用户名: 密码: 验证码:
HWCVD制备硼掺杂氢化纳米硅及银纳米粒子增强硅薄膜太阳电池光谱响应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅薄膜太阳电池主要包括氢化非晶硅(a-Si:H)太阳电池、氢化纳米硅(nc-Si:H)太阳电池以及由它们构成的双结或多结叠层太阳电池。硅薄膜太阳电池具有原材料丰富、耗材少、耗能小、无毒、低成本和易于大面积沉积等特点,是一种非常具有潜力实现大规模产业化的太阳电池。本论文对热丝化学气相沉积(HWCVD)制备硼掺杂nc-Si:H及银纳米粒子增强硅薄膜太阳电池光谱响应这两个方面的内容进行了研究。
     在硅薄膜太阳电池中,高电导率和高晶化率的p型nc-Si:H对提高太阳电池的光电转换效率起着至关重要的作用。与通常的等离子体增强化学气相沉积(PECVD)相比较,无等离子体辅助的HWCVD具有先天无尘和无等离子轰击等优点,近年来在硅薄膜太阳电池的本征层研究中取得了很多优异的成果,引起了国内外同行的广泛关注。而采用HWCVD制备硼掺杂nc-Si:H的报导却比较少,且大多缺乏系统深入的研究。本文通过广泛调节HWCVD的沉积参数,成功实现了硼掺杂nc-Si:H从接近a-Si:H到高晶化率nc-Si:H的相转变,并综合采用拉曼(Raman)光谱、红外光谱,特别是精密的霍尔(Hall)效应测试以及二次离子质谱(SIMS)等表征手段对样品的微结构、电学性质、硼掺杂浓度以及它们之间的相互关系进行了系统深入的研究。结果表明,最高电导率的硼掺杂nc-Si:H并非是通常认为的具有最高晶化率的样品,而是具有中等晶化率的薄膜。其次,HWCVD同时实现了硼掺杂nc-Si:H的高晶化率、高硼掺杂浓度、高掺杂效率和高载流子浓度,解决了常用PECVD一直存在的困难。最后,HWCVD制备的p型nc-Si:H可以实现比PECVD样品更高的电导率。这些成果展示了HWCVD比常用PECVD在制备高晶化率和高电导率硼掺杂nc-Si:H上的优势,对进一步提高硅薄膜太阳电池的转换效率具有重要的指导意义和实用价值。
     另一方面,由于a-Si:H和nc-Si:H在长波段的吸收系数比较小,而且硅薄膜太阳电池的厚度十分有限,因此,采取合适的陷光措施增加太阳电池对光的吸收对提高太阳电池的光电转换效率有着十分重要的作用。常用的陷光方法是制作透明导电膜绒面,使太阳光在透明导电膜与硅薄膜的界面发生光散射,增加入射光在太阳电池内部的光程,从而增加太阳电池对光的吸收。最近,有人报导了一种新型的采用小颗粒(直径小于100 nm)金属纳米粒子增强光吸收的方法,它来源于光照引起金属纳米粒子局域表面等离子体共振(LSPR)。该方法已经在有机太阳电池和染料敏化太阳池的研究中得到了应用,并相应的增加了太阳电池的光谱响应。然而,在硅薄膜太阳电池的研究中,虽然发现了纳米粒子具有很强的LSPR增强光吸收以及表面增强拉曼散射,但并未发现量子效率的相应增加。本文采用易于大面积沉积的真空热蒸发方法制备小颗粒银纳米粒子,通过创新性的将其集成在特殊结构的a-Si:H太阳电池中,观察到了纳米粒子对太阳电池在红光和近红外光波段光谱响应的增强。同时,本文还对小颗粒银纳米粒子增强硅薄膜太阳电池光谱响应的增强机理以及影响因素进行了深入讨论。该研究为采用新型的、非常具有吸引力的小颗粒金属纳米粒子增强标准硅薄膜太阳电池的光谱响应奠定了坚实的基础,具有重要的理论和实践指导意义。
     除了小颗粒金属纳米粒子LSPR增强光吸收以外,大颗粒金属纳米粒子(直径大于100 nm)也有一个引人注目的效应,那就是LSPR增强光散射。该散射与几何散射不同,是一种与入射光的波长有关的散射。有人在晶体硅和非晶硅太阳电池表面制备了大颗粒金属纳米粒子,并通过纳米粒子LSPR增强光散射使太阳电池光吸收和光谱响应得到增加。本文将真空热蒸发制备的大颗粒银纳米粒子和银纳米结构(大颗粒银纳米粒子相互连接)集成在n-i-p结构的nc-Si:H和a-Si:H太阳电池内部,使太阳电池在长波段的光吸收和光谱响应得到了明显增强。研究发现,当纳米粒子和纳米结构直接与太阳电池n层接触时,纳米粒子和纳米结构还存在着表面等离子体共振光吸收损耗,该损耗可以通过覆盖一层比硅薄膜折射率低的介质层在纳米粒子上使共振光吸收损耗蓝移而得到有效抑制。这为我们提高硅薄膜太阳电池的光电流和减少光吸收损耗提供了一种新的思路和方法,具有重要的应用价值。
Silicon thin film solar cells mainly include hydrogenated amorphous silicon (a-Si:H) solar cells, hydrogenated nanocrystalline silicon (nc-Si:H) solar cells and tandem or triple junction solar cells made of a-Si:H and nc-Si:H. Because of abundant raw material, less material and energy consumed, non-toxic, low cost and easy to deposit in large area, there is a great potential to realize the mass production of silicon thin film solar cells. This thesis contains two aspects of contents, one is boron doped hydrogenated nanocrystalline silicon prepared by hot-wire chemical vapor deposition (HWCVD) and another is enhanced spectra response of silicon thin film solar cells by Ag nanoparticles.
     In silicon thin film solar cells, it is crucial to have highly conductive p-type nc-Si:H with high crystallinity to improve the cell efficiency. Compared with common plasma enhanced chemical vapor deposition (PECVD), HWCVD appears to be a promising deposition method because of absence of powder formation and ion bombardment. In recent years, there have been a great of fruits of intrinsic layer deposited by HWCVD in silicon thin film solar cells. While there are few and short of systematical researches on boron-doped nc-Si:H prepared by HWCVD. In this thesis, it is successful to obtain boron-doped silicon thin films transited from a-Si:H to highly crystallized nc-Si:H by widely adjusting the deposition parameters of HWCVD. The microstructural, electrical, doping properties of the samples and the relationship of them are systemically investigated by Raman spectra, infrared absorption spectra, and special precise Hall effects measurements and second ion mass spectra (SIMS). It is showing that the highest conductive boron-doped nc-Si:H don’t have commonly believed the highest crystallinity, but have moderate crystalline volume fraction. Second, HWCVD realized the boron-doped nc-Si:H with high crystallinity, high boron concentration, high doping efficiency and high carrier concentration which is a long time existed problem of the common PECVD method. Finally, the p-type nc-Si:H deposited by HWCVD other than PECVD can have higher conductivity. Theses results exhibit the merits of HWCVD compared with the common PECVD in preparing boron-doped nc-Si:H with high cyrstallinity and high conductivity. This work has instructive significance and application value to further improve the efficiency of silicon thin film solar cells.
     On the other hand, in order to improve the conversion efficiency of silicon thin film solar cells it is very important to adopt a suitable light trapping method to enhance the light absorption because of low absorption coefficiency of a-Si:H and nc-Si:H in long wavelengths range and limited thickness of solar cells. A common used light trapping method is texturing transparent conductive oxide (TCO) which makes the incident light scattered at the interface between TCO and silicon film. In this case the light path is prolonged inside solar cells, and thereby the light absorption is enhanced. Recently, it has been reported a novel enhancing light absorption method by small (the diameter smaller than 100 nm) metallic nanoparticles which originates from the light induced metallic nanoparticles localized surface plasmon resonance (LSPR). This novel method was applied in organic and dye-sensitized solar cells and the spectra response were corresponding enhanced. However, it was not observed enhanced spectra response in silicon thin film solar cells by metallic nanoparticels even though a huge improved light absorption and surface enhanced Raman scattering were reported. In this thesis, small Ag nanoparticles are prepared by thermal evaporation which is easy to deposit in large area. And it is observed enhanced red and near-infrared spectra responses when the Ag nanoparticles are innovatively integrated in special structural a-Si:H solar cells. Meanwhile, it is deeply discussed the mechanism and influence factors of enhancing spectra responses of silicon thin film solar cells by small Ag nanoparticles. This work establishes fundaments of enhancing light absorption and spectra response for standard silicon thin film solar cells. It has important significance in theory and practice.
     Besides enhanced light absorption by small metallic nanoparticles, large metallic nanoparticles (diameter larger than 100 nm) have an attractive LSPR enhancing light scattering effect. Different from geometry light scattering the light scattering of large metallic nanoparticles are wavelength dependent. It has been reported that light absorption and spectra response were enhanced by employing large metallic nanoparticles on top of crystalline silicon and a-Si:H solar cells. In this thesis, large Ag nanoparticles and Ag nanostructure (large Ag nanoparticles connected to each other) prepared by thermal evaporation are integrated inside n-i-p nc-Si:H and a-Si:H solar cells, and the light absorption and spectra response in long wavelengths are distinctly enhanced. Results show that there are surface plasmon resonance light absorption losses of nanoparticles and nanostructure when they directly connect with n-layer. Such light absorption losses can be restrained by covering a thin layer of medium, which has smaller refractive index in comparison to silicon film, on tope of nanoparticles and nanostructure to blue shift resonance absorption losses. This work provides a new way and method to increase photocurrent and reduce light absorption losses in silicon thin film solar cells. It has significant application value.
引文
[1] Staebler D.L. and Wronski C.R., Reversible conductivity changes in discharge produced amorphous Si, Appl.Phys.Lett. 31, 292(1977).
    [2] Green M.A., Emery K., Hisikawa Y., and Warta W., Solar cell efficiency tables (version 30), Prog.Photovlot: Res.Appl. 15, 425(2007).
    [3] Schroop R.E.I. and Zeman M., Amorphous and microcrystalline silicon solar cells: modeling, materials and device technology, Kluwer Academic Publishers, Massachusetts, USA, 99(1998).
    [4] Meier J., Fuechkiger R., Keppner H., and Shah A., Complete microcrystalline p-i-n solar cell - crystalline or amorphous cell behavior, Appl.Phys.Lett. 65, 860(1994).
    [5] Meillaud F.S., Microcrystalline silicon solar cells: theory, diagnosis and stability, Ph.D.thesis, University of Neuchatel, Switzerland, 77(2006).
    [6] Wang Y., Geng X., Stiebig H., and Finger F., Stability of microsrystalline silicon solar cells with HWCVD buffer layer, Thin Solid Films 516, 733(2008).
    [7] Vetterl O., Finger F., Carius R., Hapke P., Louben L., Kluth O., Lambertz A., Muck A., Rech B., and H.Wagner, Intrinsic microcrystalline silicon: A new material for photovoltaics, Sol.Energ.Mat.Sol.C. 62, 97(2000).
    [8] Shah A.V., Meier J., Sauvain E.V., Wyrsch N., Kroll U., Droz.C., and Graf U., Material and solar cell research in microcrystalline silicon, Sol.Energ.Mat.Sol.C. 78, 469(2003).
    [9] Guha S. and Yang J., High-efficiency amorphous silicon and nanocrystalline silicon-based solar cells and modules, Annual Technical Progress Report (30 January 2006 - 29 January 2007), United Solar Ovonic LLC, Michigan, USA, (2007).
    [10] Mai Y., Klein S., Carius R., Stiebig H., Houben L., Geng X., and Finger F., Improvement of open circuit voltage in microcrystalline silicon solar cells using hot wire buffer layers, J.Non-Cryst.Solids 352, 1859(2006).
    [11] Yue G., Yan B., Ganguly G., Yang J., Guha S., and Teplin C.W., Material structure and metastability of hydrogenated nanocrystalline silicon solar cells, Appl.Phys.Lett. 88, 263507(2006).
    [12] Myong S.Y., Sriprapha K., Miyajima S., Konagai M., and Yamada A., High efficiency protocrystalline silicon / microcrystalline silicon tandem cell with zinc oxide intermediate layer, Appl.Phys.Lett. 90, 263509(2007).
    [13] Yamamoto K., Nakajima A., Yoshimi M., Sawada T., Fukuda S., Suezaki T., Ichikawa M., Koi Y., Goto M., Meguro T., Matsuda T., Kondo M., Sasaki T., and Tawada Y., A high efficiency thin film silicon solar cell and module, Sol.Energy 77, 939(2004).
    [14] Fujioka Y., Shimizu A., Fukuda H., Oouchida T., Tachibana S., Tanamura H., Nomoto K., Okamota K., and Abe M., Largge-scale, high-efficiency thin-film silicon solar cells fabricated by short-pulsed plasma CVD method,Sol.Energ.Mat.Sol.C. 90, 3416(2006).
    [15] Shah A., Meier J., Buechel A., Kroll U., Steinhauser J., Meillaud F., Schade H., and Domine D., Towards very low-cost mass production of thin-film silicon photovoltaic (PV) solar modules on glass, Thin Solid Films 502, 292(2006).
    [16] Rech B., Repmann T., Wieder S., Ruske M., and Stephan U., A new concept for mass production of large area thin-film silicon solar cells on glass, Thin Solid Films 502, 300(2006).
    [17] Bailat J., Growth, microstructure and electrical performances of thin film microcrystalline silicon solar cells, Ph.D.thesis, University of Neuchatel, Switzerland, 54(2004).
    [18] Sculati-Meillaud F., Microcrytalline silicon solar cells: theory, diagnosis and stability, Ph.D.thesis, University of Neuchatel, Switzerland, 5(2006).
    [19] Paruba A., Fejfar A., Salyk O., Vabecek M., and Kocka J., Surface and bulk light scattering in microcrystalline silicon for solar cells, J.Non-Cryst.Solids 271, 152(2000).
    [20] Matsuda A., Microcrystalline silicon. Growth and device application, J.Non-Cryst.Solids 338-340, 1(2004).
    [21] Vetterl O., Grob A., Jana T., Ray S., Lambertz A., Carius R., and Finger F., Changes in electric and optical properties of intrinsic microcrystalline silicon upon variation of structural composition, J.Non-Cryst.Solids 299-302, 772(2002).
    [22] Mai Y., Microcrystalline silicon layers for thin film solar cells prepared with PECVD and HWCVD, Ph.D thesis, Nankai University, Tianjing, China, 15(2005).
    [23] Stefan A.M., Plasmonics: fundamentals and applications, Springer Science+ Business Media LLC, New York, USA, 5(2007).
    [24] Jackson J.D., Classical electrodynamics, 3rd edition, John Wiley & Sons, Inc., New York, USA, (1999).
    [25] Rand B.P., Peumans P., and Forrest S.R., Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters, J.Appl.Phys. 96, 7519(2004).
    [26] Lim S.K., Chung K.J., Kim C.K., Shin D.W., Kim Y.H., and Yoon C.S., Surface-plasmon resonance of Ag nanoparticles in polyimide, J.Appl.Phys. 98, 084309(2005).
    [27] Bohern C.F. and Huffman D.R., Absorption and scattering of light by small particles, first edition, John Wiley & Sons, Inc., New York, USA, (1983).
    [28] Veprek S. and Marecek V, The preparation of thin layers of Ge and Si by chemical hydrogen plasma transport, Solid-State Electron. 11, 683(1968).
    [29] Veprek S., Iqbal Z., Oswald H.R., and Webb A.P., Properties of polycrystalline sillicon prepared by chemical transport in gydrogen plasma at temperature between 80 and 400, J.Phys.C: Solid State Phys. 14, 295(1981).
    [30] Veprek S., Iqbal Z., Kuhne R.O., Capezzuto P., Sarott F.A., and GimzewskiJ.K., Properties of microcrystalline silicon: IV. Electrical conductivity electron spin resonance and the effect of gas absorption, J.Phys.C: Solid State Phys. 16, 6241(1983).
    [31] Usui S. and Kikuchi M., Properties of heavily doped gd-Si with low resisivity, J.Non-Cryst.Solids 34, 1(1979).
    [32] Matsuda A., Formation kinetics and control of microcrystalline in uc-Si:H from glow discharge plasma, J.Non-Cryst.Solids 59-60, 767(1983).
    [33] Curtins H., Wyrsch N., and Shah A.V., High rate deposition of amorphous hydrogenated silicon: effect of plasma excitation frequency, Electron.Lett. 23, 228(1987).
    [34] Parasad K., Fing F., Curtins H., Shah A., and Baurman J., Preparation and characterizaion of highly conductive (100 S/cm) phosphourus doped uc-Si:H films deposited using the VHF-GD technique, Mat.Res.Soc.Symp.Proc. 164, 27(1990).
    [35] Howling A.A., Dorier J.L., Hollenstein C., Kroll U., and Fing F., Frequency effect in silane plasma for plasma enhanced chemical vapor deposition, J.Vac.Sci.Technol.A 10, 1080(1992).
    [36] Finger F., Hapke P., Luysberg M., Carius R., Wagner H., and Scheib M., Improvement of grain size and deposition rate of microcrystalline silicon by use of very high freuency glow discharge, Appl.Phys.Lett. 65, 2588(1994).
    [37] Meier J., Dubail S., Fluckiger R., Fischer D., Keppner H., and Shah A., Intrinsic microcrystalline silicon (uc-Si:H) - a promising new thin film solar cell material, Proc.of 1st World Conference on Photovoltaic Solar Energy Conversion, Hawaii, USA, 409(1994).
    [38] Kondo M., Fukawa M., Guo L., and Matsuda A., High rate growth of microcrystalline silicon at low temperature, J.Non-Cryst.Solids 266-269, 84(2000).
    [39] Kondo M., Suzuki S., Nasuna Y., Tanda M., and Matsuda A., Recent developments in the high growth rate technique of device-grade microcrystalline silicon thin film, Plasma Sources Sci.Technol. 12, S111(2003).
    [40] Mai Y., Klein S., Carius R., Wolff J., Lambertz A., Finger F., and Geng X., Microcrystalline silicon solar cells deposited at high rates, J.Appl.Phys. 97, 114913(2005).
    [41] Mai Y., Klein S., Carius R., Stiebig H., Geng X., and Fing F., Open circuit voltage improvement of high-deposition-rate microcrystalline silicon solar cells by hot wire interface layers, Appl.Phys.Lett. 87, 073503(2005).
    [42] Donker M.N., Rech B., Fing F., Kessels W.M.M., and Sanden M.C.M., Highly efficient microcrystalline silicon solar cells deposited from a pure SiH4 flow, Appl.Phys.Lett. 87, 263503(2005).
    [43] Roschek T., Repmann T., Muller J., Rech B., and Wagner H., Comprehensive study of microcrystalline silicon solar cells deposited at high rate using 13.56 MHz plasma-enhanced chemical vapor deposition, J.Vac.Sci.Technol.A 20, 492(2002).
    [44] Klein S., Repmann T., and Brammer T., Microcrystalline silicon films and solar cells deposited by PECVD and HWCVD, Sol.Energy 77, 893(2004).
    [45] Klein S., Fing F., Carius R., Dylla T., Rech B., Grimm M., Houben L., and Stutzmann M., Intrinsic microcrystalline silicon prepared by hot-wire chemical vapour deposition for thin film solar cells, Thin Solid Films 430, 202(2003).
    [46] Finger F., Muller J., Malten C., Carius R., and Wagner H., Electronic properties of microcrystalline silicon investigated by electron spin resonance and transport measurements, J.Non-Cryst.Solids 266-269, 511(2000).
    [47] Baia Neto A.L., Lambertz A., Carius R., and Fing F., Relationships between structure, spin density and electronic transport in 'solar-grade' microcrystalline silicon films, J.Non-Cryst.Solids 299-302, 274(2002).
    [48] Dylla T., Elecreon spin resonance and transient photocurrent measurements on microcrystalline silicon, Ph.D.thesis, Freie University, Berlin, Germany, 10(2004).
    [49] Schropp R.E.I., Present status of micro- and polycrystalline silicon solar cells made by hot-wire chemical vapor deposition, Thin Solid Films 451-452, 455(2004).
    [50] Mahan A.H., Solar cell research and development using the hot wire CVD process, Sol.Energy 77, 931(2004).
    [51] Fonrodona M., Soler D., Villar F., Escarre J., Asensi J.M., Bertomeu J., and Andreu J., Progress in single junction microcrystalline silicon solar cells deposited by Hot-wire CVD, Thin Solid Films 501, 247(2006).
    [52] Wiesmann H., Ghosh A., Mcmahon T., and Strongin M., A-Si:H produced by high-temperature thermal decomposition of silane, J.Appl.Phys. 50, 3752(1979).
    [53] Mahan A.H., Carapella J., Neson B.P., Grandall R.S., and Balberg I., Deposition of device quality, low H content amorphous silicon, J.Appl.Phys. 69, 6728(1991).
    [54] Mahan A.H. and Vanecek M., A reduction in the Staebler-Wronski effect observed in low H content a-Si:H films deposited by the hot wire technique, AIP Symp.Proc. 234, 195(1991).
    [55] Matsumura H., Formation of polysilicon films by catalytic chemical vapor deposition (Cat-CVD) method, Jpn.J.Appl.Phys. 30, L1522(1991).
    [56] Paradopoulos P., Scholz A., Bauer S., Schroeder B., and Oechsner H., Deposition of device quality a-Si:H films with the hot-wire technique, J.Non-Cryst.Solids 164-166, 87(1993).
    [57] Rath J.K., Zutphen A.J.M.M., Meiling H., and Schropp R.E.I., Application of hot wire deposited intrinsic poly-silicon films in n-i-p cells and TSTs, Mat.Res.Soc.Symp.Proc. 467, 445(1997).
    [58] Finger F., Mai Y., Klein S., and Carius R., High efficiency microcrystalline silicon solar cells with Hot-Wire CVD buffer layer, Thin Solid Films 516, 728(2008).
    [59] Kupich M., Kumar P., and Schroder B., Preparation of n-i-p solar cellsentirely by HWCVD with microcrystalline p-layer, Thin Solid Films 430, 236(2003).
    [60] Matsui T., Kondo M., and Matsuda A., Doping properties of boron-doped microcrystalline silicon from B2H6 and BF3: material properties and solar cell performance, J.Non-Cryst.Solids 338-340, 646(2004).
    [61] Gordijn A., Rath J.K., and Schroop R.E.I., Role of growth temperature and the presence of dopants in layer-by-layer plasma deposition of thin microcrystalline silicon (uc-Si:H) doped layers, J.Appl.Phys. 95, 8290(2004).
    [62] Kumar P., Kupich M., Grunsky D., and Schroeder B., Microcrystalline B-doped window layers prepared near amorphous to microcrystalline transition by HWCVD and its application in amorphous silicon solar cells, Thin Solid Films 501, 260(2006).
    [63] Liao X., Du W., Yang X., Povolny H., Xiang X., Deng X., and Sun K., Nonostructure in the p-layer and its impacts on amorphous silicon solar cells, J.Non-Cryst.Solids 352, 1841(2006).
    [64] Schroeder B., Kupich M., Kumar P., and Grunsky D., Recent contributions of the Kaiserslautern research group to thin silicon solar cell R&D applying the HW(Cat)CVD, Thin Solid Films 516, 722(2008).
    [65] Fujibayashi T., Matui T., and Kondo M., Improvement in quantum efficiency of thin film Si solar cells due to the suppression of optical reflectance at transparent conducting oxide/Si interface by TiO2/ZnO antireflection coating, Appl.Phys.Lett. 88, 183508(2006).
    [66] Das C., Lambertz A., Huepkes J., Reetz W., and Finger F., A constructive combination of antireflection and intermediate-reflector layers for a-Si/uc-Si thin film solar cells, Appl.Phys.Lett. 92, 053509(2008).
    [67] Beyer W., Hupkes J., and Stiebig H., Transparent conducting oxide films for thin film silicon photovoltaics, Thin Solid Films 516, 147(2007).
    [68] Springer J., Poruba A., and Vabecek M., Improved three-dimensional optical model for thin-film silicon solar cells, J.Appl.Phys. 96, 5329(2004).
    [69] Stiebig H., Senoussaoui N., Zahren C., Haase C., and Muller J., Silicon thin-film solar cells with rectangular-shaped grating couplers, Prog.Photovlot: Res.Appl. 14, 13(2006).
    [70] Haase C. and Stiebig H., Optical properties of thin-film silicon soalar cells with grating couplers, Prog.Photovlot: Res.Appl. 14, 629(2006).
    [71] Haase C. and Stiebig H., Thin-film silicon solar cells with efficient periodic light trapping texture, Appl.Phys.Lett. 91, 061116(2007).
    [72] Rech B., Kluth O., Repmann T., Roschek T., Springer J., Muller J., Fing F., Stiebig H., and Wagner H., New materials and deposition techniques for highly efficient silicon thin film solar cells, Sol.Energ.Mat.Sol.C. 74, 439(2002).
    [73] Muller J., Schope G., Kluth O., Rech B., Sittinger V., Szyszka B., Geyer R., Lechner P., Schade H., Ruske M., Dittmar G., and Bochem H.P., State-of-the-art mid-frequency sputtered ZnO films for thin film silicon solarcells and modules, Thin Solid Films 442, 158(2003).
    [74] Muller J., Rech B., Springer J., and Vanecek, TCO and light trapping in silicon thin film solar cells, Sol.Energy 77, 917(2004).
    [75] Hupkes J., Rech B., Kluth O., Repmann T., Zwaygardt B., Muller J., Drese R., and Wuttig M., Surface textured MF-sputtered ZnO films for microcrystalline silicon-based thin-film solar cells, Sol.Energ.Mat.Sol.C. 90, 3054(2006).
    [76] Rech B., Repmann T., Donker M.N., Berginski M., Kilper T., Hupkes J., Calnan S., Stiebig H., and Wieder S., Challenges in microcrystalline silicon based solar cell technology, Thin Solid Films 511-512, 548(2006).
    [77] Fay S., Steinhauser J., Olivera N., Sauvain E.V., and Ballif C., Opto-electronic properties of rough LP-CVD ZnO:B for use as TCO in thin-film silicon solar cells, Thin Solid Films 515, 8558(2007).
    [78] Ellmer K., Klein A., and Rech B., Transparent conductive zinc oxide: basics and applications in thin film solar cells, Springer-Verlag, Berlin, Germany, 1(2008).
    [79] Franken R.H., Stolk R.L., Li H., Werf H.M., Rath J.K., and Schroop R.E.I., Understanding light trapping by light scattering textured back electrodes in thin film n-i-p silicon solar cells, J.Appl.Phys. 102, 014503(2007).
    [80] Soderstrom T., Haug F.J., Daudrix V.T., and Ballif C., Optimization of amorphous silicon thin film solar cells for flexible photovoltaics, J.Appl.Phys. 103, 114509(2008).
    [81] Yamamoto K., Yoshimi M., Tawada Y., Fukuda S., Sawada T., Meguro T., Takata H., Suezaki T., Koi Y., Hayashi K., Suzuki T., Ichikawa M., and Nakajima A., Large area thin film Si module, Sol.Energ.Mat.Sol.C. 74, 449(2002).
    [82] Buehlmann P., Bailat J., Domine D., Billet A., Meillaud F., Feltrin A., and Ballif C., In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells, Appl.Phys.Lett. 91, 143505(2007).
    [83] Obermeyer P., Haasse C., and Stiebig H., Advanced light trapping management by diffractive interlayer for thin-film silicon solar cells, Appl.Phys.Lett. 92, 181102(2008).
    [84] Springer J., Poruba A., Mullerova L., Vanecek M., Kluth O., and Rech B., Absorption loss at nanorough silver back reflector of thin-film silicon solar cells, J.Appl.Phys. 95, 1427(2004).
    [85] Berginski M., Hupkes J., Schulte M., Schope G., Stiebig H., Rech B., and Wutting M., The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells, J.Appl.Phys. 101, 074903(2007).
    [86] Miyajima S., Yamada A., and Konagai M., Highly conductive microcrystalline silicon carbide films deposited by the hot wire cell method and its application to amorphous silicon solar cells, Thin Solid Films 430, 274(2003).
    [87] Myong S.Y., Kim T.H., Lim K.S., Kim K.H., Ahn B.T., Miyajima S., andKonagai M., Low-temperature preparation of boron-doped nanocrystalline SiC:H films using mercury-sensitized photo-CVD technique, Sol.Energ.Mat.Sol.C. 81, 485(2004).
    [88] Huang Y., Dasgupta A., Gordijn A., Finger F., and Carius R., Highly transparent microcrystalline silicon carbide grown with hot wire chemical vapor deposition as window layers in n-i-p microcrystalline silicon solar cells, Appl.Phys.Lett. 90, 203502(2007).
    [89] Hamma S. and Cabarrocas P.R., Low-temperature growth of thick intrinsic and ultrathin phosphorous or boron-doped microcrystalline silicon film: Optimum crystalline fractions for solar cell applications, Sol.Energ.Mat.Sol.C. 217,(2001).
    [90] Beyer W., Carius R., Lejeune M., Muller J., Rech B., and Zastrow U., Deposition and properties of microcrystalline silicon from chlorosilane precursor gases, J.Non-Cryst.Solids 338-340, 147(2004).
    [91] Bronger T. and Carius R., Carrier mobilities in microcrystalline silicon films, Thin Solid Films 515, 7486(2007).
    [92] Dylla T., Finger F., and Schiff E.A., Hole drift-mobility measurements in microcrystalline silicon, Appl.Phys.Lett. 87, 032103(2005).
    [93] Shimakawa K., Percolation-controlled electronic properties in microcrystalline silicon: effective medium approach, J.Non-Cryst.Solids 266-269, 223(2000).
    [94] Pillai S., Catchpole K.R., Trupke T., and Green M.A., Surface plasmon enhanced silicon solar cells, J.Appl.Phys. 101, 093105(2007).
    [95] Sheridan A.K., Clark A.W., Glidle A., Cooper J.M., and Cumming D.R.S., Mutiple plasmon resonances from gold nanostructures, J.Appl.Phys. 90, 143105(2007).
    [96] Hutter E. and Fendler J.H., Exploitation of localized surface plasmon resonance, Adv.Mater. 16, 1685(2004).
    [97] Rabani E., Reichman D.R., Geissler P.L., and Brus L.E., Drying-mediated self-assembly of nanoparticles, Nature 426, 271(2003).
    [98] Kneipp K., Kneipp H., Itzkan I., Dasari R.R., and Feld M.S., Surface-enhanced Raman scattering and biophysics, J.Phys.:Condens.Matter 14, R597(2002).
    [99] Gupta R., Dyer M.J., and Weimer W.A., Preparation and characterization of surface plasmon resonance tunable gold and siliver films, J.Appl.Phys. 92, 5264(2002).
    [100] Liu F., Rao Y., Huang Y., Zhang W., and Peng J., Coupling between long range surface plasmon polarition mode and dielectric waveguide mode, Appl.Phys.Lett. 90, 141101(2007).
    [101] Barnes W.L., Dereux A., and Ebbesen T.W., Surface plasmon subwavelength optics, Nature 424, 824(2003).
    [102] Grubisha D., Lipert R., and Park H., Femtomolar detection of prostate-specific antigen: An immunoassay based on surface-enhanced Raman scattering and immunogold labels, Analytical Chem. 75, 21(2003).
    [103] Westphalen M., Kreibig U., Rostalski J., Luth H., and Meissner D., Metal cluster enhanced organic solar cells, Sol.Energ.Mat.Sol.C. 61, 97(2000).
    [104] Wen C., Ishikawa K., Kishima M., and Yamada K., Effects of silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films, Sol.Energ.Mat.Sol.C. 61, 339(2000).
    [105] Moulin E., Sukmanowski J., Royer F.X., and Stiebig H., Integration of metallic nanoparticles in thin-film solar cells, 21th European PhotovoltaicSolar Energy Conference and Exhibition, Dresden, Germany, 1724(2006).
    [106] Moulin E., Sukmanowski J., Schulte M., Gordijn A., Royer F.X., and Stiebig H., Thin-film silicon solar cells with integrated silver nanoparticles, Thin Solid Films 516, 6813(2008).
    [107] Derkacs D., Lim S.H., Matheu P., Mar W., and Yu E.T., Improved performance of amorphous silicon solar cells via scattering from surface plasmon ploaritons in bearby metallic nanoparticles, Appl.Phys.Lett. 89, 093103(2006).
    [1] Ellmer K., Klein A., and Rech B., Transparent conductive zinc oxide: basics and applications in thin film solar cells, Springer-Verlag, Berlin, Germany, 1(2008).
    [2] Beyer W., Hupkes J., and Stiebig H., Transparent conducting oxide films for thin film silicon photovoltaics, Thin Solid Films 516, 147(2007).
    [3] Repmann T., Sehrbrock B., Zahren C., Siekmann H., Muller J., and Rech B., Thin film solar modules based on amorphous and microcrystalline silicon, Proceedings of 3rd World Conference on Photovlotaic Energy Conversion (WCPEC-3rd), Osaka, Janpan, 5O-A6-03(2003).
    [4] Haase C. and Stiebig H., Thin-film silicon solar cells with efficient periodic light trapping texture, Appl.Phys.Lett. 91, 061116(2007).
    [5] Muller J., Rech B., Springer J., and Vanecek, TCO and light trapping in silicon thin film solar cells, Sol.Energy 77, 917(2004).
    [6] Rech B., Repmann T., Donker M.N., Berginski M., Kilper T., Hupkes J., Calnan S., Stiebig H., and Wieder S., Challenges in microcrystalline silicon based solar cell technology, Thin Solid Films 511-512, 548(2006).
    [7] Berginski M., Hupkes J., Schulte M., Schope G., Stiebig H., Rech B., and Wutting M., The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells, J.Appl.Phys. 101, 074903(2007).
    [8] Repmann T., Appenzeller W., Sehrbrock B., Stiebig H., and Rech B., Advanced PECVD processes for thin-film silicon solar cells on glass, 19th European Photovlotaics Solar Energy Conference, Paris, France, 1334(2004).
    [9] Merdzhanova T., Microcrystalline silicon films and solar cells investigated by photoluminescence spectroscopy, Ph.D.thesis, Bulgarian Academy of Sciences, Sofia, Bulgarie, 39(2004).
    [10] Mai Y., Microcrystalline silicon layers for thin film solar cells prepared with PECVD and HWCVD, Ph.D thesis, Nankai University, Tianjing, China, 15(2005).
    [11] Neamen D.A., Semiconductor physics and devices: basic principles, Irwin Professional Publishing, USA, (1992).
    [12] Bronger T. and Carius R., Carrier mobilities in microcrystalline silicon films, Thin Solid Films 515, 7486(2007).
    [13] Roschek T., Microcrystalline silicon solar cells prepared by 13.56 MHz PECVD: prerequisites for high quality material at high growth rates, Ph.D.thesis, Heinrich Heine Universitat Dusseldorf, Dusseldorf, Germany, 15(2003).
    [1] Beyer W., Carius R., Lejeune M., Muller J., Rech B., and Zastrow U., Deposition and properties of microcrystalline silicon from chlorosilane precursor gases, J.Non-Cryst.Solids 338-340, 147(2004).
    [2] Bronger T. and Carius R., Carrier mobilities in microcrystalline silicon films, Thin Solid Films 515, 7486(2007).
    [3] Dylla T., Finger F., and Schiff E.A., Hole drift-mobility measurements in microcrystalline silicon, Appl.Phys.Lett. 87, 032103(2005).
    [4] Shimakawa K., Percolation-controlled electronic properties in microcrystalline silicon: effective medium approach, J.Non-Cryst.Solids 266-269, 223(2000).
    [5] Matsuda A., Growth mechanism of microcrystalline silicon obtained from reactive plasma, Thin Solid Films 337, 1(1999).
    [6] Chen H., Gullanar M.H., and Shen W.Z., Effects of high hydrogen dilution on the optical and electrical properties in B-doped nc-Si:H thin films, J.Cryst.Growth 260, 91(2004).
    [7] Lei Q.S., Wu Z.M., Xi J.P., Geng X.H., Zhao Y., and Sun J., Development of highly conductive boron-doped microcrystalline silicon film for application in solar cells, Int.J.Mod.Phys.B 20, 303(2006).
    [8] Du N., Zhu Y.T., Tong B.Y., and Wong S.K., Observation of normal Hall coefficient of amorphous Si thin films prepared by low-pressure chemical-vapor deposition, Phys.Rev.B 41, 1251(1990).
    [9] Nebel C.E., Rother M., Stutzmann M., Summonte C., and Heintze M., The sign of the Hall effect in hydrogenated amorphous and disordered crystalline silicon, Phil.Mag.Lett. 74, 455(1996).
    [10] Klein S., Fing F., Carius R., and Stutzmann M., Deposition of microcrystalline silicon prepared by hot-wire chemical-vapor deposition: The influence of the deposition parameters on the material properties and solar cell performance, J.Appl.Phys. 98, 024905(2005).
    [11] Ichikawa M., Tsushima T., Yamada A., and Konagai M., Amorphous-to-polycrystalline silicon transition in hot wire cell method, Jpn.J.Appl.Phys. 39, 4712(2000).
    [12] Perrin J., Takeda Y., Hirano N., Takeuchi Y., and Matsuda A., Sticking and recombination of the SiH3 radical on hydrogenated amorphous silicon: The catalytic effect of diborane, Surf.Sci. 210, 114(1989).
    [13] Matsui T., Kondo M., and Matsuda A., Doping properties of boron-doped microcrystalline silicon from B2H6 and BF3: material properties and solar cell performance, J.Non-Cryst.Solids 338-340, 646(2004).
    [14] Kumar P. and Schroeder B., Electrical properties/Doping efficiency of doped microcrystalline silicon layers perpared by hot-wire chemical vapor deposition, Thin Solid Films 516, 580(2008).
    [15] Dylla T., Elecreon spin resonance and transient photocurrent measurements on microcrystalline silicon, Ph.D.thesis, Freie University, Berlin, Germany,10(2004).
    [16] Gullanar M.H., Chen H., Wei W.S., Cui R.Q., and Shen W.Z., Roles of hydrogen dilution on the microstructural and optoelectronic properties of B-doped nanocrystalline Si:H thin films, J.Appl.Phys. 95, 3961(2004).
    [17] Merdzhanova T., Microcrystalline silicon films and solar cells investigated by photoluminescence spectroscopy, Ph.D.thesis, Bulgarian Academy of Sciences, Sofia, Bulgarie, 39(2004).
    [18] Dusane R.O., Diehl F., Weber U., and Schroder B., Highly conducting doped microcrystalline silicon (uc-Si:H) at very low substrate temperature by Cat-CVD, Thin Solid Films 395, 202(2001).
    [19] Jadkar S.R., Sali J.V., Takwale M.G., Musale D.V., and Kshirsagar S.T., Synthesis of highly conductive boron-doped p-type hydrogenated microcrystalline silicon (uc-Si:H) by a hot-wire chemical vapor deposition (HWCVD) technique, Sol.Energ.Mat.Sol.C. 64, 333-346(2000).
    [20] Dasgupta A., Lambertz A., Vetterl O., Finger F., Carius R., Zastrow U., and Wagner H., P-layers of microcrystalline silicon thin film solar cells, 16th European Photovlotaics Solar Energy Conference and Exhibition. [477] VB1/38(2000).
    [21] Mai Y., Microcrystalline silicon layers for thin film solar cells prepared with PECVD and HWCVD, Ph.D thesis, Nankai University, Tianjing, China, 15(2005).
    [22] Das D., Sharma S.N., Bhattacharyya T.K., Chattopadhyay S., Barua A.K., and Banerjee R., Deposition of boron doped a-Si:H films by a novel conbination of rf glow discharge technique and filament heating: Enhancement of doping efficiency, Solid State Commun. 97, 769(1996).
    [1] Springer J., Poruba A., and Vabecek M., Improved three-dimensional optical model for thin-film silicon solar cells, J.Appl.Phys. 96, 5329(2004).
    [2] Stiebig H., Senoussaoui N., Zahren C., Haase C., and Muller J., Silicon thin-film solar cells with rectangular-shaped grating couplers, Prog.Photovlot: Res.Appl. 14, 13(2006).
    [3] Haase C. and Stiebig H., Optical properties of thin-film silicon soalar cells with grating couplers, Prog.Photovlot: Res.Appl. 14, 629(2006).
    [4] Haase C. and Stiebig H., Thin-film silicon solar cells with efficient periodic light trapping texture, Appl.Phys.Lett. 91, 061116(2007).
    [5] Westphalen M., Kreibig U., Rostalski J., Luth H., and Meissner D., Metal cluster enhanced organic solar cells, Sol.Energ.Mat.Sol.C. 61, 97(2000).
    [6] Rand B.P., Peumans P., and Forrest S.R., Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters, J.Appl.Phys. 96, 7519(2004).
    [7] Hutter E. and Fendler J.H., Exploitation of localized surface plasmon resonance, Adv.Mater. 16, 1685(2004).
    [8] Wen C., Ishikawa K., Kishima M., and Yamada K., Effects of silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films, Sol.Energ.Mat.Sol.C. 61, 339(2000).
    [9] Liu F., Rao Y., Huang Y., Zhang W., and Peng J., Coupling between long range surface plasmon polarition mode and dielectric waveguide mode, Appl.Phys.Lett. 90, 141101(2007).
    [10] Barnes W.L., Dereux A., and Ebbesen T.W., Surface plasmon subwavelength optics, Nature 424, 824(2003).
    [11] Kneipp K., Kneipp H., Itzkan I., Dasari R.R., and Feld M.S., Surface-enhanced Raman scattering and biophysics, J.Phys.:Condens.Matter 14, R597(2002).
    [12] Grubisha D., Lipert R., and Park H., Femtomolar detection of prostate-specific antigen: An immunoassay based on surface-enhanced Raman scattering and immunogold labels, Analytical Chem. 75, 21(2003).
    [13] Moulin E., Sukmanowski J., Royer F.X., and Stiebig H., Integration of metallic nanoparticles in thin-film solar cells, 21th European PhotovoltaicSolar Energy Conference and Exhibition, Dresden, Germany, 1724(2006).
    [14] Moulin E., Sukmanowski J., Schulte M., Gordijn A., Royer F.X., and Stiebig H., Thin-film silicon solar cells with integrated silver nanoparticles, Thin Solid Films 516, 6813(2008).
    [15] Xu G., Tazawa M., Jin P., Nakao S., and Yoshimura K., Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films, Appl.Phys.Lett. 82, 3811(2003).
    [16] Tzolov M., Tzenov N., Dimova-Malinovska D., Kalitzova M., Pizzuto C.,Vitali G., Zollo G., and Ivanov I., Vibrational properties and structure of undoped and Al-doped ZnO films deposited by RF magnetron sputtering, Thin Solid Films 379, 28(2000).
    [17] Springer J., Poruba A., Mullerova L., Vanecek M., Kluth O., and Rech B., Absorption loss at nanorough silver back reflector of thin-film silicon solar cells, J.Appl.Phys. 95, 1427(2004).
    [1] Raether H., Surface plasmons on smooth and rough surfaces and on gratings, Springer Science+ Business Media LLC, New York, USA, 4(1986).
    [2] Franken R.H., Stolk R.L., Li H., Werf H.M., Rath J.K., and Schroop R.E.I., Understanding light trapping by light scattering textured back electrodes in thin film n-i-p silicon solar cells, J.Appl.Phys. 102, 014503(2007).
    [3] Soderstrom T., Haug F.J., Daudrix V.T., and Ballif C., Optimization of amorphous silicon thin film solar cells for flexible photovoltaics, J.Appl.Phys. 103, 114509(2008).
    [4] Bailat J., Growth, microstructure and electrical performances of thin film microcrystalline silicon solar cells, Ph.D.thesis, University of Neuchatel, Switzerland, 54(2004).
    [5] Stiebig H., Senoussaoui N., Zahren C., Haase C., and Muller J., Siliconthin-film solar cells with rectangular-shaped grating couplers, Prog.Photovlot: Res.Appl. 14, 13(2006).
    [6] Moulin E., Sukmanowski J., Luo P., Carius R., Royer F.X., and Stiebig H., Improved light absorption in thin-film silicon solar cells by integration of silver nanoparticles, J.Non-Cryst.Solids 354, 2488(2008).
    [7] Python M., Vallat-Sauvain E., Bailat J., Domine D., Fesquet L., Shah A., and Ballif C., Relation between substrate surface morphology and microcrystalline silicon solar cell performance, J.Non-Cryst.Solids 354, 2258(2008).
    [8] Stefan A.M., Plasmonics: fundamentals and applications, Springer Science+ Business Media LLC, New York, USA, 5(2007).
    [9] Moulin E., Luo P., Sukmanowski J., Schulte M., Royer F.X., and Stiebig H., Improved light absorption in amorphous silicon thin-film solar cells by integration of silver nanoparticles and silver nanostructures, 22nd European photovoltaic solar energy conference, Milan, Italy, 2195(2007).
    [10] Berginski M., Hupkes J., Schulte M., Schope G., Stiebig H., Rech B., and Wutting M., The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells, J.Appl.Phys. 101, 074903(2007).
    [11] Beyer W., Hupkes J., and Stiebig H., Transparent conducting oxide films for thin film silicon photovoltaics, Thin Solid Films 516, 147(2007).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700