMartino, J.A.; Siciliano, S.J.; Lyons, K.; Springer, M.S.; Moore, J.P. Use of a small molecule CCR5 inhibitor in macaques to treat simian immunodeficiency virus infection or prevent simian-human immunodeficiency virus infection. J. Exp. Med.,2003,198,1551-62.
    [78]Jiang, S.; Lu, H.; Liu, S.; Zhao, Q.; He, Y.; Debnath, A.K. N-substituted pyrrole derivatives as novel human immunodeficiency virus type 1 entry inhibitors that interfere with the gp41 six-helix bundle formation and block virus fusion. Antimicrob. Agents Chemother.,2004,48, 4349-59.
    [79]Katritzky, A.R.; Tala, S.R.; Lu, H.; Vakulenko, A.V.; Chen, Q.Y.; Sivapackiam, J.; Pandya, K.; Jiang, S.; Debnath, A.K. Design, synthesis, and structure-activity relationship of a novel series of 2-aryl 5-(4-oxo-3-phenethyl-2-thioxothiazolidinylidenemethyl)furans as HIV-1 entry inhibitors. J. Med. Chem.,2009,52,7631-9.
    [80]Williams, D.H.; Adam, F.; Fenwick, D.R.; Fok-Seang, J.; Gardner, I.; Hay, D.; Jaiessh, R.; Middleton, D.S.; Mowbray, C.E.; Parkinson, T.; Perros, M.; Pickford, C; Platts, M.; Randall, A.; Siddle, D.; Stephenson, P.T.; Tran, T.D.; Vuong, H. Discovery of a small molecule inhibitor through interference with the gp120-CD4 interaction. Bioorg. Med. Chem. Lett.,2009,19, 5246-9.
    [81]Daelemans, D.; Afonina, E.; Nilsson, J.; Werner, G.; Kjems, J.; De Clercq, E.; Pavlakis, G.N.; Vandamme, A.M. A synthetic HIV-1 Rev inhibitor interfering with the CRM1-mediated nuclear export. Proc. Natl. Acad. Sci. USA.,2002,99,14440-5.
    [82]Mei, H.Y.; Cui, M.; Heldsinger, A.; Lemrow, S.M.; Loo, J.A.; Sannes-Lowery, K.A.; Sharmeen, L.; Czarnik, A.W. Inhibitors of protein-RNA complexation that target the RNA: specific recognition of human immunodeficiency virus type 1 TAR RNA by small organic molecules. Biochemistry,1998,37,14204-12.
    [83]Hamy, F.; Gelus, N.; Zeller, M.; Lazdins, J.L.; Bailly, C; Klimkait, T. Blocking HTV replication by targeting Tat protein. Chem. Biol,2000,7,669-76.
    [84]Rana, T.M. Composition ond synthesis of new reagents for inhibition of HIV replication. WO20070445652007-04-19,2007.
    [85]Richter, S.N.; Frasson, I.; Palu, G. Strategies for inhibiting function of HTV-1 accessory proteins:a necessary route to AIDS therapy? Curr. Med. Chem.,2009,16,267-86.
    [86]Du, L.; Zhao, Y.; Chen, J.; Yang, L.; Zheng, Y.; Tang, Y.; Shen, X.; Jiang, H. D77, one benzoic acid derivative, functions as a novel anti-HIV-1 inhibitor targeting the interaction between integrase and cellular LEDGF/p75. Biochem. Biophys. Res. Commun.,2008,375, 139-44.
    [87]Li, Q.; Moutiez, M; Charbonnier, J.B.; Vaudry, K.; Menez, A.; Quemeneur, E.; Dugave, C. Design of a Gag pentapeptide analogue that binds human cyclophilin A more efficiently than the entire capsid protein:new insights for the development of novel anti-HIV-1 drugs. J. Med. Chem.,2000,43,1770-9.
    [88]Jin, Y.; Tan, Z.; He, M.; Tian, B.; Tang, S.; Hewlett, I.; Yang, M. SAR and molecular mechanism study of novel acylhydrazone compounds targeting HIV-1 CA. Bioorg. Med. Chem.,2010, On line, doi:10.1016/j.bmc.2010.02.003
    [89]Haffar, O.; Dubrovsky, L.; Lowe, R.; Berro, R.; Kashanchi, F.; Godden, J.; Vanpouille, C.; Bajorath, J.; Bukrinsky, M. Oxadiazols:a new class of rationally designed anti-human immunodeficiency virus compounds targeting the nuclear localization signal of the viral matrix protein. J. Virol.,2005,79,13028-36.
    [90]Cutri, C.C.; Garozzo, A.; Pannecouque, C; Castro, A.; Guerrera, F.; De Clercq, E. Isothiazole derivatives as novel HIV replication inhibitors. Antivir. Chem. Chemother.,2004,75, 201-5.
    [91]Lagoja, I.M.; Pannecouque, C.; Van Aerschot, A.; Witvrouw, M.; Debyser, Z.; Balzarini, J.; Herdewijn, P.; De Clercq, E. N-Aminoimidazole derivatives inhibiting retroviral replication via a yet unidentified mode of action. J. Med. Chem.,2003,46,1546-53.
    [92]Stevens, M.; Balzarini, J.; Lagoja, I.M.; Noppen, B.; Francois, K.; Van Aerschot, A.; Herdewijn,P.; De Clercq, E.; Pannecouque, C. Inhibition of human immunodeficiency virus type 1 transcription by N-aminoimidazole derivatives. Virology,2007,365,220-37.
    [93]Howard, O.M.; Oppenheim, J.J.; Hollingshead, M.G.; Covey, J.M.; Bigelow, J.; McCormack, J.J.; Buckheit, R.W.Jr.; Clanton, D.J.; Turpin, J.A.; Rice, W.G. Inhibition of in vitro and in vivo HIV replication by a distamycin analogue that interferes with chemokine receptor function:a candidate for chemotherapeutic and microbicidal application. J. Med. Chem.,1998,41, 2184-93.
    [94]Howard, O.M.; Korte, T.; Tarasova, N.I.; Grimm, M.; Turpin, J.A.; Rice, W.G.; Michejda, C.J.; Blumenthal, R.; Oppenheim, J.J. Small molecule inhibitor of HIV-1 cell fusion blocks chemokine receptor-mediated function. J. Leukoc. Biol.,1998,64,6-13.
    [1]Gagnon A, Amad MH, Bonneau PR, Coulombe R, DeRoy PL, Doyon L, Duan J, Garneau M, Guse I, Jakalian A, Jolicoeur E, Landry S, Malenfant E, Simoneau B, Yoakim C.Thiotetrazole alkynylacetanilides as potent and bioavailable non-nucleoside inhibitors of the HIV-1 wild type and K103N/Y181C double mutant reverse transcriptases. Bioorg Med Chem Lett.2007 Aug 15;17(16):4437-41.
    [2]O'Meara JA, Jakalian A, LaPlante S, Bonneau PR, Coulombe R, Faucher AM, Guse I, Landry S, Racine J, Simoneau B, Thavonekham B, Yoakim C. Scaffold hopping in the rational design of novel HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg Med Chem Lett.2007 Jun 15;17(12):3362-6.
    [3]Lima, L. M.; Barreiro, E. J. Curr. Med. Chem.2005,12,23-49.
    [4]Patani, G. A.; LaVoie, E. J. Chem. Rev.1996,96,3147-3176.
    [5]Olesen, P.H. Curr. Opin. Drug Discov. Devel.2001,4,471-478.
    [6]郭宗儒.药物分子设计的策略:论药效团和骨架迁越.中国药物化学杂志,2008,18(2):147-157
    [7]Brown N, Jacoby E. On scaffolds and hopping in medicinal chemistry. Mini Rev Med Chem 2006;6:1217-1229.
    [8]Tsunoyama K, Amini A, Sternberg MJ, Muggleton SH. Scaffold hopping in drug discovery using inductive logic programming. J Chem Inf Model 2008;48:949-957.
    [9]Zhao H. Scaffold selection and scaffold hopping in lead generation:a medicinal chemistry perspective. Drug Discov Today 2007;12:149-155.
    [10]Mauser H, Guba W. Recent developments in de novo design and scaffold hopping. Curr Opin Drug Discov Devel 2008; 11:365-374.
    [11]Renner S, Schneider G. Scaffold-hopping potential of ligand-based similarity concepts. ChemMedChem 2006;1:181-185.
    [12]Morphy R, Rankovic Z. Designed multiple ligands. An emerging drug discovery paradigm. J Med Chem 2005;48:6523-6543.
    [13]Morphy R, Kay C, Rankovic Z. From magic bullets to designed multiple ligands. Drug Discov Today 2004;9:641-651.
    [14]Morphy R, Rankovic Z. The physicochemical challenges of designing multiple ligands. J Med Chem 2006;49:4961-4970.
    [15]Morphy R, Rankovic Z. Fragments, network biology and designing multiple ligands. Drug Discov Today 2007;12:156-160.
    [16]Morphy R, Rankovic Z. Designing multiple ligands-medicinal chemistry strategies and challenges. Curr Pharm Des 2009;15:587-600.
    [17]Zhan P, Liu X. Designed multiple ligands:an emerging anti-HIV drug discovery paradigm. Curr Pharm Des 2009;15:1893-1917.
    [18](a) Wang Z, Bennett EM, Wilson DJ, Salomon C, Vince R. Rationally designed dual inhibitors of HIV reverse transcriptase and integrase. J Med Chem 2007;50:3416-3419. (b) Wang Z, Vince R. Synthesis of pyrimidine and quinolone conjugates as a scaffold for dual inhibitors of HIV reverse transcriptase and integrase. Bioorg Med Chem Lett 2008;18:1293-1296. (c) Wang Z, Vince R. Design and synthesis of dual inhibitors of HIV reverse transcriptase and integrase:introducing a diketoacid functionality into delavirdine. Bioorg Med Chem 2008; 16:3587-3595.
    [19]Das K, Clark AD Jr, Lewi PJ, Heeres J, De Jonge MR, Koymans LM, Vinkers HM, Daeyaert F, Ludovici DW, Kukla MJ, De Corte B, Kavash RW, Ho CY, Ye H, Lichtenstein MA, Andries K, Pauwels R, De Bethune MP, Boyer PL, Clark P, Hughes SH, Janssen PA, Arnold E. Roles of conformational and positional adaptability in structure-based design of TMC125-R165335 (etravirine) and related non-nucleoside reverse transcriptase inhibitors that are highly potent and effective against wild-type and drug-resistant HIV-1 variants. J Med Chem.2004 May 6;47(10):2550-60.
    [20]Udier-Blagovic M, Tirado-Rives J, Jorgensen WL. Validation of a model for the complex of HIV-1 reverse transcriptase with nonnucleoside inhibitor TMC125. J Am Chem Soc.2003 May 21;125(20):6016-7.
    [21]Lu, Y.; Shi, T.; Wang, Y.; Yang, H.; Yan, X.; Luo, X.; Jiang, H.; Zhu, W. J. Med. Chem.2009, 52,2854-2862.
    [22]Auffinger, P.; Hays, F.A.; Westhof, E.; Ho, P. S. Proc. Natl. Acad. Sci. U S A.,2004,101, 16789-16794.
    [I]Hurd, C. D.; Mori, R. I. J. Am. Chem. Soc.1955,77,5359-5364.
    [2]Curran, W. V.; Sassiver, M. L.; Boothe, J. H.; E.P 104403,1984.
    [3]Thomas, E. W.; Nishizawa, E. E.; Zimmermann, D. D.; Williams, C. J. J. Med. Chem.1985, 28,442-446.
    [4]Al-Soud, Y.A.; Al-Masoudi, N.A.; De Clercq, E.; Pannecouque, C. Heteroatom Chem.,2007, 18,333-340.
    [5]Zhan, P.; Liu, X.; Cao, Y.; Wang, Y.; Pannecouque, C; De Clercq, E. Bioorg. Med. Chem.
    Lett.2008,18,5368-5371.
    [6]Al-Smadi, M.; Ratrout, S. Molecules 2004,9,957-967.
    [7]Bhaskar Reddy, D.; Chandrasekhar Babu, N.; Padmavathi, V; Padmaja, A. Tetrahedron 1997, 53,17351-17360
    [8]Shafiee, A.; Toghraie, S.; Aria, F.; Mortezaei-Zandjani, G J. Heterocycl. Chem.1982, 19,1305-1308.
    [9]Attanasi, O.A.; De Crescentini, L.; Favi, G.; Filippone, P.; Giorgi, G.; Mantellini, F.; Santeusanio, S. J Org Chem.2003,68,1947-1953.
    [10]Saravanan, S.; Nithya, A.; Muthusubramanian, S. J. Heterocycl. Chem.2006,43,149-155
    [11]Al-Smadi, M. J. Heterocycl. Chem.2007,44,915-918
    [12]Padmavathi, V; Mahesh, K.; Thriveni, P.; Venkata, T.; Reddy, R. J. Heterocycl. Chem.2007, 44,1165-1169
    [13]Al-Smadi, M.; Al-Momani, F. Molecules 2008,13,2740-2749.
    [14]Kitano, K.;, Matsubara, J.; Ohtani, T.; Otsubo, K.; Kawano, Y; Morita, S.; Uchida, M. Tetrahedron Lett.1999,40,5235-5238
    [15]Burtles, R.; Lee Pyman, F.; Roylance, J. J. Chem. Soc, Trans.1925,127,581-591.
    [16]Lyga JW. A convenient synthesis of 1-aryl-Δ2-1,2,4-triazolin-5-ones from arylhydrazines. Synthetic communications,1986,16(2):163-167.
    [17]Breukelman S. P.; Meakins G. D.; Roe A. M.; Preparation and some reactions of 4-and 5-aryl-4,5-dihydropyridazin-3(2H)-ones. Journal of the Chemical Society. Perkin transactions. I.,1985,8,1627-1635.
    [18]Fitt, J.J.; Gschwend, H.W. a-Alkylation and michael addition of amino acids-a practical method. J. Org. Chem.1977,42 (15):2639-2641.
    [19]Taylor, E.C.; Macor, J.E. Efficient synthesis of 5-substituted-4,5-dihydro-1,2,4-triazin-6-ones and 5-substituted-1,2,4-triazin-6-ones. J. Heterocyclic Chem.,1985,22,409-411.
    [20]Kloek, J.A.; Leschinsky, K.L. Cyclic Sulfamides:Synthesis of Some Fused Tetrahydrobenzo-and Tetra-and Dihydroheterothiadiazinone 2,2-Dioxides. J. Org. Chem.,1978,43(20): 3824-3827.
    [21]Kloek, J.A.; Leschinsky, K.L. An Improved Synthesis of Sulfamoyl Chlorides. J. Org. Chem., 1976,41 (25):4028-4029.
    [22]South, M.S. Synthesis and reaction of halogenated thiazole isocyanates. J. Hterocyclic Chem., 1991,28,1003-1011.
    [23]Jiang XH, Song LD, Long YQ. Highly efficient preparation of aryl beta-diketo acids with tert-butyl methyl oxalate. J Org Chem.2003 Sep 19;68(19):7555-8.
    [24]Ferro S, Barreca ML, De Luca L, Rao A, Monforte AM, Debyser Z, Witvrouw M, Chimirri A. New 4-[(1-benzyl-lH-indol-3-yl)carbonyl]-3-hydroxyfuran-2(5H)-ones, beta-diketo acid analogs as HIV-1 integrase inhibitors. Arch Pharm (Weinheim).2007 Jun;340(6):292-8.
    [1]Hurd, C. D.; Mori, R. I. J. Am. Chem. Soc.1955,77,5359.
    [2]Lalezari, I.; Shafiee, A. Tetrahedron Lett.1969,28,5105.
    [3]Lalezari, I.; Shafiee, A. J. Org. Chem.1971,36,2836.
    [4]Lalezari, I.; Shafiee, A.; Yalpani, M. J. Org. Chem.1973,38,338.
    [5]Al-Smadi M, Ratrout S. New 1,2,3-selenadiazole and 1,2,3-thiadiazole derivatives. Molecules. 2004 Nov 30;9(11):957-67.
    [1]Pauwels, R.; Balzarini, J.; Baba, M.; Snoeck, R.; Schols, D.; Herdewijn, P.; Desmyter, J.; De Clercq, E. J. Virol. Methods 1988,20,309-321.
    [2]Pannecouque, C; Daelemans, D.; De Clercq, E. Nat Protocols 2008,3,427-434.
    [3]Popovic, M.; Sarngadharan, M. G.; Read, E.; Gallo, R. C. Science 1984,224,497-500.
    [4]Barre-Sinoussi, F.; Chermann, J. C.; Rey, F.; Nugeyre, M. T.; Chamaret, S.; Grest, J.; Dauget,C; Axler-Blin, C.; Vezinet-Brun, F.; Rouzioux, C.; Rozenbaum, W.; Montagnier, L. Science 1983,220,868-871.
    [5]Miyoshi, I.; Taguchi, H.; Kobonishi, I.; Yoshimoto, S.; Ohtsuki, Y.; Shiraishi, Y.; Akagi, T. Gann. Monogr.1982,28,219-228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700