用户名: 密码: 验证码:
miR-34通过自噬作用调控衰老的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微小RNA (microRNA, miRNA)是一类功能高度保守的非编码单链小分子RNA,通过与靶基因mRNA的互补配对从而在转录或转录后水平对多个靶mRNAs的表达进行负调控。近年来研究表明,miRNA与发育、衰老、免疫和肿瘤等病理生理过程密切相关。在大鼠和线虫microRNA芯片的研究中发现miR-34随增龄表达上调,体外研究也证实miR-34能通过调控细胞周期等途径加速细胞衰老的进程。自噬是细胞通过溶酶体对自身受损结构的吞噬降解过程,对自噬作用的调控是p53、SIRT1等衰老相关基因调控寿命的关键环节。已有研究显示miR-34参与p53和SIRT1的信号通路,提示自噬可能是miR-34参与衰老调控的重要机制。本研究旨在通过体内外实验阐明miR-34在衰老进程中的确切作用及自噬在介导miR-34调控衰老作用中的分子机制。全文共分三个部分:
     第一部分:miR-34对线虫寿命的影响
     通过real-time RT-PCR检测大鼠和线虫miR-34随增龄的表达变化特点;并观察miR-34缺失突变对线虫寿命及应激耐受性的影响。结果发现:与3月龄大鼠相比,24月龄wistar大鼠心脏、脑组织、肝脏、胸主动脉和肾脏miR-34a的表达分别增高2.36、1.71、1.85、3.45和2.14倍(p<0.05-0.01)。与1d线虫成虫相比,7d、9d和13d野生型N2株线虫成虫miR-34的表达显著增高(p<0.05-0.01)。相关分析显示,N2株线虫miR-34的表达与增龄呈显著正相关(r=0.856, p<0.0001).线虫寿命分析结果显示,miR-34缺失突变能延缓线虫的衰老进程,使线虫寿命延长42%-62%(p<0.0001),并能改善线虫对热休克和氧化应激的耐受性。同时发现,间断禁食能使野生型N2株线虫寿命延长37%(p<0.0001),但不影响miR-34缺失突变株线虫的寿命。本部分研究结果显示,miR-34能够调控线虫的衰老进程,并提示其机制可能与限食、应激等共同的机制--自噬作用有关。
     第二部分:自噬在介导miR-34调控衰老中的作用研究
     利用RNAi敲除自噬相关基因,观察抑制自噬对miR-34缺失突变株线虫寿命的影响;并通过体外实验检测miR-34a(人miR-34主要转录本之一)对自噬的调控作用及SIRT1对该作用的影响。结果发现:在野生型N2株线虫,自噬基因RNAi组和对照质粒组之间的寿命无显著差异;而miR-34缺失突变株线虫各RNAi组的寿命较对照质粒组显著缩短(p<0.0001)。体外实验显示,miR-34a能抑制细胞自噬体标志物LC3II的表达(p<0.05)。与对照组相比,SIRT1 siRNA组LC3II的表达显著下调(p<0.05),但SIRT1 siRNA和miR-34a inhibitor共转染组LC3II的表达仍显著升高(p<0.05)。本部分研究结果揭示,miR-34通过抑制细胞的自噬作用而调控衰老,且该作用不完全依赖SIRT1,提示自噬是miR-34调控衰老的重要机制。
     第三部分:miR-34通过Atg4B和Atg9A调控自噬的机制研究
     利用生物信息学软件预测miR-34a可能的靶基因;通过体外实验验证miR-34a对靶基因表达的影响;进一步采用双荧光素酶报告基因系统检测miR-34a与靶基因3'-UTR序列的相互作用。结果发现:miR-34a共有2904个可能的靶基因,其中Atg4B和Atg9A直接参与自噬体的形成过程。体外实验显示,miR-34a能下调Atg4B和Atg9A蛋白的表达(p<0.05-0.01),但不影响其mRNA的表达水平。双荧光素酶检测结果显示,miR-34a能通过与Atg4B和Atg9A基因3'-UTR序列靶结合位点的相互作用,下调荧光素酶活性(p<0.05-0.01)。本部分研究结果证实,miR-34a能够在转录后水平直接抑制Atg4B和Atg9A蛋白的表达,从而调控自噬作用。
     综上所述,本研究从整体动物水平验证了miR-34能够促进衰老进程,而自噬是介导miR-34调控衰老作用的关键环节。并通过体外实验证实,miR-34a能够在转录后水平直接抑制自噬相关蛋白Atg4B和Atg9A的表达,进而调控自噬作用。
MicroRNA (miRNA) are endogenously encoded single-stranded RNAs of about 22 nt in length that are highly conserved and regulate protein expression through interactions with the 3'untranslated region (UTR) of mRNA. The ability of miRNAs to regulate a variety of target genes allows them to induce changes in multiple pathways and processes such as development, senescence, immune system, cancer and other physiological contexts. The evidence for a regulatory role of the miR-34 family in senescence is growing. Recent studies have shown that the expression of miR-34 increases with aging. Overexpression of miR-34 in many cell lines leads to cell cycle arrest, increases the expression of senescence marker, SA-β-Gal (senescence-associatedβ-galactosidase). Autophagy, a highly conserved mechanism of quality control inside cells, plays a critical role in the regulation of aging and age-related degenerative diseases. Recent studies have revealed that the SIRT1 and p53 signaling pathways regulate lifespan via autophagy. miR-34s are direct transcriptional targets of p53. Furthermore, miR-34a can represses SIRT1 translation through a miR-34a-binding site within the 3'-UTR of SIRT1. It suggests that autophagy may be involved in the regulation of aging by miR-34a. However, the exact role of miR-34 in aging in vivo remain unclear. The aim of the present study is to identify the role of miR-34 in aging in vivo, and to examine the mechanisms of autophagy in regulating aging by miR-34, both in vivo and in vitro.
     Part I. The role of miR-34 in aging of C.elegans. Real-time RT-PCR was employed to detect the expression of miR-34 in rats and C.elegans. To address the role of miR-34 in the longevity response, we also observed the lifespan in miR-34 loss-off-function mutant alleles (gk437 and n4276) under ad libitum (AL) and intermittent fasting (IF). The results showed that the expression of miR-34a in heart, brain, liver, thoracic aorta, and kidney from 24-month-old rats, compared with the 3-month-old rats, increased by 2.36,1.71,1.85,3.45 and 2.14-fold (p< 0.05~0.01), respectively. The expression of miR-34 wild type N2 worms also increased during aging, and there is a significant positive correlation between the expression of miR-34 and aging (r=0.856,p<0.0001). miR-34 mutant alleles markedly delayed the age-related physiological decline, and increased resistance to heat and oxidative stress. In ad libitum, the lifespan of miR-34 mutant alleles were increased by 42%~62% compared to wild type N2 worms (p<0.0001) Intermittent fasting significantly extended lifespan of wild type N2 worms (p<0.0001), but didn't influenced the lifespan of miR-34 mutant alleles.
     PartⅡ. The role of autophagy in regulation of the aging process by miR-34. To further evaluate whether autophagy is required for extended lifespan in miR-34 mutant alleles, we also tested the effects on the lifespan of RNAi of 5 autophagy genes in C. elegans. In vitro, we examined the role of miR-34a on the autophagy process. We found that RNAi knockdown of the C.elegans orthologs of yeast atg4.1, atg4.2, lggl, bec-1 or atg9 didn't influenced the lifespan in wild type N2 worms, but they significantly suppressed the lifespan extending effect of miR-34 mutant (p<0.0001). In vitro, Hela and HEK293 cells were respectively transfected with miR-34a mimics or inhibitors, and the results showed that miR-34a affected autophagy, and the effects weren't entirely dependent on SIRT1.
     PartⅢ. miR-34a regulating aging by inhibition of autophagy related protein Atg4B and Atg9A. To examine the role of the miR-34a on autophagy related gene (Atg4B or Atg9A) expression, we used mimics and inhibitors of miR-34a. We also used dual luciferase reporter gene assay system to indentify the relationship between the miR-34a and 3'-UTR of Atg4B or Atg9A. Overexpression of miR-34a in Hela cells decreased Atg4B and Atg9A protein levels. By contrast, inhibition of miR-34a in HEK293 cells increased Atg4B and Atg9A protein expression. But, miR-34a had no effect on the expression of Atg4B and Atg9A mRNA. Therefore, miR34a regulated the expression of Atg4B and Atg9A at the post-transcriptional level. Dual luciferase reporter assay confirmed that the miR-34a binding sequences in the 3'-UTR of Atg4B and Atg9A contributed to the modulation of Atg4B and Atg9A expression by miR-34a.
     In summary, we found that miR-34 accelerates aging in C.elegans, and autophagy might play a important role in the process. In vitro, our found that miR-34a suppress autophagy by indirectly inhitited autophagy related protein Atg4B and Atg9A.
引文
[1]Bartel DP. MicroRNAs:target recognition and regulatory functions[J]. Cell,2009,136 (2):215-233.
    [2]Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs[J]. Cell,2009,136 (4):642-655.
    [3]Hammond SM, Sharpless NE. HMGA2, microRNAs, and stem cell aging[J]. Cell,2008,135 (6):1013-1016.
    [4]Boehm M, Slack F. A developmental timing microRNA and its target regulate life span in C. elegans[J]. Science,2005,310 (5756):1954-1957.
    [5]Li N, Bates DJ, An J, et al. Up-regulation of key microRNAs, and inverse down-regulation of their predicted oxidative phosphorylation target genes, during aging in mouse brain[J]. Neurobiol Aging,2009, NBA-7329:1-12.
    [6]Maes OC, An J, Sarojini H, et al. Murine microRNAs implicated in liver functions and aging process[J]. Mech Ageing Dev,2008,129 (9):534-541.
    [7]Maes OC, Sarojini H, Wang E. Stepwise up-regulation of MicroRNA expression levels from replicating to reversible and irreversible growth arrest states in WI-38 human fibroblasts[J]. J Cell Physiol,2009: 221(1):109-19.
    [8]Wagner W, Horn P, Castoldi M, et al. Replicative senescence of mesenchymal stem cells:a continuous and organized process[J]. PLoS ONE,2008,3(5):e2213.
    [9]Williams AE, Perry MM, Moschos SA, et al. microRNA expression in the aging mouse lung[J]. BMC Genomics,2007,8:172.
    [10]Ibanez-Ventoso C, Yang M, Guo S, et al. Modulated microRNA expression during adult lifespan in Caenorhabditis elegans[J]. Aging Cell, 2006,5 (3):235-246.
    [11]Lafferty-Whyte K, Cairney CJ, Jamieson NB, et al. Pathway analysis of senescence-associated miRNA targets reveals common processes to different senescence induction mechanisms[J]. Biochim Biophys Acta, 2009,1792 (4):341-352.
    [12]Klionsky DJ, Abeliovich H, Agostinis P, et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes[J]. Autophagy,2008,4 (2):151-175.
    [13]Levine B, Kroemer G. Autophagy in the pathogenesis of disease[J]. Cell, 2008,132 (1):27-42.
    [14]Cuervo AM. Autophagy and aging:keeping that old broom working[J]. Trends Genet,2008,24 (12):604-612.
    [15]Vellai T. Autophagy genes and ageing[J]. Cell Death Differ,2009,16 (1): 94-102.
    [16]Tavernarakis N, Pasparaki A, Tasdemir E, et al. The effects of p53 on whole organism longevity are mediated by autophagy[J]. Autophagy,2008, 4 (7):870-873.
    [17]Maiuri MC, Malik SA, Morselli E, et al. Stimulation of autophagy by the p53 target gene Sestrin2[J]. Cell Cycle,2009,8 (10):1571-1576.
    [18]Salminen A, Kaarniranta K. Regulation of the aging process by autophagy[J]. Trends Mol Med,2009,15 (5):217-224.
    [19]Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis[J]. Proc Natl Acad Sci U S A,2008,105 (36): 13421-13426.
    [20]Chang TC, Wentzel EA, Kent OA, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis[J]. Mol Cell,2007,26 (5):745-752.
    [21]He L, He X, Lim LP, et al. A microRNA component of the p53 tumour suppressor network[J]. Nature,2007,447 (7148):1130-1134.
    [22]Lau NC, Lim LP, Weinstein EG, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans[J]. Science,2001, 294 (5543):858-862.
    [23]Kato M, Paranjape T, Ullrich R, et al. The mir-34 microRNA is required for the DNA damage response in vivo in C. elegans and in vitro in human breast cancer cells[J]. Oncogene,2009:28(25):2419-24.
    [24]Miska EA, Alvarez-Saavedra E, Abbott AL, et al. Most Caenorhabditis elegans microRNAs are individually not essential for development or viability[J]. PLoS Genet,2007,3 (12):e215.
    [25]Honjoh S, Yamamoto T, Uno M, et al. Signalling through RHEB-1 mediates intermittent fasting-induced longevity in C. elegans[J]. Nature, 2009,457 (7230):726-730.
    [26]Syntichaki P, Troulinaki K, Tavernarakis N. eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans[J]. Nature,2007,445 (7130):922-926.
    [27]Tazawa H, Tsuchiya N, Izumiya M, et al. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells[J]. Proc Natl Acad Sci U S A,2007, 104(39):15472-15477.
    [28]Kumamoto K, Spillare EA, Fujita K, et al. Nutlin-3a activates p53 to both down-regulate inhibitor of growth 2 and up-regulate mir-34a, mir-34b, and mir-34c expression, and induce senescence[J]. Cancer Res,2008,68 (9): 3193-3203.
    [29]Krishnamurthy J, Torrice C, Ramsey MR, et al. Ink4a/Arf expression is a biomarker of aging[J]. J Clin Invest,2004,114 (9):1299-1307.
    [30]Huang C, Xiong C, Kornfeld K. Measurements of age-related changes of physiological processes that predict lifespan of Caenorhabditis elegans[J]. Proc Natl Acad Sci U S A,2004,101 (21):8084-8089.
    [31]Greer EL, Dowlatshahi D, Banko MR, et al. An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans[J]. Curr Biol,2007,17 (19):1646-1656.
    [32]Jia K, Levine B. Autophagy is required for dietary restriction-mediated life span extension in C. elegans[J]. Autophagy,2007,3 (6):597-599.
    [33]Hansen M, Chandra A, Mitic LL, et al. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans[J]. PLoS Genet, 2008,4 (2):e24.
    [34]Nivon M, Richet E, Codogno P, et al. Autophagy activation by NFkappaB is essential for cell survival after heat shock[J]. Autophagy,2009,5 (6): 766-783.
    [1]Klionsky DJ, Abeliovich H, Agostinis P, et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes[J]. Autophagy,2008,4 (2):151-175.
    [2]Levine B, Kroemer G. Autophagy in the pathogenesis of disease[J]. Cell, 2008,132(1):27-42.
    [3]Cuervo AM. Autophagy and aging:keeping that old broom working[J]. Trends Genet,2008,24 (12):604-612.
    [4]Degenhardt K, Mathew R, Beaudoin B, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis[J]. Cancer Cell,2006,10 (1):51-64.
    [5]Kouroku Y, Fujita E, Tanida I, et al. ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation[J]. Cell Death Differ,2007,14 (2): 230-239.
    [6]Rajawat YS, Hilioti Z, Bossis I. Aging:central role for autophagy and the lysosomal degradative system[J]. Ageing Res Rev,2009,8 (3):199-213.
    [7]Salminen A, Kaarniranta K. Regulation of the aging process by autophagy[J]. Trends Mol Med,2009,15 (5):217-224.
    [8]Hansen M, Chandra A, Mitic LL, et al. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans[J]. PLoS Genet, 2008,4 (2):e24.
    [9]Kang C, You YJ, Avery L. Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation[J]. Genes Dev,2007,21 (17): 2161-2171.
    [10]Morselli E, Maiuri MC, Markaki M. Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy[J].11 (11):1305-1314.
    [11]Wu JJ, Quijano C, Chen E, et al. Mitochondrial dysfunction and oxidative stress mediate the physiological impairment induced by the disruption of autophagy[J]. Aging (Albany NY),2009,1(4):425-437.
    [12]Cypser JR, Tedesco P, Johnson TE. Hormesis and aging in Caenorhabditis elegans[J]. Exp Gerontol,2006,41 (10):935-939.
    [13]Tavernarakis N, Pasparaki A, Tasdemir E, et al. The effects of p53 on whole organism longevity are mediated by autophagy[J]. Autophagy,2008, 4 (7):870-873.
    [14]Lunemann JD, Schmidt J, Schmid D, et al. Beta-amyloid is a substrate of autophagy in sporadic inclusion body myositis[J]. Ann Neurol,2007,61 (5):476-483.
    [15]Hashimoto Y, Ookuma S, Nishida E. Lifespan extension by suppression of autophagy genes in Caenorhabditis elegans[J]. Genes Cells,2009:14: 717-726.
    [16]Toth ML, Sigmond T, Borsos E, et al. Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans[J]. Autophagy,2008,4 (3):330-338.
    [17]Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis[J]. Proc Natl Acad Sci U S A,2008,105 (36): 13421-13426.
    [18]Kamath RS, Martinez-Campos M, Zipperlen P, et al. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans[J]. Genome Biol,2001,2 (1): RESEARCH0002.
    [19]Kuma A, Matsui M, Mizushima N. LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization[J]. Autophagy,2007,3 (4): 323-328.
    [20]Mizushima N, Yamamoto A, Matsui M, et al. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker[J]. Mol Biol Cell,2004, 15(3):1101-1111.
    [21]Zhu H, Wu H, Liu X, et al. Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells[J]. Autophagy,2009,5 (6):816-823.
    [22]Periyasamy-Thandavan S, Jiang M, Schoenlein P, et al. Autophagy: molecular machinery, regulation, and implications for renal pathophysiology[J]. Am JPhysiol Renal Physiol,2009,297 (2):F244-256.
    [23]Vellai T. Autophagy genes and ageing[J]. Cell Death Differ,2009,16 (1): 94-102.
    [24]Melendez A, Talloczy Z, Seaman M, et al. Autophagy genes are essential for dauer development and life-span extension in C. elegans[J]. Science, 2003,301 (5638):1387-1391.
    [25]Cohen E, Bieschke J, Perciavalle RM, et al. Opposing activities protect against age-onset proteotoxicity[J]. Science,2006,313 (5793):1604-1610.
    [26]Bergamini E, Cavallini G, Donati A, et al. The anti-ageing effects of caloric restriction may involve stimulation of macroautophagy and lysosomal degradation, and can be intensified pharmacologically[J]. Biomed Pharmacother,2003,57 (5-6):203-208.
    [27]Murakami S. Stress resistance in long-lived mouse models[J]. Exp Gerontol,2006,41 (10):1014-1019.
    [28]Jia K, Levine B. Autophagy is required for dietary restriction-mediated life span extension in C. elegans[J]. Autophagy,2007,3 (6):597-599.
    [29]Ichimura Y, Kirisako T, Takao T, et al. A ubiquitin-like system mediates protein lipidation[J]. Nature,2000,408 (6811):488-492.
    [30]Nakatogawa H, Ichimura Y, Ohsumi Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion[J]. Cell,2007,130 (1):165-178.
    [31]Tanida I, Tanida-Miyake E, Ueno T, et al. The human homolog of Saccharomyces cerevisiae Apg7p is a Protein-activating enzyme for multiple substrates including human Apgl2p, GATE-16, GABARAP, and MAP-LC3[J]. JBiol Chem,2001,276 (3):1701-1706.
    [32]Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing[J]. EMBO J,2000,19 (21):5720-5728.
    [33]Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting[J]. Autophagy,2007,3 (6):542-545.
    [34]Michan S, Sinclair D. Sirtuins in mammals:insights into their biological function[J]. Biochem J,2007,404 (1):1-13.
    [35]Lee IH, Cao L, Mostoslavsky R, et al. A role for the NAD-dependent deacetylase Sirtl in the regulation of autophagy[J]. Proc Natl Acad Sci U S A,2008,105 (9):3374-3379.
    [36]Sadoul K, Boyault C, Pabion M, et al. Regulation of protein turnover by acetyltransferases and deacetylases[J]. Biochimie,2008,90 (2):306-312.
    [37]Hamilton B, Dong Y, Shindo M, et al. A systematic RNAi screen for longevity genes in C. elegans[J]. Genes Dev,2005,19 (13):1544-1555.
    [38]Morselli E, Maiuri MC, Markaki M, et al. The life span-prolonging effect of sirtuin-1 is mediated by autophagy[J]. Autophagy,6(1):186-188.
    [1]Zhang B, Wang Q, Pan X. MicroRNAs and their regulatory roles in animals and plants[J]. J Cell Physiol,2007,210 (2):279-289.
    [2]Abdelmohsen K, Srikantan S, Kuwano Y, et al. miR-519 reduces cell proliferation by lowering RNA-binding protein HuR levels[J]. Proc Natl Acad Sci USA,2008,105 (51):20297-20302.
    [3]Sethupathy P, Megraw M, Hatzigeorgiou AG. A guide through present computational approaches for the identification of mammalian microRNA targets[J]. Nat Methods,2006,3 (11):881-886.
    [4]Brennecke J, Stark A, Russell RB, et al. Principles of microRNA-target recognition[J]. PLoS Biol,2005,3 (3):e85.
    [5]Jezierska A, Matysiak W, Motyl T. ALCAM/CD166 protects breast cancer cells against apoptosis and autophagy[J]. Med Sci Monit,2006,12 (8): BR263-273.
    [6]Sugawara K, Suzuki NN, Fujioka Y, et al. Structural basis for the specificity and catalysis of human Atg4B responsible for mammalian autophagy[J]. JBiol Chem,2005,280 (48):40058-40065.
    [7]He C, Klionsky DJ. Atg9 trafficking in autophagy-related pathways[J]. Autophagy,2007,3 (3):271-274.
    [8]Chang NC, Nguyen M, Germain M, et al. Antagonism of Beclin 1-dependent autophagy by BCL-2 at the endoplasmic reticulum requires NAF-1 [J]. EMBO J,29 (3):6C6-618.
    [9]Crawford AC, Riggins RB, Shajahan AN, et al. Co-inhibition of BCL-W and BCL2 restores antiestrogen sensitivity through BECN1 and promotes an autophagy-associated necrosis[J]. PLoS ONE,5 (1):e8604.
    [10]Mazzanti R, Platini F, Bottini C, et al. Down-regulation of the HGF/MET autocrine loop induced by celecoxib and mediated by P-gp in MDR-positive human hepatocellular carcinoma cell line[J]. Biochem Pharmacol,2009,78 (1):21-32.
    [11]Liang J, Shao SH, Xu ZX, et al. The energy sensing LKB1-AMPK pathway regulates p27(kipl) phosphorylation mediating the decision to enter autophagy or apoptosis[J]. Nat Cell Biol,2007,9 (2):218-224.
    [12]Hait WN, Wu H, Jin S, et al. Elongation factor-2 kinase:its role in protein synthesis and autophagy[J]. Autophagy,2006,2 (4):294-296.
    [13]Pacheco CD, Elrick MJ, Lieberman AP. Tau deletion exacerbates the phenotype of Niemann-Pick type C mice and implicates autophagy in pathogenesis[J]. Hum Mol Genet,2009,18 (5):956-965.
    [14]Bartholomeusz C, Rosen D, Wei C, et al. PEA-15 induces autophagy in human ovarian cancer cells and is associated with prolonged overall survival[J]. Cancer Res,2008,68 (22):9302-9310.
    [15]Yoo BH, Wu X, Li Y, et al. Oncogenic ras-induced Down-regulation of Autophagy Mediator Beclin-1 Is Required for Malignant Transformation of Intestinal Epithelial Cells[J]. JBiol Chem,285 (8):5438-5449.
    [16]Lee IH, Cao L, Mostoslavsky R, et al. A role for the NAD-dependent deacetylase Sirtl in the regulation of autophagy[J]. Proc Natl Acad Sci U S A,2008,105 (9):3374-3379.
    [17]Zheng B, Tang T, Tang N, et al. Essential role of RGS-PX1/sorting nexin 13 in mouse development and regulation of endocytosis dynamics[J]. Proc Natl Acad Sci USA,2006,103 (45):16776-16781.
    [18]Yoshikawa Y, Ogawa M, Hain T, et al. Listeria monocytogenes ActA-mediated escape from autophagic recognition[J]. Nat Cell Biol,2009, 11 (10):1233-1240.
    [19]Friedman RC, Farh KK, Burge CB, et al. Most mammalian mRNAs are conserved targets of microRNAs[J]. Genome Res,2009,19 (1):92-105.
    [20]Maziere P, Enright AJ. Prediction of microRNA targets[J]. Drug Discov Today,2007,12 (11-12):452-458.
    [21]Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets[J]. Cell,2005,120 (1):15-20.
    [22]Enright AJ, John B, Gaul U, et al. MicroRNA targets in Drosophila[J]. Genome Biol,2003,5 (1):R1.
    [23]Lewis BP, Shih IH, Jones-Rhoades MW, et al. Prediction of mammalian microRNA targets[J]. Cell,2003,115 (7):787-798.
    [24]Krek A, Grun D, Poy MN, et al. Combinatorial microRNA target predictions[J]. Nat Genet,2005,37 (5):495-500.
    [25]Nakatogawa H, Ichimura Y, Ohsumi Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion[J]. Cell,2007,130 (1):165-178.
    [26]Kirisako T, Ichimura Y, Okada H, et al. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway[J]. J Cell Biol, 2000,151 (2):263-276.
    [27]Tanida I, Mizushima N, Kiyooka M, et al. Apg7p/Cvt2p:A novel protein-activating enzyme essential for autophagy[J]. Mol Biol Cell,1999, 10(5):1367-1379.
    [28]Ichimura Y, Kirisako T, Takao T, et al. A ubiquitin-like system mediates protein lipidation[J]. Nature,2000,408 (6811):488-492.
    [29]Hemelaar J, Lelyveld VS, Kessler BM, et al. A single protease, Apg4B, is specific for the autophagy-related ubiquitin-like proteins GATE-16, MAP1-LC3, GABARAP, and Apg8L[J]. J Biol Chem,2003,278 (51): 51841-51850.
    [30]Kabeya Y, Mizushima N, Yamamoto A, et al. LC3, GABARAP and GATE 16 localize to autophagosomal membrane depending on form-Ⅱ formation[J]. J Cell Sci,2004,117 (Pt 13):2805-2812.
    [31]Tanida I, Tanida-Miyake E, Ueno T, et al. The human homolog of Saccharomyces cerevisiae Apg7p is a Protein-activating enzyme for multiple substrates including human Apgl2p, GATE-16, GABARAP, and MAP-LC3[J]. JBiol Chem,2001,276 (3):1701-1706.
    [32]Satoo K, Noda NN, Kumeta H, et al. The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy[J]. EMBO J,2009,28 (9):1341-1350.
    [33]Fujita N, Hayashi-Nishino M, Fukumoto H, et al. An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure[J]. Mol Biol Cell,2008,19 (11):4651-4659.
    [34]Reggiori F, Shintani T, Nair U, et al. Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts[J]. Autophagy,2005,1 (2): 101-109.
    [35]Young AR, Chan EY, Hu XW, et al. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes[J]. J Cell Sci,2006,119 (Pt 18):3888-3900.
    [36]Reggiori F, Tucker KA, Stromhaug PE, et al. The Atgl-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure[J]. Dev Cell,2004,6 (1):79-90.
    [37]He C, Song H, Yorimitsu T, et al. Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast[J]. J Cell Biol,2006,175 (6):925-935.
    [38]He C, Baba M, Cao Y, et al. Self-interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy[J]. Mol Biol Cell,2008,19 (12):5506-5516.
    [39]He C, Baba M, Klionsky DJ. Double duty of Atg9 self-association in autophagosome biogenesis[J]. Autophagy,2009,5 (3):385-387.
    [40]Yamada T, Carson AR, Caniggia I, et al. Endothelial nitric-oxide synthase antisense (NOS3AS) gene encodes an autophagy-related protein (APG9-like2) highly expressed in trophoblast[J]. J Biol Chem,2005,280 (18):18283-18290.
    [41]Zhu H, Wu H, Liu X, et al. Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells[J]. Autophagy,2009,5 (6):816-823.
    [1]Eskelinen EL, Saftig P. Autophagy: a lysosomal degradation pathway with a central role in health and disease[J]. Biochim Biophys Acta,2009,1793 (4):664-673.
    [2]Cuervo AM. Autophagy and aging:keeping that old broom working[J]. Trends Genet,2008,24 (12):604-612.
    [3]Vellai T. Autophagy genes and ageing[J]. Cell Death Differ,2009,16 (1): 94-102.
    [4]Ashford TP, Porter KR. Cytoplasmic components in hepatic cell lysosomes[J]. J Cell Biol,1962,12:198-202.
    [5]Levine B, Klionsky DJ. Development by self-digestion:molecular mechanisms and biological functions of autophagy[J]. Dev Cell,2004,6 (4):463-477.
    [6]Cuervo AM. Autophagy:many paths to the same end[J]. Mol Cell Biochem,2004,263 (1-2):55-72.
    [7]Mizushima N. Physiological functions of autophagy[J]. Curr Top Microbiol Immunol,2009,335:71-84.
    [8]Dice JF. Chaperone-mediated autophagy[J]. Autophagy,2007,3 (4): 295-299.
    [9]He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy[J]. Annu Rev Genet,2009,43:67-93.
    [10]Suzuki K, Kubota Y, Sekito T, et al. Hierarchy of Atg proteins in pre-autophagosomal structure organization[J]. Genes Cells,2007,12 (2): 209-218.
    [11]Jung CH, Jun CB, Ro SH, et al. ULK-Atgl3-FIP200 complexes mediate mTOR signaling to the autophagy machinery [J]. Mol Biol Cell,2009,20 (7):1992-2003.
    [12]Itakura E, Kishi C, Inoue K, et al. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG[J]. Mol Biol Cell,2008,19 (12):5360-5372.
    [13]Shintani T, Huang WP, Stromhaug PE, et al. Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway[J]. Dev Cell,2002,3 (6): 825-837.
    [14]Reggiori F, Shintani T, Nair U, et al. Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts[J]. Autophagy,2005,1 (2): 101-109.
    [15]Young AR, Chan EY, Hu XW, et al. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes[J]. J Cell Sci,2006,119 (Pt 18):3888-3900.
    [16]Reggiori F, Tucker KA, Stromhaug PE, et al. The Atgl-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure[J]. Dev Cell,2004,6 (1):79-90.
    [17]He C, Song H, Yorimitsu T, et al. Recruitment of Atg9 to the preautophagosomal structure by Atg1l is essential for selective autophagy in budding yeast[J]. J Cell Biol,2006,175 (6):925-935.
    [18]He C, Baba M, Cao Y, et al. Self-interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy[J]. Mol Biol Cell,2008,19 (12):5506-5516.
    [19]Yamada T, Carson AR, Caniggia I, et al. Endothelial nitric-oxide synthase antisense (NOS3AS) gene encodes an autophagy-related protein (APG9-like2) highly expressed in trophoblast[J]. J Biol Chem,2005,280 (18):18283-18290.
    [20]Ichimura Y, Kirisako T, Takao T, et al. A ubiquitin-like system mediates protein lipidation[J]. Nature,2000,408 (6811):488-492.
    [21]Nakatogawa H, Ichimura Y, Ohsumi Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion[J]. Cell,2007,130 (1):165-178.
    [22]Kirisako T, Ichimura Y, Okada H, et al. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway[J]. J Cell Biol, 2000,151 (2):263-276.
    [23]Tanida I, Mizushima N, Kiyooka M, et al. Apg7p/Cvt2p:A novel protein-activating enzyme essential for autophagy[J]. Mol Biol Cell,1999, 10(5):1367-1379.
    [24]Hemelaar J, Lelyveld VS, Kessler BM, et al. A single protease, Apg4B, is specific for the autophagy-related ubiquitin-like proteins GATE-16, MAP1-LC3, GABARAP, and Apg8L[J]. J Biol Chem,2003,278 (51): 51841-51850.
    [25]Kabeya Y, Mizushima N, Yamamoto A, et al. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation[J]. J Cell Sci,2004,117 (Pt 13):2805-2812.
    [26]Tanida I, Tanida-Miyake E, Ueno T, et al. The human homolog of Saccharomyces cerevisiae Apg7p is a Protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3[J]. J Biol Chem,2001,276 (3):1701-1706.
    [27]Satoo K, Noda NN, Kumeta H, et al. The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy[J]. EMBO J,2009,28 (9):1341-1350.
    [28]Sarkar S, Davies JE, Huang Z, et al. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein[J]. J Biol Chem,2007,282 (8): 5641-5652.
    [29]Ravikumar B, Vacher C, Berger Z, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease[J]. Nat Genet,2004,36 (6):585-595.
    [30]Cuervo AM, Dice JF. Age-related decline in chaperone-mediated autophagy[J]. JBiol Chem,2000,275 (40):31505-31513.
    [31]Zhang C, Cuervo AM. Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function[J]. Nat Med,2008,14 (9):959-965.
    [32]Kiffin R, Kaushik S, Zeng M, et al. Altered dynamics of the lysosomal receptor for chaperone-mediated autophagy with age[J]. J Cell Sci,2007, 120 (Pt 5):782-791.
    [33]Bandyopadhyay U, Kaushik S, Varticovski L, et al. The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane[J]. Mol Cell Biol,2008,28 (18): 5747-5763.
    [34]Imai J, Maruya M, Yashiroda H, et al. The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome[J]. EMBO J,2003,22 (14):3557-3567.
    [35]Bergamini E, Cavallini G, Donati A, et al. The anti-ageing effects of caloric restriction may involve stimulation of macroautophagy and lysosomal degradation, and can be intensified pharmacologically[J]. Biomed Pharmacother,2003,57 (5-6):203-208.
    [36]Cypser JR, Tedesco P, Johnson TE. Hormesis and aging in Caenorhabditis elegans[J]. Exp Gerontol,2006,41 (10):935-939.
    [37]Murakami S. Stress resistance in long-lived mouse models[J]. Exp Gerontol,2006,41 (10):1014-1019.
    [38]Braeckman BP, Vanfleteren JR. Genetic control of longevity in C. elegans[J]. Exp Gerontol,2007,42 (1-2):90-98.
    [39]Melendez A, Talloczy Z, Seaman M, et al. Autophagy genes are essential for dauer development and life-span extension in C. elegans[J]. Science, 2003,301 (5638):1387-1391.
    [40]Hars ES, Qi H, Ryazanov AG, et al. Autophagy regulates ageing in C. elegans[J]. Autophagy,2007,3 (2):93-95.
    [41]Hansen M, Chandra A, Mitic LL, et al. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans[J]. PLoS Genet, 2008,4 (2):e24.
    [42]Kang C, You YJ, Avery L. Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation[J]. Genes Dev,2007,21 (17): 2161-2171.
    [43]Cohen E, Bieschke J, Perciavalle RM, et al. Opposing activities protect against age-onset proteotoxicity[J]. Science,2006,313 (5793):1604-1610.
    [44]Salminen A, Kaarniranta K. Regulation of the aging process by autophagy[J]. Trends Mol Med,2009,15 (5):217-224.
    [45]Bonawitz ND, Chatenay-Lapointe M, Pan Y, et al. Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression[J]. Cell Metab,2007,5 (4): 265-277.
    [46]Chang YY, Neufeld TP. An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation[J]. Mol Biol Cell,2009,20 (7): 2004-2014.
    [47]Pattingre S, Espert L, Biard-Piechaczyk M, et al. Regulation of macroautophagy by mTOR and Beclin 1 complexes[J]. Biochimie,2008, 90 (2):313-323.
    [48]Lee SB, Kim S, Lee J, et al. ATG1, an autophagy regulator, inhibits cell growth by negatively regulating S6 kinase[J]. EMBO Rep,2007,8 (4): 360-365.
    [49]Boyault C, Zhang Y, Fritah S, et al. HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates[J]. Genes Dev, 2007,21 (17):2172-2181.
    [50]Schlottmann S, Buback F, Stahl B, et al. Prolonged classical NF-kappaB activation prevents autophagy upon E. coli stimulation in vitro:a potential resolving mechanism of inflammation[J]. Mediators Inflamm,2008,2008: 725854.
    [51]Dan HC, Baldwin AS. Differential involvement of IkappaB kinases alpha and beta in cytokine-and insulin-induced mammalian target of rapamycin activation determined by Akt[J]. JImmunol,2008,180 (11):7582-7589.
    [52]Lee DF, Kuo HP, Chen CT, et al. IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway[J]. Cell, 2007,130 (3):440-455.
    [53]Tasdemir E, Chiara Maiuri M, Morselli E, et al. A dual role of p53 in the control of autophagy[J]. Autophagy,2008,4 (6):810-814.
    [54]D'Amelio M, Cecconi F. A novel player in the p53-mediated autophagy: Sestrin2[J]. Cell Cycle,2009,8 (10):1467.
    [55]Degenhardt K, Mathew R, Beaudoin B, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis[J]. Cancer Cell,2006,10 (1):51-64.
    [56]Feng Z, Zhang H, Levine AJ, et al. The coordinate regulation of the p53 and mTOR pathways in cells[J]. Proc Natl Acad Sci U S A,2005,102 (23): 8204-8209.
    [57]Tasdemir E, Maiuri MC, Galluzzi L, et al. Regulation of autophagy by cytoplasmic p53[J]. Nat Cell Biol,2008,10 (6):676-687.
    [58]Matheu A, Maraver A, Serrano M. The Arf/p53 pathway in cancer and aging[J]. Cancer Res,2008,68 (15):6031-6034.
    [59]Matheu A, Maraver A, Klatt P, et al. Delayed ageing through damage protection by the Arf/p53 pathway[J]. Nature,2007,448 (7151):375-379.
    [60]Feng Z, Hu W, Teresky AK, et al. Declining p53 function in the aging process:a possible mechanism for the increased tumor incidence in older populations[J]. Proc Natl Acad Sci USA,2007,104 (42):16633-16638.
    [61]Cheng HL, Mostoslavsky R, Saito S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice[J]. Proc Natl Acad Sci USA,2003,100 (19):10794-10799.
    [62]Tavernarakis N, Pasparaki A, Tasdemir E, et al. The effects of p53 on whole organism longevity are mediated by autophagy[J]. Autophagy,2008, 4 (7):870-873.
    [63]Maiuri MC, Malik SA, Morselli E, et al. Stimulation of autophagy by the p53 target gene Sestrin2[J]. Cell Cycle,2009,8 (10):1571-1576.
    [64]Guarente L. Mitochondria-a nexus for aging, calorie restriction, and sirtuins?[J]. Cell,2008,132 (2):171-176.
    [65]Chen D, Guarente L. SIR2:a potential target for calorie restriction mimetics[J]. Trends Mol Med,2007,13 (2):64-71.
    [66]Lee IH, Cao L, Mostoslavsky R, et al. A role for the NAD-dependent deacetylase Sirtl in the regulation of autophagy[J]. Proc Natl Acad Sci U S A 2008,105 (9):3374-3379.
    [67]Sadoul K, Boyault C, Pabion M, et al. Regulation of protein turnover by acetyltransferases and deacetylases[J]. Biochimie,2008,90 (2):306-312.
    [68]Pandey UB, Nie Z, Batlevi Y, et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS[J]. Nature, 2007,447 (7146):859-863.
    [69]Iwata A, Riley BE, Johnston JA, et al. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin[J]. J Biol Chem,2005,280 (48):40282-40292.
    [70]Michan S, Sinclair D. Sirtuins in mammals:insights into their biological function[J]. Biochem J,2007,404 (1):1-13.
    [71]Zhao J, Brault JJ, Schild A, et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells[J]. Cell Metab,2007,6 (6):472-483.
    [72]Sandri M, Sandri C, Gilbert A, et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy[J]. Cell,2004,117 (3):399-412.
    [73]Mammucari C, Milan G, Romanello V, et al. FoxO3 controls autophagy in skeletal muscle in vivo[J]. Cell Metab,2007,6 (6):458-471.
    [74]Burnell AM, Houthoofd K, O'Hanlon K, et al. Alternate metabolism during the dauer stage of the nematode Caenorhabditis elegans[J]. Exp Gerontol,2005,40 (11):850-856.
    [75]Bergamini E, Cavallini G, Donati A, et al. The role of autophagy in aging: its essential part in the anti-aging mechanism of caloric restriction[J]. Ann N Y Acad Sci,2007,1114:69-78.
    [76]Jia K, Levine B. Autophagy is required for dietary restriction-mediated life span extension in C. elegans[J]. Autophagy,2007,3 (6):597-599.
    [77]Bishop NA, Guarente L. Genetic links between diet and lifespan: shared mechanisms from yeast to humans[J]. Nat Rev Genet,2007,8 (11): 835-844.
    [78]Bordone L, Cohen D, Robinson A, et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction[J]. Aging Cell,2007,6 (6): 759-767.
    [79]Chen D, Bruno J, Easlon E, et al. Tissue-specific regulation of SIRT1 by calorie restriction[J]. Genes Dev,2008,22 (13):1753-1757.
    [80]Salminen A, Kauppinen A, Suuronen T, et al. SIRT1 longevity factor suppresses NF-kappaB-driven immune responses:regulation of aging via NF-kappaB acetylation?[J]. Bioessays,2008,30 (10):939-942.
    [81]Salminen A, Huuskonen J, Ojala J, et al. Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging[J]. Ageing Res Rev,2008,7(2):83-105.
    [82]Swindell WR. Comparative analysis of microarray data identifies common responses to caloric restriction among mouse tissues[J]. Mech Ageing Dev, 2008,129 (3):138-153.
    [83]Arstila AU, Trump BF. Autophagocytosis:origin of membrane and hydrolytic enzymes[J]. Virchows Arch B Cell Pathol,1969,2(1):85-90.
    [84]Salminen A, Suuronen T, Huuskonen J, et al. NEMO shuttle:a link between DNA damage and NF-kappaB activation in progeroid syndromes?[J]. Biochem Biophys Res Commun,2008,367 (4):715-718.
    [85]Blagosklonny MV. Aging:ROS or TOR[J]. Cell Cycle,2008,7 (21): 3344-3354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700