用户名: 密码: 验证码:
无磁发动机材料体系的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无磁发动机是高磁防护性能要求的机械设备的主要动力装置,对满足特殊环境下的动力需求具有重要意义。材料的优化选择是研制开发无磁发动机的基础,本论文针对无磁发动机材料的研制和优选开展了一些初步研究。
     本论文试验了三种新型的Mn-Cu无磁铸铁,以Mn和Cu是主要元素,并添加了Ni、Al等合金元素,采用稀土REMgSiFe蠕化处理和SiFe+Al孕育处理,并进行了合适的热处理强化。新型铸铁的基体组织为奥氏体结构,其上均匀分布着片状、球状或蠕虫状石墨。经蠕化处理的两种铸铁在热处理后的抗拉强度高达376MPa、379MPa,抗压强度达1123MPa、1217MPa,硬度为277HBS、286HBS,具有良好的塑性和冲击韧性,主要机械性能超过发动机常用铸铁HT350的水平,而磁导率仅为8.9μH·m~(-1)和5.9μH·m~(-1),近似于无磁性。这两种新型铸铁可用于无磁发动机缸体、缸盖、机体、机座等零件。
     本论文还研究了用于齿轮类零件的奥氏体不锈钢1Cr18Mn12Ni2N的固溶处理工艺及用于轴类零件的无磁模具钢7Mn15Cr2Al3V2WMo的热处理工艺及强化工艺。研究表明:(1)在950~1200℃固溶处理时,1Cr18Mn12Ni2N钢的强度和硬度随固溶温度呈曲线变化,塑性和韧性变化不明显;磁化率︱χ︱≤1,在外磁场中不易被磁化,磁导率维持在2.6~4.2μH·m~(-1)之间,随温度也呈曲线变化。影响钢的力学及磁学性能的因素主要与组织结构和析出物数量的变化有关。经1050~1100℃固溶处理后1Cr18Mn12Ni2N钢的综合力学性能好,磁导率较低,是最佳的固溶处理温度范围。1Cr18Mn12Ni2N钢的综合机械性能优于20CrV钢,接近20CrMnTi钢的性能水平,可用于中轻载荷的齿轮类零件。(2)热处理工艺对7Mn15Cr2Al3V2WMo钢的组织和性能具有重要的影响:高温退火可消除锻造应力,改变碳化物颗粒的形状及分布,适于进行粗加工;固溶处理时碳化物逐渐溶入奥氏体基体使其达到过饱和状态,导致随固溶温度的升高强度上升而塑性和韧性则明显下降,硬度降至最低值,最适合钢的加工处理;而进行时效处理后,基体上弥散析出大量碳化物,钢的强度和硬度也显著提高。7Mn15Cr2Al3V2WMo钢的导磁率较低,磁导率随固溶处理温度呈上升趋势。7Mn15Cr2Al3V2WMo钢的主要机械性能优于常用轴类材料40Cr、40CrMnA等,可满足中重载荷、耐磨损的轴类零件的要求。
     此外,本文还优选了轻金属、陶瓷、复合材料等发动机适用的无磁材料,分析了它们的性能特点及可能应用的零件。总之,本文对发动机无磁材料的研究成果对开发无磁发动机具有一定的帮助。
Non-magnetic engine is the main power of high magnetic-protective mechanical equipment, so it could play an important part in meeting the needs of special environments. A series of non-magnetic materials are developed and chosen in this paper for it is the base for developing non-magnetic engine.
     In this paper, three kinds of new Mn-Cu non-magnetic cast irons, whose main alloyed elements are Mn、Cu besides additional alloyed elements Ni and Al, are developed. Meanwhile, REMgSiFe vermicular agent and SiFe+Al inoculant are used to modify the molten iron, and different heat treatments are experimented to perfect these cast irons. After vermicularing treatment, the matrix structure of new cast irons is mainly consist of austenitic on which spherical graphite or vermicular graphite distribute equably. Their mechanical properties are excellent: tensile strength and concrete strength are 376MPa、379MPa and 1123MPa、1217MPa, Brinell hardness are 277HBS and 286HBS, meanwhile their plasticity、toughness and compactness are also very excellent. Generally speaking, their general mechanical properties could exceed the cast iron HT350 used in diesel engine commonly. Moreover these self-produced cast irons are nearly non-magnetic in that the magnetic permeability are merely 8.9μH·m~(-1) and 5.9μH·m~(-1). Because of their excellent properties, we plan to use them in non-magnetic engine components such as cylinder block、cylinder head、engine body、engine bedplate and so on.
     The solid solution process of a new stainless steel 1Cr18Mn12Ni2N used as gear materials and the heat treatment process and strengthen process of the non-magnetic mould steel 7Mn15Cr2Al3V2WMo used in shaft materials are also investigated in this paper. According to the experimental results, some important conclusions are given as follows: (1) The strength and hardness of the steel 1Cr18Mn12Ni2N solution-annealed in the region of 950~1200℃are changed in a curve mode with solution-annealed temperature, meanwhile the plasticity and toughness of the steel remain almost unchanged. Due to magnetic susceptibility︱χ︱?1, the steel is difficult to be magnetized . Moreover, its magnetic permeability maintained in the range of 2.6~4.2μH·m~(-1) is also changed in a curve mode with solution-annealed temperature. Analysis shows that the mechanical properties and the magnetic properties are evidently influenced by the shape of grains and the fraction of precipitations. 1Cr18Mn12Ni2N steel solution-annealed in the region of 1050~1100℃exhibits excellent mechanical properties and low magnetic permeability, so the region of 1050~1100℃is the optimal solution-annealed temperature. Because comprehensive mechanical properties of 1Cr18Mn12Ni2N precede 20CrV and approach 20CrMnTi, so it could be used in gear accessories under low loading. (2) Heat treatment process has important effects on the microstructure and properties of 7Mn15Cr2Al3V2WMo: High temperature annealing eliminated forging stress and changed the shape and distribution of carbide, so coarse machining is suitable to be undertaken after this process. During solid solution process, the strength increases but the plasticity、toughness and hardness decrease with solution-annealed temperature due to carbide dissolve in matrix to make austenitic structure to supersaturated state, and it’s feasible to pursue the main machining process. However, lots of carbides precipitated in the matrix lead to the strength and hardness increasing evidently during aging treatment. The magnetic permeability of 7Mn15Cr2Al3V2WMo is low, and it increase with solution-annealing temperature. 7Mn15Cr2Al3V2WMo could be used in shaft accessories under heavy loading and receive abrasion because its general mechanical properties excelled the common crankshaft materials 40Cr、40CrMnA.
     Besides, several materials of non-magnetic engine, including light metals、composites、ceramics and so on are chosen properly. Meanwhile, their characteristics and the potential applications for non-magnetic engine are also discussed in this paper. In conclusion, the experimental result concerning non-magnetic materials could provide some helps to develop non-magnetic engine.
引文
[1]崔峰,尹小功.新千年反水雷作战[J].水雷战与舰船防护, 2000, 12(3): 26
    [2]刘平,杨洋,王青.国外反水雷舰艇装备现状及发展趋势[J].船舶工程, 2004, 26(6): 1-3
    [3]徐阳.国外反水雷技术装备新发展[J].国防科技工业, 2000, 9(1): 61-64
    [4]张鹏,白美驹.解读德国海军MJ2000猎雷计划[J].现代舰船, 2003, 41(5): 28-29
    [5]王锡坤,胡超.国外无磁性反水雷舰艇的磁防护指标评估[J].船舶, 1994, 5(5): 59-62
    [6]周佩芬.舰船消磁方法[J].水雷战与舰船防护, 1995, 7(4): 39-41
    [7]李宝祥.前苏联的基地扫雷艇[J].水雷战与舰船防护, 1996, 8(1): 13-16
    [8]小虽.第三只眼看中国海军[J].水雷战与舰船防护, 2005, 17(3): 22-31
    [9]詹姆斯·C·巴塞特.中国海军水雷战能力[J].水雷战与舰船防护, 2006, 18(2): 22-24
    [10]郝桾石.蹈海惊雷—中国海军水雷与反水雷武器揭秘[J].现代船舶, 2006, 44(8): 16-18
    [11]夏立新.消磁技术[J].水雷战与舰船防护, 1994, 6(3): 40-44
    [12] Schwab A J. Elecktromagnetische Vertraglichkeit [M].第1版.马乃祥译.武汉:高电压技术编辑部, 1994. 82-93
    [13]候文. MTU柴油机消磁方法与试验结果[J].柴油机, 1985, 7(6): 34-39
    [14]周佩芬.舰船消磁装置[J].水雷战与舰船防护, 1994, 6(2): 58-59
    [15]李杰.舰艇为什么要消磁[J].国防技术基础, 2002, 2(4): 47-48
    [16]杜志瀛.船用柴油机磁性测量及磁性补偿技术研究[J].船舶, 1991, 2(4): 54-60
    [17]朱云川.闭环消磁算法在扫雷艇发动机上的试验[J].机电设备, 1994, 31(4): 35-41
    [18]周凤云.工程材料及应用[M].第2版.武汉:华中科技大学出版社, 2002. 92-93
    [19]林慧国,林钢,吴静雯.袖珍世界钢号手册[M].第3版.北京:机械工业出版社, 2003. 54-62
    [20]虞莲莲,曾正明.实用钢铁材料手册[M].第3版.北京:机械工业出版社, 2005. 186-294
    [21] Yamada Susumu, Haruyama Takumi. Cast iron[P]. Japan Patent, 2004218027A, 2004. 19
    [22] Eraido Goenzi, Pont A.Mouson. Austenitic nodular iron[P]. United States Patent, 2842437, 1958. 460-463
    [23]安钢,李立,刘月英.锰铜系无磁铸铁的试验研究[J].河北机电学院学报, 1994, 11(3): 12-19
    [24] Yoshiakl Shingu, Yasushl Ueda. Non-magnetic high manganese cast iron[P]. United States Patent, 5643530, 1997. 19-26
    [25] Ma Y Q, Qi Y H. Exploitation and applications of metastable austenite matrix wear resisting alloys[J], ACTA Metallurgica Sinica, 1999, 32(5): 1206-1211
    [26]赵进刚,张宝伟,王明林.高强度奥氏体不锈钢的发展[J].材料开发与应用, 2005, 20(4): 38-40
    [27]伍千思.不锈钢标准中的铬锰系奥氏体不锈钢[J].冶金质量与标准, 2004, 42(6): 34-37
    [28] Smith R W, Demonte A, Mackay W B F. Development of high-manganese steels of heavy duty cast-to-shape applications[J]. Journal of Materials Technology, 2004, 153-154(10): 589-595
    [29] Zhang Yansheng. Compositional dependence of the neel transition structural stability, magnetic properties and electrical resistibity in Fe-Mn-Al-Cr-Si alloys[J]. Material Science and Engineering A, 2002, 334(5): 19-27
    [30]姜祖赓.模具钢[M].第1版.北京:冶金工业出版社, 1988. 101
    [31] Smith W F. Structure and properties of engineering alloys[M]. 1st Edition. New York: Mcgraw-Hill, 1981. 56-69
    [32] Horst E.Friedrich. Forming and bonding techniques for high-strength aluminum alloys[J]. JOM, 1995, 47(2): 33-35
    [33]潘复生,张丁非.铝合金及其应用[M].第1版.北京:化学工业出版社, 2006. 341-386
    [34]张津,章宗和.镁合金及应用[M].第1版.北京:化学工业出版社, 2004. 284-307
    [35]张喜燕,赵永庆.钛合金及应用[M].第1版.北京:化学工业出版社, 2005. 287-303
    [36]尧世文,王华,王胜林.特种陶瓷材料的研究与应用[J].工业加热, 2006, 35(5): 1-4
    [37]陆际清,田杰谟.高性能陶瓷材料在汽车发动机中的应用[J].车用发动机, 2000, 23(3): 12-15
    [38]张金迎,周晓军.陶瓷材料在汽车上的应用[J].汽车工艺与材料, 2005, 20(8): 4-7
    [39]车剑飞,黄洁雯,杨娟.复合材料及其工程应用[M].第1版.北京:机械工业出版社, 2006. 1-132
    [40]张少华.新型复合材料在发动机制造业中的应用[J].汽车与配件, 2004, 24(10): 22-23
    [41]晓青.现代汽车发动机材料发展新动向[J].金属世界, 2004, 17(4): 39-44
    [42]李琦,龚烈航,高久好.复合材料在工程机械中的应用研究[J].矿山机械, 2004, 31(11): 38-39
    [43] Otani T, Yahata N, Fujiki A, et al. Impact wear characteristics of engine valve and valve seat insert materials at high temperature[J]. WEAR, 1995, 188: 175-184
    [44]程晓春.新型高分子材料在汽车动力系统中的应用进展[J].新材料产业, 2005, 7(9): 46-48
    [45] Walton C F.铸铁件手册[M].第1版.北京:清华大学出版社, 1990. 85-90
    [46]А.П.古里亚耶夫.金属学[M].第1版.北京:机械工业出版社, 1986. 32-100
    [47]石德珂.材料科学基础[M].第1版.西安:西安交通大学出版社, 1999. 175
    [48] Putatunda Susil K, Yang Jianghuai, Gundlach Richard B. Development of an austenitic structural steel[J]. Materials & Design, 2005, 26(6): 534-544
    [49] Kalpakjiann S. Manufacturing process for engineering materials[M]. 1st Edition. London: Addison Wesley Publishing Co., 1984. 63-70
    [50] Ishida K. Calculation of the effect of alloying elements on the Ms temperature in steels[J]. Alloys and Compounds, 1995, 220(1): 126-131
    [51]杨济心,杨留栓,王汝耀等.低铝低镍中锰奥氏体铸铁及生产工艺[J].铸造, 2004, 53(7): 525-527
    [52] Vasudeban S. A study on the influence of manganese additions on austenitic ductile iron[J]. The British Foundryman, 1985, 18(6): 243-251
    [53]初福民,李明第,李长龙.锰系无磁铸铁的工艺及性能控制[J].铸造技术, 2002, 24(6): 334-335
    [54]吴振卿,张治青.高铬铸铁复合耐磨层耐磨性能的研究[J].铸造设备研究, 2000, 22(2): 17-19
    [55]初福民,李明第,李长龙.锰系无磁铸铁的研制[J].热加工工艺, 2002, 32(6): 48-49
    [56]张国志,贾光霖,肖汉杰等.铜对无磁铸铁组织和性能的影响[J].东北大学学报, 1997, 18(2): 149-151
    [57] Hans J.Kohnert, Eslingen, Herbert Smetan, et al. Austenitic cast iron[P]. United States Patent, 4129309, 1978. 69-72
    [58] Eichiro. Bearing having a valve seat for a rotary compressor[P]. United States Patent, 4955414, 1990. 16-18
    [59] Jacobs. Austenitic cast iron[P]. United States Patent, 2472027, 1972. 647-649
    [60]单琨,叶以富.高硅碳比灰铸铁的熔炼技术[J].现代铸铁, 1999, 19(3): 84-86
    [61]赵振中.锰铜系无磁性铸铁[J].铸造, 1982, 31(2): 32-36
    [62]黄惠松,盛达,曾大本等.蠕墨铸铁[M].第1版.北京:清华大学出版社, 1982.17-39
    [63]张伯明.铸造手册,第一卷,铸铁[M].第2版.北京:机械工业出版社, 2002. 376-418
    [64] Sheng Da. Cast irons containing rare earths[M]. 1st Edition. Beijing: Tsinghua University Academic Treatise, 2000. 203-205
    [65] Subramanian S V. The physical metallurgy of cast iron[M]. 1st Edition. Amsterdam: North Holland Publiser, 1984. 73-80
    [66] Steve Dawson.蠕铁生产的过程控制[C]. 2003中国铸造活动周论文集.南京: 2003. 219-225
    [67]李泉华.热处理400问解析[M].第1版.北京:机械工业出版社, 2002. 545-609
    [68]朱沅浦,候增寿,邹康宏等.热处理手册[M].第3版.北京:机械工业出版社, 1997. 409-436
    [69] Schino A D I, Kenny J M. Development of high nitrogen, low nickel, 18%Cr austenitic stainless steels[J]. Journal of Materials Science, 2000, 35(19): 4803-4808
    [70] Franks R, Binder W O, Thompson J. Austenitic chromium-manganese-nickel steels containing nitrogen[J]. Trans ASM, 1995, 47(3): 231-259
    [71] Janik.czachor M, Lunarska E, Szklarska Smialowska Z. Effect of nitrogen in 18Cr-5Ni-10Mn stainless steel on printing susceptibility in chloride solution[J]. Acta Met, 1975, 31(11): 394-398
    [72] Smmons J W. Strain hardening and plastic flow properties of nitrogen-alloyed Fe-17Cr-(8-10)Mn-5Ni austenitic stainless steels[J]. Acta Met, 1997, 45(6): 2467-2475
    [73] Susil K.Putatunda, Swaran Unni, Gavin Lawes. Mechanical and magnetic properties of a new austenitic structural steel[J]. Materials Science and Engineering A, 2005, 406: 254-260
    [74]李志,高谦,何冰.节镍型奥氏体不锈钢1Cr17Mn9Ni4N的组织和力学性能[J].钢铁研究学报, 2005, 17(2): 68-71
    [75]赵朴.化学成分和固溶温度对1Cr17Mn9Ni4N不锈钢组织和性能的影响[J].钢铁研究学报, 2003, 15(3): 21-24
    [76] Takahashi H, Shindo Y, Kinoshita H, et al. Mechanical properties and damage behavior of non-magnetic high manganese austenitic steels[J]. Journal of Nuclear Materials, 1998, 258(1-3): 1644-1650
    [77]韩福生,何旭光,邱铜.弥散硬化型无磁模具钢的组织与性能[J].钢铁, 1997, 32(3): 49-54
    [78]杨声贵,韩福生.新型高Mn-V无磁模具钢[J].磁性材料及器件, 1995, 26(4): 61-63
    [79] Beneteau A, Weisbecker P, Geandier G. Austenitization and precipitate dissolution in high nitrogen steels: an in situ high temperature X-ray synchrotron diffraction analysis using the Rietveld method[J]. Materials Science and Engineering A, 2005, 393(1-2): 63-70
    [80] Saito S, Fukaya K, Ishiyama S, et al. Characterization of non-magnetic Mn-Cr steel as a low induced activation material for vacuum vessels[J]. Journal of Nuclear Materials, 2000, 283-287(12): 593-596
    [81] Masanori Onozuka, Tomikane Saida, Shouzou Hirai, et al. Low-activation Mn-Cr austenitic stainless steel with futher reduced content of long-lived radioactive elements[J]. Journal of Nuclear Materials, 1998, 255(2): 123-128
    [82]沈国雄,刘斌.氮对304奥氏体不锈钢组织和力学性能的影响[J].钢铁研究学报, 1997, 10(2): 33-36
    [83] Dischino A, Barteri M, Kenny J M. Effects of grain size on the properties of a low nickel austenitic stainless steel[J]. Journal of Materials Science, 2003, 38(23): 4725-4733
    [84] Schino A D I, Barteri M, Kenny J M. Grain size dependence of mechanical, corrosion and tribological properties of high nitrogen stainless steels[J]. Journal of Materials Science, 2003, 38(5): 3257-3262
    [85] Dischino A, Barteri M, Kenny J M. Fatigue behavior of a high nitrogen austenitic stainless steel as a function of its grain size[J]. Journal of Materials Science, 2003, 22(3): 1511-1513
    [86] Speidel M O.超高强度奥氏体不锈钢[R]. 2001世界不锈钢大会报告.荷兰海牙: 2001
    [87] Paul Nieschwitz, Christian Meybohm. New hydraulic radial forging machine for difficult to shape materials[C]. In: Meeting of the working committee of forging committee. Dusseldorf: 1991. 1-5
    [88] Premkumar R, Samajdar I, Viswanathan N N, et al. Relative effects of texture and grain size on magnetic properties in a low silicon non-grain oriented electrical steel[J]. Journal of Magnetism and Magnetic Materials, 2003, 264(2): 75-85
    [89] Tavares S S M, Fruchart D, Miraglia S. Magnetic properties of an AISI 420 martensitic stainless steel[J]. Journal of Alloys and Compounds, 2000, 312(3): 307-314
    [90] Marco A.da Cunda, Sebastiao C. Paolinelli. Effect of the annealing temperature on the structure and magnetic properties of 3% Si non-oriented steel[J]. Journal of Magnetism and Magnetic Materials, 2003, 254(2): 379-381
    [91]张文康,毛卫民,白志浩.退火温度对冷轧无取向硅钢组织结构和次性能的影响[J].特殊钢, 2006, 27(1): 15-17
    [92]邱昱斌,林大方,孙岩梅.微合金钢的显微组织与磁感应强度的关系[J].钢铁研究学报, 2005, 17(2): 64-67
    [93]戚丹鸿.影响0Cr13钢磁性能的几种因素[J].机械工程材料, 2000, 24(6): 39-41
    [94] Tavares S S M, Silva M R, Neto J M, et al. Magnetic properties of a Ni-Co-Mo-Ti maraging 350 steel[J]. Journal of Alloys and Compounds, 2004, 373(1-2): 304-311
    [95]张晓燕,何力,伍玉娇.铬对高锰奥氏体钢相结构的影响[J].贵州工业大学学报, 1998, 27(4): 58-61
    [96]何向山,韩建欧,崔崑.微量元素对奥氏体热模钢晶界组织性能的影响[J].华中理工大学学报, 1995, 23(12): 13-16
    [97]王维军,马中伟,王伟.无磁钢制模具的热处理[J].热处理, 2003, 25(8): 52-54
    [98]黄春峰.国外新型热作模具钢及其热处理工艺[J].航空制造技术, 2003, 46(8): 68-70
    [99]崔崑.我国模具钢热处理与表面改性研究进展[J].机械工人(热加工), 2003, 54(4): 15-17
    [100]沈小军.利用再渗氮处理改善金属模具钢的热疲劳特性[J].国外金属热处理, 2003, 24(6): 30-35
    [101]孙荣耀,郭雅萍,张新. 7Mn15钢制无磁模具的渗硼强化[J].东北大学学报,1998, 19(6): 581-583
    [102]陈涛.中温盐浴渗硼的研究[J].金属热处理, 1986, 32(6):26-28
    [103]傅明喜,司乃潮,杨永涛等.无缸套汽车柴油发动机缸体材料的研究与应用[J].汽车工程, 2003, 25(4): 407-410
    [104]吴融华.重型车用柴油机及其附件的结构新特点[J].汽车与配件, 2001, 21(1): 29-30
    [105]范晓明,廖刚军,潘庚生等.高强薄壁灰铸铁缸体和缸盖发展概况[J].现代铸铁, 1996, 13(2): 37-38
    [106]王翠芳.齿轮材料的合理选择[J].江西化工, 2004, 20(4): 203-204
    [107]王小宝.齿轮的材料及热处理[J].矿冶, 2000, 9(3): 20-23
    [108]石英,高亚洲.齿轮材料性能要求及正确选材[J].通用机械, 2004, 37(5): 92-93
    [109]应忠堂,马静芬.车用柴油机曲轴材质与工艺研讨[J].汽车工艺与材料, 2002, 17(10): 7-11
    [110]李文刚,张延基.机车柴油机典型零件选材及性能[J].金属热处理, 1999, 42(8): 32-34
    [111]唐新民,赵九根.非调质钢曲轴的开发和应用[J].金属热处理, 2000, 43(2): 47-49
    [112] F.皮赖恩.皮克林.材料科学与技术丛书—钢的组织与性能[M].第1版.北京:科学技术出版社, 1999. 438-465
    [113]孙峰.新型耐热钢的研制和应用[J].水利电力机械, 2004, 26(2): 41-42
    [114] Cole G S, Sherman A M. Lightweight materials for automotive applications[J]. Materials Characterization, 1995, 31(11): 3-9
    [115]马之庚,任陵伯.现代工程材料手册[M].第1版.北京:国防工业出版社, 2005. 22-1306
    [116]海欧,向俞,刘松林.中国工业材料大典[M].第1版.上海:上海科学技术文献出版社, 1999. 203-586
    [117] Ruden T J, Albright D L. High ductility magnesium alloys in automotive applications[J]. Advance Materials and Processes, 1998, 145(6): 28-32
    [118] Kojima Yo, Kamado Shigeharu. Fundamental magnesium research in Japan[J]. Mater Science Forum, 2005, 488-489: 9-16
    [119]贾耀卿.常用金属材料手册[M].第1版.北京:中国国标出版社, 2000. 280-285
    [120] Hideo Kawamura. Ceramics engine for energy saving[C]. In: Proc. of 6th international symposium on ceramic materials and components for engines. Tanaka: 1997. 5-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700