用户名: 密码: 验证码:
猪吲哚2,3-二氧化酶介导人血清对猪血管内皮细胞杀伤作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分猪IDO分子的生物信息学预测、克隆及分析
     [目的]证明猪IDO基因的存在,分析并克隆猪IDO基因,明确其分子结构特点及表达特性。
     [方法]运用生物信息学方法从美国基因数据库(GenBank)获得与人IDO基因同源的猪EST序列,通过RT-PCR技术在猪内皮细胞系SV-40-PED中验证该序列的准确性,对该序列进行生物信息学分析,并研究其组织表达分布特点。利用体细胞杂交板(somatic cell hybrid panel, SCHP)技术对其进行染色体定位。参照人IDO同源分子蛋白的三级结构,利用生物序列分析软件及数据库构建猪IDO蛋白的三维空间结构模型。
     [结果]通过克隆测序与同源性分析,发现猪存在IDO分子,将此结果提交至美国基因数据库(GenBank)。DO在猪的胸腺、肺、附睾和眼底中有基础水平的表达,尤其在猪外周血单核/巨噬细胞中表达丰富,IFN-γ刺激后猪血管内皮细胞上可表达IDO。
     [结论]生物信息学方法和分子生物学技术的联合使用,有助于猪的新基因的发现与鉴定。本研究证实了猪存在IDO基因的推测,明确了该基因相关的结构信息,为研究猪IDO的免疫学功能奠定了基础。
     第二部分猪IDO表达载体的构建、表达
     [目的]分别构建高水平表达天然poIDO分子和带标签蛋白的poIDO融合蛋白的重组表达载体。
     [方法]利用RT-PCR扩增猪IDO基因片段,连接至T载体,测序无误后,亚克隆至真核表达载体,构建出重组质粒。将重组质粒和空载体分别转染至CHO细胞和PED细胞,用G418进行筛选;通过Western Blot、细胞免疫化学、免疫荧光和流式细胞术等方法检测,鉴定出能稳定表达pcDNA 3.1(-)-poIDO的PED细胞亚群和能稳定表达pCMV-Tag2B-poIDO和pCMV-Tag2B的CHO细胞亚群。
     [结果]经过双酶切和测序鉴定,重组质粒pcDNA 3.1(-)-poIDO与pCMV-Tag2B-poIDO构建成功。
     [结论]成功构建出能表达天然猪IDO分子的载体质粒pcDNA 3.1(-)-poIDO和能表达出融合蛋白pCMV-Tag2B-poIDO,该蛋白可作为猪IDO介导人血清杀伤猪血管内皮细胞作用研究的重要工具。
     第三部分猪IDO介导人血清杀伤猪内皮细胞作用的研究
     [目的]研究猪IDO在人血清对猪内皮细胞杀伤效果中的作用,并进一步研究其在这一过程中的作用机制。
     [方法]利用流式细胞术检测IDO特异性阻断剂1-MT对人血清对PED杀伤效果的影响,由此初步判断IDO对人血清杀伤猪血管内皮细胞的影响。建立用PI单染法检测人血清对猪血管内皮细胞系(SV-40-PED)细胞毒作用的方法。
     [结果]人血清对猪血管内皮细胞的杀伤作用显著;在加入1-MT后,人血清对猪血管内皮细胞的杀伤效果受到抑制。
     [结论] IDO促进人血清对猪血管内皮细胞的杀伤作用;PI单染法能够方便客观地检测人血清的杀伤效率。
PartⅠ. Bioinformatics prediction, cloning and characterization of porcine IDO
     Objective To confirm the existence of porcine IDO gene, and to clone the novel gene followed by analysis for the molecule structure properties and expression pattern.
     Methods The porcine expressed sequence tags(EST) homologous to human IDO were obtained from GenBank database using bioinformatics method. By the way of RT-PCR, the gene was cloned from porcine endothelial cell line(SV-40-PED) and checked for the accuracy of the nucleic acid sequence, then the expression and distribution pattern of the gene was analyzed. Chromosomal localization was performed by means of somatic cell hybrid panel(SCHP). The three-dimension structure model of porcine IDO was built referring to the tertiary structure of human IDO ectodomain using biological sequence analysis softs and database.
     Results Porcine IDO was identified by sequencing analysis. The nucleotide sequences were submitted to NCBI database and confirmed as a novel gene. Porcine IDO was expressed in lung、thymus、epididymis and anterior chamber with basic expression level, however in PBMC with high expression level. Chromosomal localization and three-dimension structure model of porcine IDO is yet to be done.
     Conclusion Simultaneous utilization of bioinformatics method and molecular biology techniques will conduce the prediction and probation of novel porcine genes, and the presumption about porcine IDO is confirmed by the very way. Identification of the structure information of porcine IDO is essential to further investigate the immunologic function of the gene.
     PartⅡ. Construction, expression and purification of porcine pcDNA 3.1(-)-poIDO and pCMV-Tag2B-poIDO fusion protein
     Objective To construct the expression vector (pcDNA 3.1(-)-poIDO) and fusion protein of porcine IDO (pCMV-Tag2B-poIDO) which can simulate the natural IDO molecular.
     Methods The open reading frame of porcine IDO was amplified from SV-40-PED using RT-PCR and cloned into T vector, then subcloned into eukaryotic expression vector pcDNA 3.1(-) and p CMV-Tag2B after sequencing. The recombinant plasmid pcDNA 3.1(-)-poIDO and the blank vector pcDNA 3.1(-) were transfected into PED cells respectively followed by G418 selection. The recombinant plasmid pCMV-Tag2B-poIDO and the blank vector pCMV-Tag2B were transfected into CHO cells respectively followed by G418 selection. PED cells which can stablely secrete pcDNA 3.1(-)-poIDO protein were identified by the way of Western Blot, immunocytochemistry, immunofluorescence and flow cytometry. And CHO cells which can stablely secrete pCMV-Tag2B-poIDO fusion protein and Tag2B were identified by the way of Western Blot, immunocytochemistry, immunofluorescence and flow cytometry. The fusion protein was purified from the supernatants of the CHO cells culture by protein affinity chromatography.
     Results The recombinated plasmid pcDNA 3.1(-)-poIDO、poIDO-pCMV-Tag2B was constructed and verified successfully by double enzyme digestion and sequencing.
     Conclusion The vector poIDO-pCMV-Tag2B was obtained successfully and can be used to investigate the interaction between porcine IDO and human serum.
     PartⅢ. Study about the effect of poIDO in mediating Xenogeneic cytolytic activity of human serum against porcine endothelial cells
     Objective To establish a suitable empirical method to estimate the cytotoxic effect of human serum against porcine endothelial cells objectively.
     Methods The effect of 1-MT triggering human serum against porcine endothelial cells was detected by flow cytometry techniques. PI labeling method was established in flow-cytometric human serum cytotoxicity assay.
     Results The xenogeneic cytolytic activity of human serum against pocine endothelial cells was inhibited by 1-MT.
     Conclusion The xenogeneic cytolytic activity of human serum against pocine endothelial cells was up-regulated by IDO. PI labeling method can test the kill ability of human serum conveniently and objectively.
引文
1. Panepinto LM, Phillips RW. The Yucatan miniature porcine:characterization and utilization in biomedical research. Lab Anim Sci,1986,36:344-3471
    2. Sachs DH. The porcine as a potential xenograft donor. Vet Immunol Immunopathol, 1994,43:185-1911
    3. Platt J L. Current status of xenotransplantation:research and technology [J] Transplantation Proceedings,1998,30 (5):1630-1633.
    4. Sablinski T,Gianello PR,Bailin M,et al. Porcine to mokey bone marrow and kidney xnotransplatation. Surgery,1997,121 (4):381
    5. Blum MG,Collins BJ,Chang AC,et al. Complement inhibiton by FUTO175 and K762COOH in a porcine to human lung xenotransplant model. Xenot ransplantaton,1998,Feb 5:35
    6. Fujiwara I. Solube complement receptor type I and antithrombin combination therapy prolongs xenograft survival:the role fo thrombin and prostacyclin in hyperacute rejection. Transp Proc,1997,29:935
    7. MellorA L, Baban B, Chandler P, et al. Cutting edge:induced indoleamine 2,3 dioxygenase exp ression in dendritic cell subsets supp resses T cell clonal expansion [J]. J Imm unol,2003,171 (4):1652-5.
    8. Kwidzinski E, Bunse J, AktasO, et al. Indolamine 2,3-dioxygenase is exp ressed in the CNS and downregulates autoimmune in flammation[J]. FASEB J,2005,19 (10) 1347-9.
    9. PlattenM, Ho P P, Youssef S, et al. Treatment of autoimmune neuroinflammation with a synthetic tryp tophan metabolite[J]. Science,2005,310 (5749):850-5.
    10. Bauer TM, J iga L P, Chuang J J, et al. Studying the immunosuppressive role of indoleamine 2,3-dioxygenase:tryp tophan metabolites suppress rat allogeneic T cell responses in vitro and in vivo [J]. Transpl Int,2005,18 (1):95-100.
    11. Sakurai K, Zou J P, Torres N I, et al. Study of the effect of indoleamine 2, 3-dioxygenase on murine mixed lymphocyte reactions and skin allograft rejection[J]. Transplant Proc,2002,34 (8):3271-3.
    12. Li Y, Tredget E E, Ghaffari A, et al. Local exp ression of indoleamine 2, 3-dioxygenase p rotects engraftment of xenogeneic skin substitute[J]. J Invest Derm atol,2006,126(1):128-36.
    13. Travers MT,Gow IF,Barber J,et al. Thomson Indoleamine 2,3-dioxygenase activity and L-tryptophant ransport in human breast cancer cells [J]. Biochim Biophy Acta, 2004,1661 (1):106.
    14. Katharina S,Christiana W,Lothar CF,et al. Tryptophan degradation in patient s with gynecological cancer correlates with immune activation[J]. Cancer Lett,2005,223 323.
    15. Munn DH. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumordraining lymph nodes [J]. J Clin Invest,2004,114:280.
    16. Guti e rrez G, Fitzgerald JS, et al. Comparative effects of L-tryptophan and 1-methyl-tryptophan on immunoregulation induced by sperm, human pre-implantation embryo and trophoblast supernatants [J]. Am J Reprod Immunol,2003,50(4): 309-315.
    17. Dong M, Ding G, Zhou J, et al. The Effect of Trophoblasts on T Lymphocytes: Possible Regulatory Effector Molecules-A Proteomic Analysis [J]. Cell Physiol Biochem,2008,21(5-6):463-472.
    18. Steckel NK, Kuhn U, Beelen DW, et al. In doleamine2,3-dioxygenase expression in patients with acute graft-versus-host disease after allogeneic stem cell transplantation and in ergnant women:association with the induction allogeneic immune tolerance?[J]. Scand J Immunol,2003,57(2):185-191.
    19. Lee GK, Park HJ, Macleod M, Chandler P, Munn DH, Mellor AL. Tryptophan deprivation sensitizes activated T cells to apoptosis prior to cell division. Immunology
    2002; 107:452-60.
    20. Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med.1999; 189: 1363-72.
    21. Bauer TM, Jiga LP, Chuang JJ, Randazzo M, Opelz G, Terness P. Studying the immunosuppressive role of indoleamine 2,3-dioxygenase:tryptophan metabolites suppress rat allogeneic T-cell responses in vitro and in vivo. Transpl. Int.2005; 18: 95-100.
    22. Terness P, Bauer TM, Rose L, et al. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells:mediation of suppression by tryptophan metabolites. J. Exp. Med.2002; 196:447-57.
    23. Fallarino F, Grohmann U, Vacca C, et al. T cell apoptosis by tryptophan catabolism. Cell Death Differ.2002; 9:1069-77.
    24. Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J. Exp. Med.2002; 196: 459-68.
    25. Peterson DG, Schulze SR, Sciara EB et al. Integration of Cot analysis,DNA cloning, and high through put sequencing facilitates genome characterization and gene discovery. Genome Res,2002,12:795-807.
    26. Adams MD, Kelley JM, Gocayne JD, et al. Complementary DNA sequencing expressed sequence tags and human genome project [J]. Science,252 (5013):1651-1656.
    27. Adams MD, Kelley JM, Gocayne JD, et al. Complementary DNA sequencing expressed sequence tags and human genome project [J]. Science,1991,252 (5013):1651-1656.
    28. Kozak M. A consideration of alternative models for the initiation of translation in eukaryotes. Crit Rev Biochem Mol Biol,1992,27:385-402
    29. Eberle F, Dubreuil P, Mattei MG, et al. The human PRR2 gene, related to the human poliovirus receptor gene(PVR), is the true homolog of the murine MPH gene. Gene, 1995,159:267-272.
    30. Sugimoto, H., S. Oda, et al. (2006). "Crystal structure of human indoleamine 2,3-dioxygenase:catalytic mechanism of 02 incorporation by a heme-containing dioxygenase." Proc Natl Acad Sci U S A 103(8):2611-6.
    31. RattinkAP, Faivre M, Jungerius BJ, Groenen MAM, Harlizius. A high-resolution comparative RH map of Porcine chromosome(SSC)2.Mam Genome,2001,12:366-370
    32. Chevalet C, Gouzy J, SanCristobal-Gaudy M. Regional assignment of genetic markers using a somatic cell hybrid panel:a WWW interactive program available for the porcine genome. Comput Appl Biosci,1997,13:69-73
    33. Chowdhary BP.Cytogeneties and physical chromosome maps. In:Rothsehild MF and RuvinskyA eds., The genetics of the Pig. Whllinford, UK:CAB International,1998, 199-244.
    34.邹文雄,黄明经.蛋白质结构之电脑预测.Chemistry,1997,55:101-109
    35. Marti-Renom M A, Stuart A C, Fiser A, et al. Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct,2000,29:291-325.
    1. Tamantha K. Littlejohn,, Osamu Takikawa, et al. Expression and Purification of Recombinant Human Indoleamine 2,3-Dioxygenase. Protein Expression and Purification 19, (2000):22-29
    2. John FM, Paul B. Cleavage of Simian Virus 40 DNA at a Unique Site by a Bacterial Restriction Enzyme. Proc Natl Acad Sci,1972,69:3365-3369
    3.刘秉文.医学分子生物学.人民卫生出版社.2000年11月第1版.
    4.黄培堂译.分子克隆实验指南.科学出版社。2002年9月第3版
    5. Blanc V, Henderson JO, Kennedy S, Davidson NO, et al. Mutagenesis of apobec-1 complementation factor reveals distinct domains that modulate RNA binding, protein-protein interaction with apobec-1, and complementation of C to U RNA-editing activity. J Biol Chem.2001 Dec 7;276(49):46386-93.
    6. Ferguson G, Mothe-Satney I, Lawrence JC Jr. et al. Ser-64 and Ser-111 in PHAS-Ⅰ are dispensable for insulin-stimulated dissociation from eIF4E. J Biol Chem.2003 Nov 28;278(48):47459-65.
    7. Proietti CJ, Rosemblit C, Beguelin W, et al. Activation of Stat3 by heregulin/ErbB-2 through the co-option of progesterone receptor signaling drives breast cancer growth. Mol Cell Biol.2009 Mar;29(5):1249-65.
    8. Chan CW, Wong NA, Liu Y, Bicknell D, et al. Gastrointestinal differentiation marker Cytokeratin 20 is regulated by homeobox gene CDX1. Proc Natl Acad Sci U S A.2009 Feb 10; 106(6):1936-41.
    9. Kara Dolinski, Scott Muir, Maria Cardenas,et al.All cyclophilins and FK506 binding proteins are, individually and collectively, dispensable for viability in Saccharomyces□cerevisiae PNAS 1997 94 (24) 13093-13098
    10. Scorer, C. A., J. J. Clare, et al. (1994). "Rapid Selection Using G418 of High Copy Number Transformants of Pichia pastoris for High-level Foreign Gene Expression." Nat Biotech 12(2):181-184.
    11. Byun J, Kim JM, Kim SH, et al. A simple and rapid method for the determination of recombinant retrovirus titer by G418 selection. Gene Ther.1996 Nov;3(11):1018-20.
    1. Kroshus J, Boiman RM, Dalmasso AP, et al. Expression of human CD59 in transgenic porcine organs enhances organ survival in an ex vivo xenogeneic perfusion model. Transplantation,1996,61:1513.
    2. Lawson JH, Platt JL. Molecular barriers to xenotransplantation. Transplantation,1996, 62:303.
    3. Bach FH, Robson SC, Ferran C, et al. Xenotransplantation:endothelial activation and beyond. Transplant Proc,1995,27:77.
    4. San MS, McKenzie IF. Gal alpha(1,3)Gal, the major xenoantigen(s) recognised in porcines by human natural antibodies. Immunol Rev.1994; 141:169-190.
    5. Holzknecht ZE, Platt JL. Identification of porcine endothelial cell membrane antigens recognized by human xenoreactive natural antibodies. J Immunol.1995; 154(9): 4565-4575.
    6. Cascalho M, Platt JL. The immunological barrier to xenotransplantation. Immunity, 2001,14(4):437-446.
    7. Mellor AL, Munn DH. IDO expression by dendritic cells:tolerance and tryptophan catabolism [J].NatRevlmmunol,2004,4(10):762-774.
    8. Bianchi M, Bertini R, Ghezzi P. Induction of indoleamine dioxygenase by interferon in mice:a study with different recom binant interferons and various cytoKi nes [J]. B iochem Biophys Res Comm un,1988,152 (1):237-242.
    9. Sugimoto, H., S. Oda, et al. (2006). "Crystal structure of human indoleamine 2,3-dioxygenase:catalytic mechanism of 02 incorporation by a heme-containing dioxygenase." Proc Natl Acad Sci U S A 103(8):2611-6
    10. Bauer TM, Jiga LP, Chuang JJ, Randazzo M, Opelz G, Terness P. Studying the immunosuppressive role of indoleamine 2,3-dioxygenase:tryptophan metabolites suppress rat allogeneic T-cell responses in vitro and in vivo. Transpl. Int.2005; 18: 95-100.
    11. Terness P, Bauer TM, Rose L, et al. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells:mediation of suppression by tryptophan metabolites. J. Exp. Med.2002; 196:447-57.
    12. Fallarino F, Grohmann U, Vacca C, et al. T cell apoptosis by tryptophan catabolism. Cell Death Differ.2002; 9:1069-77.
    13. Kai, S., S. Goto, et al. (2003). "Inhibition of indoleamine 2,3-dioxygenase suppresses NK cell activity and accelerates tumor growth." J Exp Ther Oncol 3(6):336-45.
    14. Kai, S., S. Goto, et al. (2004). "Indoleamine 2,3-dioxygenase is necessary for cytolytic activity of natural killer cells." Scand J Immunol 59(2):177-82.
    15. Marcusson-Stahl M, Cederbrant K. A flow-cytometric NK-cytotoxicity assay adapted for use in rat repeated dose toxicity studies. Toxicology,2003,193:269-279
    16.王晓祺,谭岩,段秀梅,等.流式细胞术检测细胞毒方法的建立.中国免疫学杂志.2004,20:704-707
    17. Nozaki Y, Yamagata T, Sugiyama M et al. Anti-inflammatory effect of all-trans-retinoic acid in inflammatory arthritis. Clin Immunol.2006 Jun;119(3):272-9.
    18. Platt JL. Xenotransplantation of the liver:is more complement control needed? Liver Transpl.2001 Oct;7(10):933-4..
    19. Bach FH, Robson SC, Ferran C, et al. Xenotransplantation:endothelial activation and beyond. Transplant Proc,1995,27:77.
    1. Moffett JR, Namboodiri MA. Tryptophan and the immune response. Immunol. Cell. Biol.2003; 81:247-65.
    2. Mellor AL, Munn DH. IDO expression by dendritic cells:toleranceand tryptophan catabolism. Nat. Rev. Immunol.2004; 4:762-74.
    3. Taylor MW, Feng GS. Relationship between interferon-gamma,indoleamine 2,3-dioxygenase, and tryptophan catabolism. Faseb J.1991; 5:2516-22.
    4. Grohmann U, Orabona C, Fallarino F, et al. CTLA-4-Ig regulatestryptophan catabolism in vivo. Nat. Immunol.2002; 3:1097-101.
    5. Fallarino F, Grohmann U, Hwang KW, et al. Modulation oftryptophan catabolism by regulatory T cells. Nat. Immunol.2003;4:1206-12.
    6. Logan GJ, Smyth CM, Earl JW, et al. HeLa cells cocultured with peripheral blood lymphocytes acquire an immuno-inhibitory phenotype through up-regulation of indoleamine 2,3-dioxygenase activity. Immunology 2002; 105:478-87.
    7. Munn DH, Zhou M, Attwood JT, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 1998; 281:1191-3.
    8. Kwidzinski E, Bunse J, Aktas O, et al. Indolamine 2,3-dioxygenase is expressed in the CNS and down-regulates autoimmune inflammation. Faseb J.2005; 19:1347-9.
    9. Sakurai K, Zou JP, Tschetter JR, Ward JM, Shearer GM. Effect of indoleamine 2,3-dioxygenase on induction of experimental autoimmune encephalomyelitis. J. Neuroimmunol.2002; 129:186-96.
    10. Choi BK, Asai T, Vinay DS, Kim YH, Kwon BS.4-1BB-mediated amelioration of experimental autoimmune uveoretinitis is caused by indoleamine 2,3-dioxygenase-dependent mechanisms. Cytokine 2006; 34:233-42.
    11. Schroecksnadel K, Zangerle R, Bellmann-Weiler R, Garimorth K, Weiss G, Fuchs D. Indoleamine-2,3-dioxygenase and other interferon-gamma-mediated pathways in patients with human immunodeficiency virus infection. Curr. Drug. Metab.2007; 8: 225-36.
    12. Boasso A, Shearer GM. How does indoleamine 2,3-dioxygenase contribute to HIV-mediated immune dysregulation. Curr. Drug. Metab.2007; 8:217-23.
    13. Munn DH, Mellor AL. Indoleamine 2,3-dioxygenase and tumorinduced tolerance. J. Clin. Invest.2007; 117:1147-54.
    14. Lee GK, Park HJ, Macleod M, Chandler P, Munn DH, Mellor AL. Tryptophan deprivation sensitizes activated T cells to apoptosis prior to cell division. Immunology 2002; 107:452-60.
    15. Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med.1999; 189: 1363-72.
    16. von Bubnoff D, Matz H, Frahnert C, et al. FcepsilonRI induces the tryptophan degradation pathway involved in regulating T cell responses. J. Immunol.2002; 169: 1810-6.
    17. Bauer TM, Jiga LP, Chuang JJ, Randazzo M, Opelz G, Terness P. Studying the immunosuppressive role of indoleamine 2,3-dioxygenase:tryptophan metabolites suppress rat allogeneic T-cell responses in vitro and in vivo. Transpl. Int.2005; 18: 95-100.
    18. Terness P, Bauer TM, Rose L, et al. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells:mediation of suppression by tryptophan metabolites. J. Exp. Med.2002; 196:447-57.
    19. Fallarino F, Grohmann U, Vacca C, et al. T cell apoptosis by tryptophan catabolism. Cell Death Differ.2002; 9:1069-77.
    20. Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J. Exp. Med.2002; 196: 459-68.
    21. Munn DH, Mellor AL, Rossi M, Young JW. Dendritic cells have the option to express IDO-mediated suppression or not. Blood 2005; 105:2618.
    22. Terness P, Chuang JJ, Opelz G. The immunoregulatory role of IDO-producing human dendritic cells revisited. Trends Immunol.2006; 27:68-73.
    23. Fleckner J, Martensen PM, Tolstrup AB, Kjeldgaard NO, Justesen J. Differential regulation of the human, interferon inducible tryptophanyl-tRNA synthetase by various cytokines in cell lines. Cytokine 1995; 7:70-7.
    24. Tolstrup AB, Bejder A, Fleckner J, Justesen J. Transcriptional regulation of the interferon-gamma-inducible tryptophanyl-tRNA synthetase includes alternative splicing. J. Biol. Chem.1995; 270:397-403.
    25. Seymour RL, Ganapathy V, Mellor AL, Munn DH. A highaffinity, tryptophan-selective amino acid transport system in human macrophages.-J. Leukoc. Biol.2006; 80:1320-7.
    26. Sono M, Taniguchi T, Watanabe Y, Hayaishi O. Indoleamine 2,3-dioxygenase. Equilibrium studies of the tryptophan binding to the ferric, ferrous, and CO-bound enzymes. J. Biol. Chem.1980; 255:1339-45.
    27. Hayaishi O. Utilization of superoxide anion by indoleamine oxygenase-catalyzed tryptophan and indoleamine oxidation. Adv. Exp. Med. Biol.1996; 398:285-9.
    28. Thomas SR, Stocker R. Redox reactions related to indoleamine 2,3-dioxygenase and tryptophan metabolism along the kynurenine pathway. Redox Rep.1999; 4:199-220.
    29. Christen S, Thomas SR, Garner B, Stocker R. Inhibition by interferon-gamma of human mononuclear cell-mediated low density lipoprotein oxidation. Participation of tryptophan metabolism along the kynurenine pathway. J. Clin. Invest.1994; 93: 2149-58.
    30. Liu H, Liu L, Fletcher BS, Visner GA. Novel action of indoleamine 2,3-dioxygenase attenuating acute lung allograft injury. Am. J. Respir. Crit. Care Med.2006; 173: 566-72.
    31. Thomas SR, Mohr D, Stocker R. Nitric oxide inhibits indoleamine 2,3-dioxygenase activity in interferon-gamma primed mononuclear phagocytes. J. Biol. Chem.1994; 269:14457-64:
    32. Thomas SR, Terentis AC, Cai H, et al. Post-translational regulation of human indoleamine 2,3-dioxygenase activity by nitric oxide. J. Biol. Chem.2007; 282: 23778-87.
    33. Li Y, Tredget EE, Ghahary A. Cell surface expression of MHC class I antigen is suppressed in indoleamine 2,3-dioxygenase genetically modified keratinocytes: implications in allogeneic skin substitute engraftment. Hum. Immunol.2004; 65: 114-23.
    34. Beutelspacher SC, Pillai R, Watson MP, et al. Function of indoleamine 2,3-dioxygenase in corneal allograft rejection and prolongation of allograft survival by over-expression. Eur. J. Immunol.2006; 36:690-700.
    35. Brandacher G, Cakar F, Winkler C, et al. Non-invasive monitoring of kidney allograft rejection through IDO metabolism evaluation. Kidney Int.2007; 71:60-7.
    36. Guillonneau C, Hill M, Hubert FX, et al. CD40Ig treatment results in allograft acceptance mediated by CD8CD45RC T cells, IFN-gamma, and indoleamine 2,3-dioxygenase. J. Clin. Invest.2007; 117:1096-106.
    37. Sakurai K, Zou JP, Torres NI, Tschetter JR, Kim HS, Shearer GM. Study of the effect of indoleamine 2,3-dioxygenase on murine mixed lymphocyte reactions and skin allograft rejection. Transplant. Proc.2002; 34:3271-3.
    38. Reding R, Davies HF. Revisiting liver transplant immunology:from the concept of immune engagement to the dualistic pathway paradigm. Liver Transpl.2004; 10: 1081-6.
    39. Miki T, Sun H, Lee Y, et al. Blockade of tryptophan catabolism prevents spontaneous tolerogenicity of liver allografts. Transplant. Proc.2001; 33:129-30.
    40. Pan TL, Lin CL, Chen CL, et al. Identification of the indoleamine 2,3-dioxygenase nucleotide sequence in a rat liver transplant model. Transpl. Immunol.2000; 8: 189-94.
    41. Alexander AM, Crawford M, Bertera S, et al. Indoleamine 2,3-dioxygenase expression in transplanted NOD Islets prolongs graft survival after adoptive transfer of diabetogenic splenocytes. Diabetes 2002; 51:356-65.
    42. Li Y, Tredget EE, Ghaffari A, Lin X, Kilani RT, Ghahary A. Local expression of indoleamine 2,3-dioxygenase protects engraftment of xenogeneic skin substitute. J. Invest. Dermatol.2006; 126:128-36.
    43. Jenkins MK, Taylor PS, Norton SD, Urdahl KB. CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells. J. Immunol.1991; 147: 2461-6.
    44. Schwartz RH. A cell culture model for T lymphocyte clonal anergy. Science 1990; 248: 1349-56.
    45. Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK, Ledbetter JA. CTLA-4 is a second receptor for the B cell activation antigen B7. J. Exp. Med.1991; 174:561-9.
    46. Salomon B, Bluestone JA. Complexities of CD28/B7:CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu. Rev. Immunol.2001; 19:225-52.
    47. Bluestone JA, St Clair EW, Turka LA. CTLA4Ig:bridging the basic immunology with clinical application. Immunity 2006; 24:233-8.
    48. Elster EA, Hale DA, Mannon RB, Cendales LC, Swanson SJ, Kirk AD. The road to tolerance:renal transplant tolerance induction in nonhuman primate studies and clinical trials. Transpl. Immunol.2004; 13:87-99.
    49. Belladonna ML, Grohmann U, Guidetti P, et al. Kynurenine pathway enzymes in dendritic cells initiate tolerogenesis in the absence of functional IDO. J. Immunol.2006; 177:130-7.
    50. Thomas SR, Salahifar H, Mashima R, Hunt NH, Richardson DR, Stocker R. Antioxidants inhibit indoleamine 2,3-dioxygenase in IFN-gamma-activated human macrophages:posttranslational regulation by pyrrolidine dithiocarbamate. J. Immunol. 2001; 166:6332-40.
    51. Munn DH, Sharma MD, Lee JR, et al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 2002; 297:1867-70.
    52. Munn DH, Sharma MD, Hou D, et al. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J. Clin. Invest.2004; 114: 280-90.
    53. Fallarino F, Gizzi S, Mosci P, Grohmann U, Puccetti P. Tryptophan catabolism in IDO+ plasmacytoid dendritic cells. Curr. Drug Metab.2007; 8:209-16.
    54. Lob S, Ebner S, Wagner S, Weinreich J, Schafer R, Konigsrainer A. Are indoleamine-2,3-dioxygenase producing human dendritic cells a tool for suppression of allogeneic T-cell responses? Transplantation 2007; 83:468-73.
    55. Funeshima N, Fujino M, Kitazawa Y, et al. Inhibition of allogeneic T-cell responses by dendritic cells expressing transduced indoleamine 2,3-dioxygenase. J. Gene. Med.2005; 7:565-75.
    56. Xu S, Ariizumi K, Caceres-Dittmar G, et al. Successive generation of antigen-presenting, dendritic cell lines from murine epidermis. J. Immunol.1995; 154: 2697-705.
    57. Fallarino F, Grohmann U, You S, et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J. Immunol.2006; 176:6752-61.
    58. Agaugue S, Perrin-Cocon L, Coutant F, Andre P, Lotteau V.1-Methyl-tryptophan can interfere with TLR signaling in dendritic cells independently of IDO activity. J. Immunol.2006; 177:2061-71.
    59. Guillemin GJ, Smythe G, Takikawa O, Brew BJ. Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid byhuman microglia, astrocytes, and neurons. Glia 2005; 49:15-23.
    60. Keskin DB, Marshall B, Munn D, Mellor AL, Gearhart DA. Decreased protein nitration in macrophages that overexpress indoleamine 2,3-dioxygenase. Cell Mol. Biol. Lett.2007; 12:82-102.
    61. Wyburn KR, Jose MD,Wu H, Atkins RC, Chadban SJ. The role of macrophages in allograft rejection. Transplantation 2005; 80:1641-7.
    62. Lu CY, Hartono J, Senitko M, Chen J. The inflammatory response to ischemic acute kidney injury:a result of the'right stuff in the'wrong place'? Curr. Opin. Nephrol. Hypertens.2007; 16:83-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700