用户名: 密码: 验证码:
POSS/环硅氧烷阴离子开环共聚直接合成交联聚硅氧烷及其微观结构表征和热性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文首次通过阴离子开环共聚,成功地将POSS大分子作为多官能团单体,与环硅氧烷在KOH硅醇盐或Me_4NOH硅醇盐等碱性催化剂的作用下,直接合成交联聚硅氧烷:通过调节POSS大分子和环硅氧烷单体的种类以及化学计量比,可合成出一系列不同种类和不同交联密度的交联聚硅氧烷;并对其阴离子开环共聚机理以及极性调节剂DMAc对凝胶时间的影响进行了详细讨论;同时借以凝胶含量和溶胀比、GPC、FT-IR、固体~(13)C和~(29)Si NMR、WAXD、DSC以及TG等手段对所得聚合物的微观结构以及热性能进行了详细考察。
     通过对单体、催化剂以及温度的分析,本实验选用了D_4、Ph_8D_4等环硅氧烷以及Octaisobutyl-POSS、Dodecaphenyl-POSS、Octaphenyl-POSS等POSS作为共聚单体,在KOH硅醇盐(聚合温度为100~120℃)或(CH_3)_4NOH硅醇盐(聚合温度为80-100℃)的催化作用下进行阴离子开环共聚。具体对以下四个阴离子开环共聚体系进行了详细讨论:Octaisobutyl-POSS/D_4阴离子开环共聚体系(A):Dodecaphenyl-POSS/D_4/Ph_8D_4阴离子开环共聚体系(B):Octaisobutyl-POSS/D_4/Ph_8D_4阴离子开环共聚体系(C):Octaphenyl-POSS/D_4/Ph_8D_4阴离子开环共聚体系(D)。
     实验表明:无论是溶解度较好的Octaisobutyl-POSS,还是溶解度较差的Dodecaphenyl-POSS或Octaphenyl-POSS,在碱性催化剂的作用下甚至超过24 hrs都不能均聚,然而在相同情况下,却能很快与环硅氧烷共聚。由此可推出POSS与环硅氧烷倾向于形成无规共聚物,而不是嵌段共聚物。无规共聚机理一般与单体均聚机理相同,因此得出POSS与环硅氧烷在碱性催化剂作用下的共聚机理和环硅氧烷均聚机理相同,均属阴离子开环聚合机理。
     现以聚合体系(A)为例加以说明POSS与环硅氧烷阴离子开环聚合机理,即KOH或Me_4NOH与D_4反应生成相应的硅醇盐催化剂,并引发D_4产生阴离子活性中心。我们认为链增长首先是阴离子活性中心在D_4、Octaisobutyl-POSS或所形成的中间体的硅-氧键上的硅原子上进行亲核进攻,从而导致其电子云密度重新分布,以至在加热的情况下硅-氧键断裂形成新的阴离子活性种。然后新的活性种继续参与反应,并逐步增长。最后由于Octaisobutyl-POSS结构中含T链节-O_([C(CH_3)_3](O-)SiO)-结构单元而形成交联聚硅氧烷。
     本实验主要考察了极性调节剂DMAc对凝胶时间的影响。结果表明:在POSS与环硅氧烷的四个共聚合体系中,不添加任何极性调节剂,反应24 hrs,体系都未曾出现凝胶,但极性调节剂DMAc的少量加入,却能明显地影响其阴离子开环共聚反应,不但能使POSS与环硅氧烷的共聚得到可能,而且其凝胶时间随极性调节剂用量的增加大大缩短,聚合速度大大增加。
     在聚合体系(A)中,当Octaisobutyl-POSS单体加入量为0时,所得聚合物可基本被抽提干净,溶胀比无穷大,为线型聚合物;而只要添加极少量的Octaisobutyl-POSS单体,所得聚合物就不能被抽提干净,大约有80%的残余物,溶胀比也大大降低,则为交联聚合物,而且,随Octaisobutyl-POSS单体用量增加,溶胀比降低;而凝胶含量基本不变。在其它的聚合体系中也可得出同样的结论。
     将聚合体系(B)中所得的聚合物经索氏提取器提取12hrs后的提取液作GPC分析,可得出在该提取液中基本上没有分子量很高(数万以上)的高聚物,而主要由上百至数千的齐聚物组成,由此得出高分子量的聚硅氧烷基本被交联。
     借助于凝胶含量和溶胀比、GPC、FT-IR、固体~(13)C和~(20)Si NMR、WAXD等表征手段再次证实了POSS参与阴离子开环聚合反应以及所得产物属结晶度很低的交联聚硅氧烷。但在前三个聚合体系中,POSS大分子单体反应程度较大,而在聚合体系(D)中,Octaphenyl-POSS反应很不完全,这主要是由于其溶解度不好的缘故。
     借助于DSC、TG等热性能测试手段表明了所得交联聚硅氧烷具有明显的玻璃化转变温度以及良好的热稳定性。与用KOH硅醇盐所合成的交联聚硅氧烷相比,用Me_4NOH硅醇盐所合成的交联聚硅氧烷具有更好的热稳定性。
This dissertation successfully fabricated cross-linked polysiloxanes under base catalysts such as potassium hydroxide (KOH) siloxanolate or tetramethylammonium hydroxide (Me_4NOH) siloxanolate by anionic ring-opening copolymerization of cyclosiloxanes and Polyhedral Oligomeric Silsesquioxanes (POSS) as multifunctional monomers. A series of cross-linked polysiloxanes of kinds and different cross-linking density were synthesized by altering the kind and stoichiometry of POSS and cyclosiloxanes. And the mechanisms of anionic ring-opening copolymerization of POSS and cyclosiloxanes as well as the influences of the polar additive N, N-dimethylacetamide (DMAc) on gelation time were studied in detail. The characterization techniques including gel content and swelling ratio, GPC,
     FT-IR. solid-state ~(13) C and ~(29) Si NMR、XRD、DSC and TG were used to discuss detailedly on the microstructure and thermal stability of the obtained cross-linked polysiloxanes.
     Studies on monomers, catalysts and polymerization temperature were our main focuses. One or Both of octamethylcyclotetrasiloxane (D_4) and octaphenylcyclotetrasiloxane (Ph_8D_4) , as well as one of three POSS including Octaisobutyl-POSS, Dodecaphenyl-POSS, Octaphenyl-POSS were used as comonomers to anionic ring-opening copolymerize under base catalysts such as KOH siloxanolate (at 100~120℃) or Me_4NOH (at 80~100℃) siloxanolate in this experiment. The following four anionic ring-opening copolymerization systems were studied: Octaisobutyl-POSS /D_4 anionic ring-opening copolymerization system (A); Dodecaphenyl-POSS/D_4/Ph_8D_4 anionic ring-opening copolymerization system (B); Octaisobutyl-POSS/D_4/Ph_8D_4 anionic ring-opening copolymerization system (C); Octaphenyl-POSS /D_4/Ph_8D_4 anionic ring-opening copolymerization system (D).
     No matter Octaisobutyl-POSS which has good solubility in D_4 or Dodecaphenyl-POSS and Octaphenyl-POSS which have poor solubility in D_4, they cannot homopolymerize even for more than 24 hrs under basic catalysts such as KOH, siloxanolate (at 100~120℃) or Me_4NOH (at 80~100℃) siloxanolate. However, they can quickly copolymerize with cyclosiloxanes at the same condition. Thereby, it can be concluded that POSS and cyclosiloxanes were inclined to form random copolymer, rather than block copolymer. The mechanism of random copolymerization commonly accords with the homopolymerization mechanism of monomers; therefore, the copolymerization mechanism of POSS and cyclosiloxanes under basic catalysts is the same as the homopolymerization of cyclosiloxanes. so they all belong to anionic ring-opening polymerization.
     The anionic ring-opening copolymerization mechanism was illuminated with the example of copolymerization system (A). The base such as KOH or Me_4NOH reacts with D_4 to generate the corresponding siloxanolate catalyst. which initiates D_4 to yield the base catalyzed (or anionic) active species. The chain propagation is believed to proceed first with the nucleophilic attach of the anionic active species on the silicon atom of siloxane linkage and then with the subsequent redistribution of electron cloud density. Then the siloxane linkage is dissociated by heating to yield new anionic active centers, which continue to react and then propagate gradually. Finally the random cross-linked polysiloxane is formed because the octaisobutyl-POSS contains the O{[C(CH_3) _3] (O-)SiO}-units (i.e. T bonding).
     The effect of the polar additive DMAc on gelation time was discussed. The results indicated that they were difficult to react and didn't even gel 24 hrs by anionic ring-opening copolymerization of POSS and cyclosiloxanes without any polar additives in the four copolymerization systems of POSS and cyclosiloxanes. But the polar additives DMAc, can dramatically affect the anionic ring-opening copolymerization. It not only made the copolymerization of POSS and cyclosiloxanes possible,but also decreased the gelation time distinctly. And the rate of polymerization increased greatly with the increase of DMAc.
     In copolymerization system (A), when the content of Octaisobutyl-POSS monomer was O, the obtained polymer can be thoroughly removed through the extraction procedure. The gel content was infinitesimal and the swelling ratio was infinite, so it was linear polysiloxane. When a trace amount of Octaisobutyl-POSS was added, the obtained polymer can not be thoroughly removed through the extraction procedure, the remainder was about 80% and the swelling ratio also decreased dramatically. So it can be concluded that Octaisobutyl-POSS participated the anionic ring-opening copolymerization reaction and the obtained polymer was cross-linked polysiloxanes. In addition, as the octaisobutyl-POSS monomer increased, the swelling ratio decreased and the gel content was unchanged. The same conclusions can be drawn from the other copolymerization systems.
     The GPC analyses of the soluble part of the obtained polymers in copolymerization system (B) through the extraction procedure showed that the soluble polysiloxanes were mainly composed of the oligomers with low molecular weight of several hundreds to thousands, and few polymers with molecular weight higher more than ten thousands. Therefore, it can be believed that the polysiloxanes with higher molecular weight were almost cross-linked.
     The results of solid-state FT-IR. ~(13) C and ~(29) Si NMR, XRD showed again that POSS was reacted with cyclosiloxanes via anionic ring-opening copolymerization and the obtained polymers were cross-linked polysiloxanes with very low crystalline degree. In the former three polymerization systems. POSS monomers were copolymerized nearly in accordance with the designed value and the reactions were more complete more than polymerization system (D). which was much less than its designed value.
     The DSC and TG results indicated that the obtained cross-linked polysiloxancs exhibited distinct glass transition temperatures (T_g) and excellent thermal stability. Compared to that with KOH siloxanolate, the cross-linked polysiloxane synthesized with Me_4NOH siloxanolate had more preferable thermal stability.
引文
[1] 幸松民.王一璐.有机硅合成工艺及产品应用[M].北京:化学工业出版社,2000.14-17
    [2] Rochow E G. Silicon and Silicones[M]. Springer-Verlag Press: 1987. 94-128
    [3] Girish Deshpande and Mary E Rezac. Kinetic aspects of the thermal degradation of poly(dimethyl siloxane) and poly(dimethyl diphenyl siloxane) [J]. Polym. Degrad. Stabil., 2002, 76(1): 17-24
    [4] Bischoff R and Cray S E. Polysiloxanes in macromolecular architecture[J]. Prog. Polym .Sci., 1999, 24(2): 185-219
    [51 Benouargha A, Boutevin B, Caporiccio G., Essassi E, Guida-Pietrasanta F and Ratsimihety A. Hybrid silalkylene polysiloxanes: synthesis and thermal properties[J]. Eur. Polym. J., 1997, 33(7): 1117-1124
    [6] Sang Eun Shim, Sayata Ghose and Avraam I Isayev. Formation of bubbles during ultrasonic treatment of cured poly(dimethyl siloxane) [J]. Polymer, 2002, 43(20): 5535-5543
    [7] Satyanarayana N, Alper H. Rhodium-Catalyzed Modification of Poly- (methyl-hydrosiloxane) into a Highly Cross-Linked Polysiloxane[J]. Macromolecules, 1995, 28(1): 281-283
    [8] Agnieszka Grzelka, Julian Chojnowski, Marek Cypryk, Witold Fortuniak, Peter C Hupfield and Richard G. Taylor. Polysiloxanol condensation and disproportionation in the presence ofa superacid[J]. J.Organomet. Chem., 2004, 689(4):705-713
    [9] Koizumi H, Taguchi M, Kobayashi Y, Ichikawa T, Crosslinking of polydimelhylsiloxane in heavy ion tracks[J]. Nucl. Instrum. Meth. B., 2001, 179(4): 530-535
    [10] Li G Z, Wang L C, Ni G L, Pittman C U Jr. Polyhedral Oligomeric Silsesquioxane (POSS) Polymers and Copolymers: A Review[J]. J. Inorg. Organomet. P., 2001, 11(3): 123-154
    [11] Joseph J Schwab, Joseph D Lichtenhan. Polyhedral oligomeric silsesquioxane (POSS)-based polymer[J]. Appl. Organomet. Chem., 1998, 12(10-11): 707-713
    [12] Lei Zheng, Richard J Farris, E Bryan Coughlin. Synthesis of polyethylene hybrid copolymers containing polyhedral oligomeric silsesquioxane prepared with ring-opening metathesis copolymerization[J]. J. Polym. Sci. Pol. Chem., 20O1. 39(17): 2920-2928
    [13] Let Zheng, Rajeswari M Kasi, Richard J Farris, E Bryan Coughlin. Synthesis and thermal propeties of hybrid copolymers of syndiotactic polystyrene and polyhedral oligomeric silsesquioxane[J]. J. Polym. Sci., Pol. Chem., 2002, 40(7): 885-891
    [14] Zheng L, Waddon A J, Farris R J, Coughlin E B. X-ray Characterizations of Polyethylene Polyhedral Oligomeric Silsesquioxane Copolymers[J]. Macromolecules, 2002, 35(6): 2375-2379
    [15] Waddon A J, Coughlin E B. Crystal Structure of Polyhedral Oligomeric Silsequioxane (POSS) Nano-materials: A Study by X-ray Diffraction and Electron Microscopy[J]. Chem. Mater., 2003, 15(24): 4555-4561
    [16] Bruce X Fu, Benjamin S Hsiao, Henry White, Miriam Rafailovich, Patrick T Mather, Hong G Jeon, Shawn Phillips, Joseph Lichtenhan, Joseph Schwab. Nanoscale reinforcement of polyhedral oligomeric silsesquioxane (POSS) in polyurethane elastomer[J]. Polym. Int.,2000, 49(5): 437-440
    [17] Haddad T S, Viers B D, Phillips S H. Polyhedral Oligomeric Silsescluioxane (POSS)-Styrene Macromers[J]. J. Inorg. Organomet. P., 2001, 11(3): 155-164
    [18] Pan G, Mazk J E, Schaefer D W. Synthesis and characterization of fillers of controlled strucure based on polyhedral oligomeric silsesquioxane cages and their use in reinforcing siloxane elastomers[J]. J Polym Sci Pol Phys, 2003, 41(24): 3314-3323
    [19] 江大志.李效东.新一代高性能POSS—聚合物材料[J].材料导论.2000.15(5):55
    [20] Schwab J J, Haddad T S, Lichtenhan J D. Property enhancements of common thermoplastics via incorporation of silicon based monomers: polyhedral oligomeric Silsesquioxane macromers and polymers[C]. Soc. Plast. Eng. Symp. Proc., 1997, 2: 1814-1816
    [21] Gilman J. W, Kashiwagi T, Lichtenhan J D. Nanocomposites: A Revolutionary New Flame Retardant Approach[C]. SAMPE Journal, 1997, 33(4): 40-46
    [22] Jefrey W Gilman, David S Schlitzer, Joseph D Lichtenhan. Low earth orbit resistant siloxanc copolymers[J]. J. Appl. Poly. Sci., 1996, 60(4): 591-596
    [23] Lichtenhan J D. Intramotecular condensation reactions of alpha, omega bis(triethoxy-silyl)alkanes, formation of cyclic disilsesquioxanes, in Better Ceramics Through Chemistry Ⅶ: Organic/Inorganic Hybrid Materials[J]. Mat. Rea. Snc. Symp. Proc., 1996, 435:33-42
    [24] Xin Chen, Helen F Lee, Joseph A Gardella Jr. Effects of structure and annealing on the surface composition of multiblock copolymers of bisphenol A polycarbonate and poly(dimethylsiloxane) [J]. Macromolecules. 1993, 26:4601-4605
    [25] Rikowski E and Marsmann H C. Cage-rearrangement of silsesquioxanes[J]. Polyhedron, 1997, 19:3357
    [26] Frank Nguyen. Functionalization of Silsesquioxane and Syntheses of POSS-MMA and POSS-PDMS Copolymer[D]. USA, University of California Irvine, 2001
    [27] Feher F J, Soulivong D, Lewis G.T, Daravong Soulivong, and Gregory. T Lewis. Facile Framework Cleavage Reactions of a Completely,r Condensed Silsesquioxane Framework[J]. J. Am. Chem. Soc., 1997, 119: 11323-11324
    [28] Feher Frank J, Soulivong Daravong, Nguyen Frank. Practical methods for synthesizing four incompletely condensed silsesquioxanes from a single R_8Si_7O12 framework[J]. Chem. Commun.. 1998, 12:1279-1280
    [29] Feher Frank J, Nguyen Frank, Soulivong Daravong, Ziller Joseph W. A new route to incompletely condensed silsesquioxanes: acid-mediated cleavage and rearrangement of (c-C_6H_(11))_6Si_6O_9 to 2-[(c-C_6H_(11))_6Si_6O_8X_2] [J]. Chem. Commun., 1999, 17:1705-1706
    [30] Feher F J, Soulivong D and Eklund A E. Controlled cleavage of R_8Si_8O_(12) frameworks: a revolutionary new method for manufacturing precursors to hybrid inorganic-organic materials[J]. Chem. Commun., 1998, 399
    [31] Feher Frank J, Schwab Joseph J, Tellers David M, Aaron Burstein. A General Strategy for Symthesizing Cubeoctameric Silsesquioxanes Containing Polymerizable Functional Groups[J]. Main Group Chem., 1998, 2:169-181
    [32] Feher Frank J, Terroba Raquel, Ziller Joseph W. Base-catalyzed cleavage and homologation of polyhedral oligosihesquioxanes[J]. Chem. Commun., 1999, 21: 2153-2154
    [33] Feher Frank J, Terroba Raquel, Ziller Joseph W. A new route to incompletely-condensed silsesquioxanes: base-mediated cleavage of polyhedral oligosilsesquioxanes[J]. Chem. Commun., 1999, 22:2309-2310
    [34] http://www.hybridplastics.com
    [1] 幸松民.王璐.有机硅合成工艺及产品应用[M].北京:化学工业出版社.2000.14-17
    [2] 杜作栋.陈剑华.贝小来.有机硅化学[M].北京:高等教育出版社,1990.1-5
    [3] Grubb W T. For acid-catalyzed siloxane formation [J]. J. Amer. Chem. Soc., 1954, 76: 3408
    [4] Haggerty W J, Jr Breed L W. Interaction of Alkoxysilanes and Acetoxysilancs[J]. J, Org. Chem., 1961,26(7): 2464-2467
    [51 Yasuaki Nakaido, Toshio Takiguchi. Notes-Some Properties and Reactions of Phenylacetoxysilanes[J]. J.Org.Chem, 1961, 26(10): 4144-4145
    [6] Grubb W T, Robert C O. Kinetics ofthe Polymerization of a Cyclic Dimethylsiloxane [J]. J. Am. Chem. Soc.,1955, 77(6): 1405-1411
    [7] Winton Patnode, Donald F Wilcock. Methylpolysiloxanes [J]. J. Am. Chem. Soc., 1946, 68(3): 358-363
    [8] Frederick P Adams, Jack B Carmichael, Ronald J Zeman. Kinetics of nonequilibrium methylsiloxane polymerization and rearrangement [J]. J. Poly. Sci. A-I, 1967, 5(4): 741-759
    [9] Morton A Golub, Jorge Heller. M Morton and E E Bostick. Cyclohydrochlorination of 3, 4-polyisopfene [J]. J. Poly. Sci. B, 1964, 2(5): 523-527
    [10] Semlyen J A, Wright P V. Equilibrium ring concentrations and the statistical conformations of polymer chains I-- Oligomeric dimcthylsiloxanes [J]. Polymer, 1960, 10: 543-553
    [11] Bischoff R, Cray S E. Polysiloxanes in macromolecular architecture [J]. Prog. Polym. Sci., 1999, 24(2): 185-219
    [12] Wrigh P Vt, Semlyen J A. Equilibrium ring concentrations and the statistical conformations of polymer chains: Part 3. Substituent effects in polysiloxane systems [J]. Polymer, 1970, 11(9): 462-471
    [13] William A Piccoli, Gerald G Haberland, Robert L Merker. Highly Strained Cyclic Paraffin-Siloxanes [J]/ J. Am. Chem. Soc., 1960, 82(8): 1883-1885
    [14] Breed L, Elliott R, Haggerty W, Jr Baiocchi F. Some Alkoxyorganosilanes [J]. J. Org. Chem., 1961, 26(4): 1303-1305.
    [15] John F Brown, Jr Lester H Vogt, Jr Arthur Katchman, John W Eustance, Kenneth M Kiser. Karl W Krantz. Double Chain Polymers of Phenylsilsesquioxane [J]. J. Am. Chem. Soc.. 1960, 82(23): 6194-6195.
    [16] Lee C L, Johannson O K. Polymerization of Cyclosiloxanes. I. Kinetic Studies on Living Polymer - Octamethylcyclotetrasiloxane Systems [J]. J. Poly. Sci. A-I, 1966, 4(12): 3013-3026
    [17] Wu T C, Hirt C A.Organosilicon chemistry I. Octaarylspiro [5.5]pentasiloxanes [J]. J. Organometal. Chem., 1968, 11: 17-25
    [18] Kendrick T C, Parbhoo B M White J W In comprehensive polymer Science[M], Allen G, Bevington J C, Eastmond G C, Ledwith A, Russo S and Sigwalt P, eds. Oxford, Pergamon, 1989, 4:459
    [19] Donald W Scott. Equilibria between Linear and Cyclic Polymers in Methylpolysiloxanes [J]. J. Am. Chem. Soc., 1946, 68(11): 2294-2298
    [20] Dallas T Hurd, Robert C Osthoff, Myron L Corrin. The Mechanism ofthe Base-catalyzed Rearrangement of Organopolysiloxanes [J]. J. Am. Chem. Soc., 1954, 76(1): 249-252
    [21] Boileu S. in McGrath J E ed. Ring Opening Polymerization [M]. American Chemical Society Symposium series 286, Washington, D. C., 1985, p23
    [22] Cecil L Frye, Rudolf M Salinger, F W G Fearon, J M Klosowski. T De Young. Reactions of organolithium reagents with siloxane substrates [J]. J. Org. Chem., 1970, 35(5): 1308-1314
    [23] Valles E M. Synthesis and characterization of monodisperse α,ω-divinylpoly and α,ω-vinylpolydimethylsiloxane[J]. J. Macromol. Sci., 1992.29:391
    [24] Toshio Suzuki. Preparation of poly(dimethylsiloxane) macromonomers by the 'initiator method': 2. Polymerization mechanism [J]. Polymer, 1989, 30(2) : 333-337
    [25] Holle H J and Lehnen B R. Preparation and characterization of polydimethyl-siloxanes with narrow molecular weisht distribution [J]. Eur. Poly. J., 1975, 11(9): 663-667
    [26] Moller M, Siffrin S G, Out GJ J, Boileau S. Preparation and properties of well defined mesomorphic organo-modified polysiloxanes [J]. Poly, Preprint, 1992, 33(1): 176
    [27] Jack B Carmichael, James Heffel. Verification of the Flory Theory of Random Reorganization of Molecular Weight Distribution-Kinetics of Methylsiloxane Polymerization [J]. J. Phys.Chem., 1965, 69(7): 2213-2217
    [28] Kogan E V., Ivanova A G, Rellchsfeld V O, Smimov N I., Grubber V N. in siloxane polymers, eds. Clarson S J and Semlyen J A, New Jersey: PTR Print ice Hall, 1993, p40
    [29] Ishizuka S, Aihara T J in Siloxane polymers [M]. Clarson S J and Semlyen J A. New Jersey: PTR Print ice Hall, 1993, p40
    [30] Chojnowski J., Rubinsztajn S. and Wilczek L in Siloxane polymers[M]. Clarson S J. and Semlyen J A., New Jersey: PTR Print ice Hall, 1993, p40
    [31] Tcberuysbev A I and Yastrebov V V in Siloxane polymers [M]. Clarson S J and Semlyen J A. blew Jersey: PTR Print ice Hall, 1993, p40
    [32] Chojnowskki J, Mazurek, M, Scibiorek, M, and Wilczek, L .Cationic polymerization of siloxanes. Approach to the mechanistic studies [J]. Makromol. Chem., 1974, 175:3299
    [33] Winton Patriotic, Donald F Wilcock. Methylpolysiloxanes [J]. J. Am. Chem. Soc., 1946, 68(3): 358-363
    [34] Girish Deshpande and Mary E Rezac. The effect of phenyl content on the degradation of poly(dimethyl-diphenyl) siloxane copolymers[J]. Poly. Deg. And stab., 2001, 74(2): 363-370
    [35] Girish Deshpande and Mary E Rezac ,Kinetic aspects of the thermal degradation of poly(dimethyl siloxane) and poly(dimethyl diphenyl siloxane) [J]. Poly. Deg. And stab., 2002, 76(1): 17-24
    [36] McManus S P, Patterson W J , Pittman C U Jr. Polymerization and Rate Studies on Substituted Phenylmethyl bis(dimethylamino)silanes[J]. J. Polymer Sci. Chem., 1974. 12: 825
    [37] 幸松民.王一璐.有机硅合成工艺及产品应用[M],北京:化学工业出版社,2000,538
    [38] Warrick E L, Piece O R, Polmanteer K E, Silicone elastomer developments 1967-1977[J]. Rubber Chem Technol, 1979, 52:437-503
    [39] Polmanteer K E, Hunter M J. Polymer composition versus low-temperature characteristics of polysiloxane elastomers[J]. J. Appl. Poly. Sci., 1959, 1: 3-10
    [40] Volker yon Braunmühl . Reimund Stadler. Synthesis of aldonamide siloxanes by hydrosilylation[J]. Polymer. 1998, 39(8-9): 1617-1629
    [41] 钱汉英.李国俊.改性塑料的应用与前景[J].工程塑料应用,2000.28(2):24
    [42] 江大志.李效东.新一代高性能POSS—聚合物材料[J].材料导论.2000,15(5):55
    [43] Schwab J J, Haddad T S, Lichtenhan J D. Property enhancements of common thermoplastics via incocporation of silicon based monomers: polyhedral oligomeric Silsesquioxane macromers and polymers [J]. Soc Plast Eng Symp Proc, 1997. 2: 1814-1816
    [44] Gilman J W, Kashiwagi T, Lichtenhan J D. Nanocomposites: A Revolutionary New Flame Retardant Approach. [J]. SAMPE Journal, 1997, 33(4): 40-46
    [45] Jefrey W Gilman, David S Schlitzer, Joseph D Lichtenhan, Low earth orbit resistant siloxane copolymers[J]. J. Appl. Poly. Sci., 1996, 60(4): 591-596
    [46] Lichtenhan J D. Intramolecular condensation reactions of alpha, omesabis (triethoxy-silyl)alkanes. formation of cyclic disilsesquioxanes, in Better Ceramics Through Chemistry Ⅶ: Organic/inorganic Hybrid Materials [J]. Mat. Rea. Soc. Symp. Proc., 1996, 435:33-42
    [47] Xin Chin, Helen F Lee, Joseph A Gardella Jr. Effects of stature and annealing on the surface composition of multiblock copolymers of bisphenol A polycarbonate and poly(dimethylsiloxane)lJ]. Macromolecules, 1993, 26(17): 4601-4605
    [48] Ronald H Baney, Maki Itoh, Akihito Sakakibara, Toshio Suzuki. Silsesquioxanes [J]. Chem. Rev., 1995, 95(5): 1409-1430
    [49] Philip G. Harrison. Silicate cages: pnrecursors to new materials[J].Journal of Crganometallic Chemistry, 1997, 542(2): 141-183
    [50] Loy D A., Shea K., Douglas A Loy and Kenneth J Shea, Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials [J]. J.Chem. Rev., 1995, 95. 1431-1442
    [51] MGVoronkov, VI Lavrent'yev. Polyhedral Oligosilsesquioxanes and Their Homo Derivatives [J]. Top. Curr. Chem., 1982, 102:199-236
    [52] Feher F J. In polyhedral Oligosilsesqioxanes and Heterosilsesquioxanes, Arkles B., Ed., Gelest Catalog: Philadelphia, 1998
    [53] Harrison P G, Hall C and Kannengiesser R. Preparation And Characterisation Of Octasilsesquioxane Cage Monomers [J]. Main Group Met. Chem., 1997, 20. 515
    [54] Martynova T N, Korchkov V P and Semyannikov P P. Synthesis and investigation of octaallylsilsesquioxane, a new radiation sensitive substance [J]. J. Organomet. Chem.. 1983, 258(3): 277-282
    [55] Weidner R, Zeller N, Deubzer B, Frey V and Wacker-Chemie Gmbh. U. S. Patent1991 5,047,492,
    [56] Uwe Dittmar, Bonedikt J Hendan, Ulrich Florke and Heinrich C Marsmann. Funktiionalisierte octa-(propylsilsesquioxane) (3-XC3H6)8(SiSO12) modellver- bindungen für oberflachenmodifizierte kieselgele[J]. Journal of Organometailic Chemistry, 1995, 489(1-2): 185-194
    [57] Joseph D Lichtenhan, Ngo Q Vu, Jason A Carter, Jeffrey W Gilman, Frank J Feher. Silsesquioxane-siloxane copolymers from polyhedral silsesquioxanes [J]. Macromolecules, 1993, 26(8): 2141-2142
    [58] Frank J Feher, Kevin D Wyndham, Daniel J Knauer. Synthesis, characterization and lectin binding study of carbohydrate functionalized silsesquioxanes [J]. Chem. Commun.. 1998. 21 : 2393-2394
    [59] Rikowski E and Marsmann H C. Cage-rearrangement of silsesquioxanes [J]. Polyhedron, 1997. 19:3357
    [60] Frye C L. In Inorganic Reactions and Methods[M], Hagen A P.. Ed., VCH: Deerifield Beach, FL, 1986, 17:105
    [61] Matsmann H C., Dittmar U.and Ribowski E., In Organosilicon Chemistry Ⅱ: From Molecules to Materials. Auner N. and Weis J,. Ed., VCH Verlagsgesell- schaft: Weinheim. 1996:691
    [62] John F Brown, Jr, The Polycondensation of Phenylsilanetriol [J]. J. Am. Chem. Soc.. 1965, 87(19): 4317-4324
    [63] Pradyot A Agaskar. Facile, high yield synthesis of functionalized spherosilicates: precursors of novel organolithic macromolecular materials [J]. Inorg. Chem. 1090. 29(9): 1603-1603
    [64] Isao Hasegawa and Seiji Motojima. Dimethylvinylsilylation of Si8O208- silicate anion in methanol solutions of tetramethylammonium silicate [J]. J. organomel. Chem., 1992. 441(3): 373-380
    [65] Hoebbel D, Wieker W and Anorg Z. Liquid-crystalline, substituted octakis(dimethylsiloxy)octasilsesquioxanes: oligomeric supermolecular materials with defined topology[J]. Anorg Allg Chem, 1971, 384:43
    [66] Yuchs S E, Carrado K A. A One-Step Method for the Synthesis of a Vinyl-Containing Silsesquioxane and Other Organolithic Macromolecular Precursors[J]. Inorg. Chem., 1996, 35(1): 261-262
    [671 Burgy H and Calzaferri G. Separation of the oligomeric silsesquioxanes(HSiO3/2)8-18 by size-exclusion chromatography [J]. J. Chromatography, 1990, 507-581
    [68] John F Brown, Jr. The Polycondensation of Phenylsilanetriol [J]. J. Am. Chem. Soc., 1965, 87(19):4317-4324
    [69] Weidner R, Zeller N, Deubzer B, Frey V. Wacker-Chemie Gmbh: U. S. Patent 1991. 5,047,492
    [70] Uwe Dittmar, Benedikt J Hendan, Ulrich Florke and Heinrich C Marsmann. Funktionalisierte octa-(propylsilsesquioxane) (3-XC_3H_6)_8(Si_8O_(12)) modellverbindun- gen für oberflachenmodifizierte kieselgele[J]. Journal of Organometallic Chemistry, 1995. 489(1-2): 185-194
    [71] Chunxin Zhang and Richard M. Laine. Silsesquioxanes as synthetic platforms. II. Epoxy-functionalized inorganic-organic hybrid species [J]. Jounrnal of Organometallic Chemistry, 1996, 521(1-2): 199-201
    [72] Frank J Feher, David A Newman, John F Walzer. Silsesquioxanes as models for silica surfaces [J]. J. Am. Chem. Soc., 1989, 111(5): 1741-1748
    [73] Alan R Bassindale, Theresa E Gentle, J Mater. Siloxane and hydrocarbon octopus molecules with silsesquioxane cotes [J]. Chem., 1993, 12:1319-1325
    [74] Gentle T E and Bassindale A R. Effect of Catalyst on Regioselectivity and Vinyl/H Exchange on Silicon in the Hydrosilylation of Vinylsiloxanes by T8 Hydrogen silsesquioxane [J]. J. Inorg. Organomet. Pol., 1995, 5:281
    [75] Fehet, F J, Budzichowski, T A, Blanski, R L, Weller, K J, Ziller, J W. Organometallic, 1991, 10. 2526
    [76] Trevor W Hambley, Thomas Maschmeyer, Anthony F Masters. The synthesis and characterization of norbornylsilasesquioxanes [J]. Appl. Organometal. Chem., 1992, 6(3): 253-260
    [77] Feher F J, Phillips S H, Ziller J W. Facile and Remarkably Selective Substitution Reactions Involving Framework Silicon Atoms in Silsesquioxane Frameworks [J]. J. Am. Chem. Soc., 1997, 119(14): 3397-3398
    [78] Harrison P G, Kaonengiesser R, Hall C J. High Yield Routes to Hexa(dimethylsilyloxy)-silsesquioxane and Hexa(bromodimethy lsilyloxy)silsesquioxane, Main Group Met. Chem., 1997, 20:137-40
    [79] Ramaswamy Murugavel, Andreas Voigt, Mrinalini Ganapati,Walawalkar, and Herbert W Roesky. Hetero- and Metallasiloxanes Derived from Silanediols Disilanols. Silanetriols. and Trisilanols [J]. Chem. Rev., 1996, 96: 2205-2236
    [80] Murugavel R, Chandrasekhar V, Roesky H W. Discrete Silanetriols: Building Blocks for Three-Dimensional Metallasiloxanes [J]. Acc. Chem. Res., 1996, 29(4): 183-189
    [81] Frank Nguyen. Functionalization of Silsesquioxane and Syntheses of POSS-MMA and POSS-PDMS Copolymer, [D]. USA, University of California Irvine, 2001
    [82] Feher F J, Soulivong D and Lewis G.T, Daravong Soulivong, and Gregory T Lewis.Facile Framework Cleavage Reactions of a Completely Condensed Silsesquioxane Framework [J]. J. Am. Chem. Soc., 1997, 119:11323-11324
    [83] Frank J Feher. Controlled cleavage of R_8Si_8O_(12) frameworks: a revolutionary nww method for manufacturing precursors to hybrid inorganic-organic materials[J].Chem. Commun., 1998, 3:399-400
    [84] Feher Frank J. Schwab Joseph J, Tellers David M., Aaron Burstein. A General Strategy for Synthesizing Cubeoctameric Silsesquioxanes Containing Polymerizable Functional Groups [J]. Main Group Chem., 1998, 2: 169-181
    [85] Feher Frank J, Soulivong Daravong, Nguyen Frank. Practical methods for synthesizing four incompletely condensed silsesquioxanes from a single R_8Si_8O_(12) framework [J]. Chem. Commun., 199g, 12:1279-1280
    [86] Feher Frank J, Nguyen Frank, Soulivong Daravong, Ziller Joseph W. A new route to incompletely condensed silsesquioxanes: acid-mediated cleavage and reanange- ment of (c-_C6H_(11))_6Si_6O_9 to C 2-[(c-C_6H_(11))_6Si_6O_8X_2] [J]. Chem. Commun., 1999, 17:1705-1706
    [87] Feher Frank J, Tettoba Raquel, Ziller Joseph W,Base-catalyzed cleavage and homologation of polyhedral oligosilsesquioxanes [J]. Chem. Commun.. 1999: 21, 2153-2154
    [88] Feher Frank J, Terroba Raquel, Ziller Joseph W. A new route zo incompletely-condensed silsesquioxanes: base-mediated cleavage of polyhedral oligosilsesquioxanes [J]. Chem. Commun., 1999. 22:2309-2310
    [89] Wojciech Jaunky, Mir Wais Hosseini, Jean Marc Planeix, André De Cian, Nathelie Kyritsakas, Jean Fischer.Molecular braids: quintuple helical hydrogen bonded molecular network[J]. Chem. Commun., 1999, 22:2313-2314
    [90] Lichtenhan J D. Polyhedral oligomeric silsesquioxanes: Building blocks for silsesquioxane-based polymers and hybrid materials [J]. Comments Inorg Chem, 1995, 17: 115-130
    [91] Feher Frank J, Newman David A. Walzer John F. Silsesquioxanes as models for silica surfaces[J]. J.Am. Chem. Soc., 1989, 111(5): 1741-1748
    [92] Joseph D Lichtenhen, Ngo Q Vu, Jason A Carter, Jeffrey W Gilman, Frank J Feher. Silsesquioxane-siloxane copolymers from polyhedral silsesquioxanes [J]. Macromolecules, 1993, 26(8): 2141-2142
    [93] Haddad T S, Oviatt H W, Schwab J J, Mather P T, Chaffee K P and Lichtenhan J D. Polydimethyl Siloxanes Modified With Polyhedral Oligomeric Silsesquioxanes: From Viscous Oils to Thermoplastics[J]. Am. Chem. Sec. Polym. Prep., 1998, 39(1): 611-612
    [94] Joseph D Lichtenhan, Yoshiko A Otonari, Michael J Carr. Linear Hybrid Polymer Building Blocks: Methacrylate-Functionalized Polyhedral Oligomeric Silsesquioxane Monomers and Polymers [J]. Macromolecules, 1995, 28(24): 8435-8437
    [95] Gilman J W, Schlitzer D S and Lichtenha J D, Jefrey W Gilman, David S Schlitzer, Joseph D Lichtenhan. Low earth orbit resistant siloxane copolymers [J]. J. Appl. Polym. Sci., 1996, 60:591-596
    [96] Lichtenhen J D. in Polymeric Materials Encylopedia, Saiamone J C ed., CRC Press, New York, 1996, Vol, 10
    [97] Zhang C, Laine R M. Hydrosilylation of Allyl Alcohol with[HSiMe_2OSiO_(15)]_8: Octa(3-hydroxypropyldimethylsiloxy)octasilsesquioxane and Its Octameth -acrylate Derivative as Potential Precursors to Hybrid Nanocomposites[J]. J. Am. Chem. Soc., 2000, 122(29): 6979-6988
    [98] Sellinger A, Laine R M. Silsesquioxanes as Synthetic Platforms. Thermally Curable and Photocurable Inorganic/Organic Hybrids [J]. Macromolecules, 1996, 29(6): 2327-2330
    [99] Sellinger A, Laine R M. Silsesquioxanes as Synthetic Platforms. 3. Photocurable, Liquid Epoxides as Inorganic/Organic Hybrid Precursors [J]. Chem. Mater., 1996, 8(8): 1592-1593
    [100] Haddad T S, Lichtenhan J D. Hybrid Organic-Inorganic Thermoplastics: Styryl-Based Polyhedral Oligomeric Silsesquioxane Polymers [J]. Macromolecules. 1996, 29(22): 7302-7304
    [101] A Romo-Uribe, P T Mather, T S Haddad, J D Lichtenhan. Viscoelastic and morphological behavior of hybrid styryl-based polyhedral oligomeric silsesquioxane (POSS) copolymers [J]. J, Polym. Sci. B. Polym. Phys., 1998, 36:1857-1872
    [102] Pyun J, Matyjaszewski K. The Synthesis of Hybrid Polymers Using Atom Transfer Radical Polymerization: Homopolymers and Block Copolymers from Polyhedral Oligomeric Silscsquioxane Monomers [J]. Macromolecules, 2000, 33(1): 217-220
    [103] Mather P T, Jeon H G, Romo-Uribe A, Haddad T S, Lichtenhan J D. Mechanical Relaxation and Microstructure of Poly(norbornyl-POSS) Copolymers[J]. Macromolecules. 1999. 32(4): 1194-1203
    [104] Bharadwaj R K, Berry R J and Farmer B L.Molecular dynamics simulation study of norbornene-POSS polymers [J]. Polymer, 2000, 41 : 7209-7221
    [105] Jeon H G. Mather P T, Haddad T S. Shape memory and nanostructure in poly(nocbornl-POSS) copolymers[J]. Polym. Int., 2000, 49(5): 453-457
    [106] Mantz R A, Jones P F. Chaffee K P, Lichtenhan J D, Gilman J W, Ismail I M K, Burmeister M J. Thermolysis of Polyhedral Oligomeric Silsesquioxane (POSS) Mucromers and POSS-Siloxane Copolymers [J]. Chem. Mater., 1996, 8(6): 1250-1259
    [107] Schwab J J, Lichtenhan J D, Curr M J, Chaffee K P, Mather P, Romo-Uribe T A. Hybrid Nanoreinforced Polyurethanes Based on Polyhedral Olisomeric Sislsesquioxancs (POSS). [J]. Am. Chem. Soc. PMSE Prep., 1997, 77, 549-550
    [108] Fu B X, Hsiao B S, Pagola S, and Stephens P. Structural development during deformation of polyurethane containing polyhedral oligomeric silsesquioxanes (POSS) molecules[J]. 2001, Polymer, 42:599-611
    [109] Lee A, Lichtenhan J D. Viscoelastic Responses of Polyhedral Oligosilses- quioxane Reinforced Epoxy Systems [J]. Macromolecules, 1998, 31 (15): 4970-4974
    [110] Farmer S C, Patten T E. Synthesis of Luminescent Organic Inorganic Polymer Nanocomposites [J]. Polym. Mater. Sci., Eng., 2000, 82:235
    [111] Geng Haiping. Michigan State University, Structure/Property Relationships of Polymers Containing Hybrid Nano-Filler--Polyhedral Oligomeric Silses- quioxanes (POSS) [D].USA: Michigan State University, 2002
    [1] 卿宁.田禾,张晓镭.周熊华.氨基聚硅氧烷的合成[J].功能高分子学报.2000.13(4):385-388
    [2] 黄文润.氨基硅油与织物柔软剂[J].有机硅材料及应用.1998,5:16-18
    [3] 芦明,黄志萍,宋永莱.丁羟弹性体的交联密度[J].固体火箭技术,1994.3:54-59
    [4] Schnabel W. Levchik G F, Wilkie C A, Jiang D D. Levchik S V. Thermal degradation of polystyrene, poly(1,4-butadiene) and copolymers of styrene and 1,4-butadiene irradiated under air or argon with ~(60)Co—rays [J].Polymer Degradation and Stability, 1999, 63: 365-375
    [1] 幸松民,王一璐.有机硅合成工艺及产品应用[M].北京:化学工业出版社.2000.350-356
    [2] Rochow E G. Silicon and Silicones [M]. Springer-Verlag Press: 1987. 94-128
    [3] Zheng L, Waddon A J, Farris R J, Coughlin E B. X-ray Characterizations of Polyethylene Polyhedral Oligomeric Silsesquioxane Copolymers[J]. Macromolecules, 2002, 35(6): 2375-2379
    [4] Lei Zheng, Richard J Farris, E Bryan Coughlin. Synthesis of polyethylent hybrid copolymers containing polyhedral oligomeric silsesquioxane prepared with ring-opening metathesis copolymerization [J]. J Polym Sci Pol Chem., 2001, 39(17): 2920-2928
    [5] Li G Z, Wang L C, Ni G L, Pittman C U Jr. Polyhedral Oligomeric Silses- quioxane (POSS) Polymers and Copolymers: A Review[J]. J Inorg Qrganomet P., 2001, 11(3): 123-154
    [6] Joseph J Schwab, Joseph D Lichtenhan. Polyhedral oligomeric silsesquioxane (POSS)-based polymers [J]. Appl Organomet Chem., 1998, 12(10-11): 707-713
    [7] Lei Zheng, Rajeswari M Kasi, Richard J Farris, E Bryan Coughlin. Symbesis and thermal properties of hybrid copolymers of syndiotactic polystyrene and polyhedral oligomeric silsesquioxane [J]. J Polym Sci, Pol Chem., 2002, 40(7): 885-891
    [8] 幸松民.王一璐.有机硅合成工艺及产品应用[M].化学工业出版社.2000.348-349
    [9] Morton A Golub, Jorge Heller, M Morton and E E Bostick. Cyclohydro- chlorination of 3, 4-polyisoprene [J]. J. Poly. Sci. B:, 1964, 2(5): 523-527
    [10] Semlyen J A, Wright P V. Equilibrium ring concentrations and the statistical conformations of polymer chains I-Oligomeric dimethylsiloxanes [J]. Polymer, 1969, 10: 543-553
    [11] Bischoff R, Cray S E. Polysiloxanes in macromolecular architecture [J]. Prog. Polym. Sci., 1999, 24(2): 185-219
    [12] Wrigh P V t, Semlyen J A. Equilibrium ring concentrations and the statistical conformations of polymer chains:Part 3.Substituent effects in polysiloxane systems[J]. Polymer. 1970, 11(9):462-471
    [13] http://www.hybridplastics.com,Hybrid Plastics Spring 2002
    [14] Donald W Scott.Equilibria between Linear and Cyclic Polymers in Methylpolysiloxanes [J]. J.Am. Chem.Soc.,1946,68(11):2294-2298
    [15] Dallas T Hurd,Robert C Osthoff,Myron L Corrin.The Mechanism of the Base-catalyzed Rearrangement of Organopolysiloxanes[J]. J. Am. Chem. Soc., 1954, 76(1): 249-252
    [16] Boileu S. in McGrath J. E. ed. Ring Opening Polymerization [M]. American Chemical Society Symposium series 286. Washington. D.C. 1985.23
    [17] 幸松民,王一璐.有机硅合成工艺及产品应用[M].北京:化学工业出版社,2000.353
    [18] 潘祖仁主编.高分子化学[M].化学工业出版社.(第二版).1997.121-155
    [19] 赵宝忠.刘慧明.顾明初,李杨.阴离子聚合反应中的极性调节剂[J].弹性体.2001,11(4):44-48
    [20] 龚方红,俞强.李锦春.林明德.交联低密度聚乙烯交联控度衷征方法的研究[J].高分子学报,1999,5:616-619
    [21] Mark J E. Experimental determinations of crosslink densities [J]. Rub. Chem. Tech. 1982, 55:762-768
    [22] Ninan K N. Functionality distribution and crosslink density of hydroxyl-terminated polybutadiene. Polymer International [J]. 1993. 31: 255-260
    [23] 芦明.黄志萍,宋永莱.丁羟弹性体的交联密度[J].固体火箭技术,1994,3:54-59
    124] Schnabel W, Levchik G F, Wilkie C A, Jiang D D, Levchik S V. Thermal degradation of polystyrene, poly(1,4-butadiene) and copolymers of styrene and 1,4-butadiene irradiated under air or argon with ~(60)Co—rays[J]. Polymer Degradation and Stability. 1999, 63:365-375
    [25] Launer P L. in silicon compounds register and review [J]. USA: Petrarch Systems Inc. (Bristol, PA). 1987.69
    [26] 高家武主编.高分子材料近代测试技术[M].北京:北京航空航天大学出版社.1994.210-243
    [27] 幸松民.王一璐.有机硅合成工艺及产品应用[M].北京:化学工业出版社.2000.824-825
    [28] Frank Nguyen. University of California Irvine, Functionalization of Silsesquioxane and Syntheses of POSS-MMA and POSS-PDMS Copolymer, Dissertation
    [29] Feher F J, Soulivong D and Lewis G.T, Daravong Soulivong, and Gregory T Lewis. Facile Framework Cleavage Reactions of a Completely Condensed Silsesquioxane Framewock[J]. J. Am. Chem. Soc., 1997, 119: 11323-11324
    [30] Frank J Feher. Controlled cleavage of R_8Si_8O_(12) frameworks: a revolutionary new method for manufacturing precursors to hybrid inorganic-organic materials[J]. Chem. Commun., 1998, 3:399~400
    [31] Feher Frank J, Schwab Joseph J, Tellers David M, Aaron Burstein. A General Strategy for Synthesizing Cubeoctameric Silsesquioxanes Containing Polymerizable Functional Groups[J]. Main Group Chem., 1995, 2:169-181
    [32] Feher Frank J, Soulivong Daravong, Nguyen Frank, Practical methods for synthesizing four incompletely condensed silsesquioxanes from a single R_8Si_8O_(12) framework[J]. Chem. Commun., 1998, 12:1279-1280
    [33] Feher Frank J, Nguyen Frank, Soulivong Daravong, Ziller Joseph W. A new route to incompletely condensed silsesquioxanes: acid-mediated cleavage and rearrangement of (c-C_6H_(11))_6Si_6O_9 to C 2-[(c-C_6H_(11))_6Si_6O_8X_2] [J].Chem. Commun., 1999, 17:1705-1706
    [34] Feber Frank J, Terroba Raquel, Ziller Joseph W. Base-catalyzed cleavage and homologation of polyhedral oligosilsesquioxanes [J]. Chem. Commun.. 1999. 21. 2153-2154
    [35] Feher Frenk J, Terroba Raquel, Ziller Joseph W. A new route to incompletely-condensed silsesquioxanes: base-mediated cleavage of polyhedral oligosilsesquioxanes[J].Chem. Commun., 1999, 22.2309-2310
    [36] 马德柱,何平笙.等.高聚物的结构与性能[M].北京:科学出版社,191-203
    [37] 焦剑.雷渭媛.等.高聚物结构、性能与测试.北京:化学工业出版社.727-736
    [38] Charles B Hurd. Studies on Siloxanes. I. The Specific Volume and Viscosity in Relation to Temperature and Constitution[J].J Ame Chem Soc., 1946, 68:364-370
    [39] Brandrup J, Immergut EH, Grulke EA. Polymer Handbook[M]. 4th ed. John Wiley & Sons, Inc. 1999(chapter 6). 231
    [40] 钱人元.高分子单链凝聚态与线团相互穿透的多链凝聚态[J].高分子通报,2000,2:1-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700