用户名: 密码: 验证码:
高性能氮化物半导体MOS-HEMT器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文首先对GaN基MOS-HEMT器件的制作工艺方法进行了研究和优化,在器件表面钝化工艺中,提出了采用先低后高的起辉功率,提高了Si3N4钝化层的薄膜质量;通过调整He和N2的比例,有效地改善了Si3N4钝化层对材料表面所产生的应力和表面粗糙度,明显提高了Si3N4薄膜的击穿电压。通过对Si3N4介质材料进行大量的统计和实验分析,显著提高了生长的均匀性和材料参数的稳定性,使得Si3N4生长厚度偏差小于3%,折射率偏差小于2%,片内均匀性在2%以内。通过优化原子层淀积Al2O3的工艺参数,得到了MOS-HEMT器件所需要的高质量的栅介质;研究并确定了牺牲层的总厚度( >2.5μm)以及牺牲层中PMI胶与电镀层中EMI胶的比例关系和烘烤温度;通过优化空气桥的厚度,电镀速率以及电流密度,确定了最优的电镀方案。最后,通过各步工艺的优化,提出了一种新的高击穿电压和小关态漏电的双场板MOS-HEMT的器件结构。
     论文研究了不同凹栅刻蚀深度对MOS-HEMT电容以及器件特性的影响,研究发现经过15s,17s和19s的凹栅刻蚀后,分别形成了1nm,3.2nm和3.7nm的凹栅刻蚀深度,其峰值载流子浓度分别为2.61×1025m-3,2.34×1025m-3和1.79×1025m-3,积分得到的载流子面密度分别为1.12×1017m-2,1.08×1017m-2和1.09×1017m-2。通过变频CV计算,得到了常规MOS-HEMT结构的界面陷阱密度Dit=(0.72 -1.25)×1012cm-2eV-1,界面态时常数τit=(0.64-0.19)μs;而1nm深的凹栅MOS的界面态密度Dit=(0.55-1.08)×1012cm-2eV-1,界面态时常数τit=(0.2-1.59)μs;3.23nm深的凹栅MOS的界面态密度Dit=(0.97-1.14)×1012cm-2eV-1,界面态时常数τit=(0.24-0.49)μs;3.7nm深的凹栅MOS的界面态密度Dit=(0.76 -1.2)×1012cm-2eV-1,界面态时常数τit=(0.19-0.94)μs。可以看出经过凹栅刻蚀后,界面态密度没有增加,反而有小幅的下降,对比界面态时常数的变化,可以看出界面态时常数的量级都在微秒,属于快态陷阱,这说明凹栅结构能够减少Al2O3栅介质与势垒层之间的表面态密度,且不会产生新的界面态陷阱类型。对比研究常规MOS-HEMT器件与凹栅MOS-HEMT器件的直流特性,发现凹栅结构的MOS-HEMT器件在减少Al2O3栅介质与势垒层之间界面态密度的同时,还能够有效地提高器件的饱和输出电流密度;其次,本文发现器件阈值电压从-5.15V增加到-4.4V,跨导峰值随着凹栅深度的增加而增加,从160mS/mm增加到189mS/mm。另外,凹栅结构的MOS-HEMT器件能够有效地去除工艺步骤中低能注入到栅极处的F离子,从而改善因F离子漂移造成的器件电学特性的退化,提高了器件的可靠性。在脉冲测试中,发现常规MOS-HEMT的器件的崩塌最为明显,崩塌量达到20%以上,而凹栅结构的MOS-HEMT器件基本上没有发生明显的崩塌现象。最后研究了凹栅刻蚀对器件功率特性的影响,对几种不同凹栅深度的器件进行了功率测试,发现凹栅型MOS器件能够显著提高器件的功率特性。
     论文提出采用O2等离子体处理的方法来减少凹栅刻蚀带来的损伤,由于在O2等离子体处理过程中形成了原位氧化层,因而有效地减小了HEMT电容的频率耗散和高低频CV曲线的漂移,从而使Al2O3/AlGaN之间形成了很高的界面质量。其次,O2等离子体处理后的凹栅型MOS-HEMT保持了较高的饱和输出电流,同时能够有效改善栅极的关态电流和亚阈值特性,脉冲测试的结果表明O2等离子体处理能够消除因凹栅刻蚀所带来的快态陷阱,改善器件的交流特性,随着凹栅刻蚀深度的增加,氧等离子体处理对凹栅型MOS-HEMT器件电学性能的改善更加明显。此外,氧等离子体处理的凹栅型MOS-HEMT器件还具有良好的频率特性。
     论文研究并得到了原子层淀积5nm厚Al2O3栅介质的AlGaN/GaN/ Al0.07Ga0.93N(buffer)凹栅型MOS-HEMT器件,缓冲层采用AlGaN的新型凹栅型MOS-HEMT器件的栅长为0.5μm,栅宽为100μm,当栅电压为4V时的最大饱和电流达到894mA/mm;当源漏偏置为10V时,器件的阈值电压为-1.3V,器件的最大跨导达到了223mS/mm。当漏电压从10V变化为30V时,其亚阈值摆幅为650mV/decade,DIBL=42.5mV/V,这说明Al0.07Ga0.93N缓冲层的引入能够很好的抑制漏致势垒降低效应的发生。对于缓冲层采用AlGaN的凹栅型MOS-HEMT器件而言,当漏极电压为160V时,此时的关态电流仅为0.6mA/mm,说明其击穿电压要远大于160V。器件的截止频率达到18GHz以上,其最大振荡频率达到40GHz以上。此外,AlGaN缓冲层结构的凹栅型MOS-HEMT器件还具有良好的功率特性,当漏电压为35V,栅电压接近于截止电压时,器件的饱和功率密度达到7.2W/mm,功率附件效率达到61.4%。对缓冲层采用AlGaN的凹栅型MOS-HEMT器件进行了开态和关态应力的可靠性研究表明,在开态应力下AlGaN/GaN /Al0.07GaN0.93(buffer)凹栅型MOS-HEMT器件的饱和电流,阈值和跨导峰值的退化都比传统GaN缓冲层器件的要小,说明缓冲层采用AlGaN的器件抑制热电子发射效应的作用明显;而在关态应力下AlGaN背势垒结构能够有效地抑制栅极注入电流进入到缓冲层中,因此,对提高器件关态应力下的可靠性也有着积极的作用。
     论文研究并得到了原子层淀积5nm厚Al2O3栅介质的高性能AlGaN/AlN/GaN凹栅型MOS-HEMT器件,器件的栅长为0.5μm,栅宽为100μm,器件在栅偏置为-5V完全关断,其关断电流小于0.005mA/mm,具有优良的关断性能;当栅压增加到3V时,凹栅型MOS器件的饱和输出电流密度大于1.6A/mm。AlGaN/AlN/GaN凹栅型MOS-HEMT器件具有极佳的交流特性,脉冲测试表明器件在短脉宽情况下(τ<1μs)发生了很小量的电流崩塌效应,崩塌量小于2.5%,此后随着脉冲宽度的增加,器件基本上没有发生电流崩塌效应。通过电流增益|h21|和功率增益U(MSG/MAG)的外推法,分别得到了器件的截止频率fT=19GHz和最大振荡频率fmax=50GHz,fT和f max的比例为2.6,表明器件具有低的寄生效应。对传统的FET小信号模型进行了优化,考虑到栅极漏电,在原有的本征参数中加入两个反馈电阻Rlgs和Rlgd;考虑到高频下电容的分布特性,再加入Cgsi和Cdsi二个参数来描述pad之间,栅源和漏源之间的交叉影响,在此基础上提出了一种全新的21参数AlGaN/AlN/GaN凹栅MOS-HEMT器件的小信号模型,使模型精度有了很大的提高。此外,新型AlGaN/AlN/GaN凹栅型MOS器件还具有极佳的输出功率和功率附加效率,当测试频率为4GHz,漏压Vd=45V的情况下,器件的最大输出功率密度为13W/mm,功率附加效率更是高达73%以上。当漏电压分别为30V,35V,40V和45V时,AlGaN/AlN/GaN凹栅型MOS-HEMT器件的输出功率密度分别达到6.3W/mm,8.3 W/mm,11.2 W/mm,13 W/mm,其输出功率密度随着漏压的增加呈线性增加的趋势,而其功率附加效率则分别到达72.43%,72.64%,72.74%,73.14%,没有出现退化,保持了极高的功率附加效率,这一结果是目前国内外报道的相关器件特性中最高的。
Firstly, the process of GaN-based MOS-HEMT device is optimized in this paper. The quality of Si3N4 passivation layer is improved by employing elevated plasma power. Stress and roughness of the device surface are improved by adjusting the ratio of He and N2 flow in the passivation process, thus increased the breakdown voltage of the device. Statistical analysis of Si3N4 dielectric material is done through a large number of experiments. The result shows that after optimizing the parameter of the Si3N4 film become stable and the deviation of thickness, the refractive index and the on-chip uniformity are less than 3%, 2% and 2%, respectively. Then, a high-quality gate dielectric is obtained by optimizing the parameter of Al2O3 atomic layer deposition (ALD) process. The total thickness of the sacrificial layer (>2.5μm), the baking temperature and the ratio of PMI and EMI are determined in this paper. By optimizing the thickness of air-bridge, the plating velocity and the current density, we get the optimal plating solution. Finally, a dual field plate MOS-HEMT device with high breakdown voltage and low off-state leakage is developed by optimizing each process step.
     The influence of the gate recess etching depth on the characteristics of MOS-HEMT device is investigated in this dissertation, the study found that through the etching time of 15s, 17s and 19s, the recessed gate depth of 1nm, 3.2nm and 3.7nm are formed. The peak carrier concentration are 2.61×1025m-3, 2.34×1025m-3 and 1.79×1025m-3 and the integrated carrier surface density are 1.12×1017m-2, 1.08×1017m-2 and 1.09×1017m-2, respectively. The density and time constant of interface state traps of devices with different gate recess depth are obtained by Gp-ωcalculation. It can be seen that the interface state density does not increase but decrease slightly after etching and the interface state time constant is the order of microseconds, which shows that the recessed gate structure can reduce the interface trap density between Al2O3 dielectric and barrier layer without new type of interface trap generation. Compared with conventional MOS-HEMT devices, the recessed gate MOS-HEMT devices are of better DC performance with higher saturation current density and peak trans-conductance. In addition, the gate recess etching can eliminate the introduction of low-energy F-ions in device process, therefore weakening the degradation of device characteristics caused by F-ion drift and improving the reliability of the device. The current collapse phenomenon is investigated in both conventional MOS-HEMT devices and recessed gate MOS-HEMT devices. A serious current collapse is observed in conventional MOS-HEMT devices, while subtle current collapse is observed in the recessed gate MOS-HEMT devices. Finally, the power characteristic measurement is carried out on conventional MOS-HEMT devices and the recessed gate MOS-HEMT devices, the results suggest that the recessed gate MOS devices are of better power characteristics.
     O2 plasma treatment is employed in this paper to reduce the damage caused by gate recess etching. An insitu oxide-layer is formed during the treatment which effectively reduce the frequency dispersion of capacitance and the drift of CV curve, thus forms a very high quality Al2O3/AlGaN interface. Secondly, the O2 plasma treatment can improve DC and AC characteristics of recessed gate MOS-HEMT devices with higher saturated output current, smaller off-state current, better sub-threshold characteristic and less fast-state traps. Finally, the O2 plasma treatment can improve the frequency characteristics of recessed gate MOS-HEMT devices which mainly reflected in the impedance decrease of the output port reflection coefficient (S22).
     A high-performance AlGaN/GaN/Al0.07Ga0.93N recessed gate MOS-HEMT device is reported in this paper with a 5nm ALD Al2O3 gate dielectric and an AlGaN buffer layer. The electrical parameters of a device (0.6μm×100μm) are as follows: the threshold voltage is -1.3V, the peak trans-conductance is 223mS/mm and the saturation current is 894mA/mm at Vg=4V. When VD is increased from 10V to 30V, the sub-threshold voltage swing is 650mV/decade and DIBL is 42.5mV/V, which suggests that the introduction of Al0.07Ga0.93N buffer layer can suppress the reduction of barrier height. Recessed gate MOS-HEMT device with AlGaN buffer layer has excellent breakdown performance with the breakdown voltage of above 160V. The fT and fmax of the device are 18GHz and 40G, respectively. Besides, the device also has fairly good power characteristics. The saturation power density and PAE are 7.2W/mm and 61.4%, respectively. On-state and off-state high-electric-field stress results are presented for AlGaN/GaN/Al0.07Ga0.93N (buffer) recessed gate MOS-HEMT devices. Under on-state stress, devices show less DC characteristic degradation than conventional devices, which shows that AlGaN buffer layer can effectively eliminate the hot carrier effects. Under off-state stress, the AlGaN back barrier structure can suppress the injection of gate electrons, thus improving the reliability of the devices. Another high-performance AlGaN/AlN/GaN recessed gate MOS-HEMT device is reported in this paper with a 5nm ALD Al2O3 gate dielectric. The electrical parameters of a device (0.6μm×100μm) are as follows: the pinch off voltage is -5V, the pinch off current is 0.005mA/mm and the saturation current is 1.6A/mm at Vg=3V. This kind of device has excellent AC performance. Minimal current collapse is observed in short pulse-width (τ<1μs) test, while basically no current collapse is observed in long pulse-width test. fT (19GHz) and fmax (50GHz) of devices are obtained by using |H21| and U (MSG/MAG) extrapolation method. The ratio of fT and fmax is 2.6, which show that the device is of low parasitic effect. A 21-parameter small signal model of AlGaN/AlN/GaN recessed gate MOS-HEMT device with higher accuracy is proposed based on the conventional FET small signal model by considering the gate leakage, the distribution character of capacitance under high frequency and the cross impact between Gate-Source and Drain-Source. Besides, this novel AlGaN/AlN/GaN recessed gate MOS-HEMT device is of excellent output power and PAE performance. The maximum output power density and PAE at 4GHz and VD=45V are 13W/mm and 73%. When VD is increased from 30V to 45V, the output power is raised from 6.3W/mm to 13 W/mm linearly, and the PAE is maintained at around 73% without any degradation. It is also believed to be the best microwave performance ever reported in 4GHz for recessed Al2O3/AlGaN/AlN/GaN MOS-HEMTs.
引文
[1.1] Chow T P and Tyagi R, Wide band gap compound semiconductors for superior high-voltage unipolar power devices, IEEE Trans. Electron Devices, vol. 41, no. 8, 1994,pp.1481-1483
    [1.2] Saito W, Takada Y, Kuraguchi M, Tsuda K, Omura I, Ogura T, and Ohashi H, High breakdown voltage AlGaN-GaN power-HEMT design and high current density switching behavior, IEEE Trans. Electron Devices, vol. 50, no. 12, 2003,pp.2528-2531
    [1.3] Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M , Wisleder T, Mishra U K, and Parikh P, 30-W/mm GaN HEMT by field plate optimization, IEEE Electron Device Lett., vol. 25, no. 3, 2004, pp.117-119
    [1.4] Park Y S, Semiconductors and Semimetals: SiC Materials and Devices. New York: Academic Press, 1998, vol. 52, pp.195- 197
    [1.5] Morkoc H, Strite S, Gao G B, Lin M E, Sverdlov B, and Burns M, Largeband-gap Sic, III-V nitride, and II-VI ZnSe-based semiconductor device technologies, J. Appl. Phys., vol. 76, 1998, pp.111-120
    [1.6] Weitzel C E and Moore K E, Silicon carbide and gallium nitride rf power devices, MRS Symp. Proc., vol. 483, 1998, pp.111-120
    [1.7] Zolper J C, Junction field effect transistors for high-temperature or highpower electronics, MRS Symp. Proc., vol. 483, 1998, pp.83-87
    [1.8] Li T, Joshi R P and Fazi C, Monte Carlo evaluations of degeneracy and interface roughness effects on electron transport in AlGaN/GaN heterostructures, J. Appl. Phys., 2000, vol. 88, pp. 829-837
    [1.9] Moss T S and Mahajan S, Handbook on Semiconductors: Materials, Properties and Preparation, Amsterdam: Elsevier Science B., 1994
    [1.10] Schwierz F, and Liou J J, Modern microwave Transistors-Theory, design and performance, Wiley, 2003
    [1.11] Olsson J, Rorsman N, Vestling L, Fager C, Ankarcrona J, Zirath H, Eklund K H, 1W/mm RF power density at 3.2 GHz for a dual-layer RESURF LDMOS transistor, IEEE Electron Device Lett., vol. 23, 2002, pp.206-208
    [1.12] Kashif A, Svensson C, Wahab Q, High Power LDMOS Transistor forRF-Amplifiers, International Bhurban Conference on Applied Sciences & echnology, 2007, pp.1-4
    [1.13] Kistchinsky A, GaN solid-state microwave power amplifiers: State-of-the-art and future trends, 19th International Crimean Conference Microwave & Telecommunication Technology, 2009, pp.11-16
    [1.14] Virdee B S, Trinooga L A, Single-ended power amplifier design using 4.8 mm gate width heterostructure FET device for high efficiency performance, 11th International Conference on Microwave and Telecommunication Technology, 2001, pp.130-132
    [1.15] Goto S, Kunii T, Fujii K, Inoue A, Sasaki Y, Hosokawa Y, Hattori R, Ishikawa T, Matsuda Y, Stability analysis and layout design of an internally stabilized multi-finger FET for high-power base station amplifiers, IEEE MTT-S International Microwave Symposium Digest, 2003, pp.229-232
    [1.16] Jeonghu H, Chang K P, Dong H B, Kyoun K, Juh Y K, Ilhun S, Song C H, A large-signal model of RF LDMOS with skin effects of power combining structures, IEEE Radio Frequency integrated Circuits (RFIC) Symposium, 2005, pp.149-152
    [1.17] Kyu H A, Ockgoo L, Hyungwook K, Dong H L, Jeonghu H, Ki Y, Younsuk K, et. al, Power-Combining Transformer Techniques for Fully-Integrated CMOS Power Amplifiers, IEEE Solid-State Circuits, vol. 43, 2008, pp.1064-1075
    [1.18] Jiandong L, Yong F, A Ku-band eight-way solid-state spatial power-combining amplifier, 2010 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2010, pp.1841-1844
    [1.19] Khan M A, Bhattarai A, Kuznia J N and Olson D T, High-electron-mobility transistor based on a GaN-AlGaN heterojunction, Applied Physics Letters, vol.63, 1993, pp.1214-1215
    [1.20] Wu F Y, Keller P B, Kapolnek D, et al, Measured microwave power performance of AlGaN/GaN MODFET, IEEE Electron. Dev. Lett, vol. 17, 1995, pp.455-457
    [1.21] Mishra U K, Wu F Y, Keller P B, et al, GaN microwave electronics 1997 Topical Symp. On Millimeter Waves, Kanagawa, Japan, 1997
    [1.22] Tilak V, Green B, Kaper V, Kim H, Prunty T, Smart J, Shealy J and Eastman L, Influence of barrier thickness on the high-power performance of AlGaN/GaN HEMTs, IEEE Electron Device Letters, vol. 22, 2001, pp.504-506
    [1.23] Vescan A, Dietrich R, Wieszt A, Shurr A, Leier H, Piner E L and Redwing J M,AlGaN/GaN MODFETs on semi-insulating SiC with 3W/mm at 20GHz, Electronics Letters, vol. 36, 2000, pp.1234-1236
    [1.24] Moon J S, Micovic M, Janke P, Hashimoto P, Wong W S, Widman R D, McCray L, Kurdoghlian A and Nguyen C, GaN/AlGaN HEMTs operating at 20GHz with continuous-wave power density >6W/mm, Electronics Letters, vol. 37, 2001, pp.528-530
    [1.25] Manfra M, Weimann N, Baeyens Y, Roux P and Tennant D, Unpassivated AlGaNIGaN HEMTs with CW power density of 3.2 W/mm at 25GHz grown by plasma-assisted MBE, Electronics Letters, vol. 39, 2003, pp.694-695
    [1.26] Lee C, Wang H, Yang J, Witkowski L, Muir M, Khan M A and Saunier P, State-of-the-art CW power density achieved at 26 GHz by AlGaN/GaN HEMTs, Electronics Letters, vol. 38, 2002, pp.924-925
    [1.27] Sandhu R, Wojtowicz M, Barsky M, Tsai R, Smorchkova I, Namba C, Liu P H, Dia R, Truong M, KO D, Yang J W, Wang H and Khan M A, 1.6W/mm, 26% PAE AlGaN/GaN HEMT operation at 29 GHz, in International Electron Devices Meeting Technical Digest, 2001, pp.1751-1753
    [1.28] Kasahara K, Miyamoto H, Ando Y, Okamoto Y, Nakayama T and Kuzuhara M, Ka-band 2.3W power AlGaN-GaN heterojunction FET, in International Electron Devices Meeting Technical Digest, 2002, pp.677-680
    [1.29] Lee C, Saunier P, Yang J and Khan M A, AlGaN-GaN HEMTs on SiC with CW power performance of >4 W/mm and 23% PAE at 35 GHz, IEEE Electron Device Letters, vol. 24, 2003, pp.616-618
    [1.30] Quay R, Tessmann A, Kiefer R, Weber R, van Raay F, Kuri M, Riessle M, Massler H, Muller S, Schlechtweg M and Weimann G, AlGaN/GaN HEMTs on SiC: towards power operation at V-band, in International Electron Devices Meeting Technical Digest, 2003, pp.567-570
    [1.31] Green B M, Chu K K, Chumbes E M, Smart J A, Shealy J R, Eastman L F, The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs, IEEE Electron Device Lett., Vol. 21 2000, pp.268-270
    [1.32] Walker J B, High-Power GaAs FET Amplifiers, Artech House, Norwood MA, Chapter 1, 1993.
    [1.33] Klein P B, Binari S C, Anastasiou K I, Wickenden A E, Koleske D D, Henry R L and Katzer D S, Investigation of traps producing current collapse in AlGaN/GaN high electron mobility transistors, Electronics Letters, vol. 37, 2001, pp.661-662
    [1.34] Tarakji A, Simin G, Ilinskaya N, Hu X, Kumar A, Koudymov A, Yang J, Khan M A, Shur M S and Gaska R, Mechanism of radio-frequency current collapse in GaN-AlGaN field-effect transistors, Applied Physics Letters, vol. 78, 2001, pp.2169-2171
    [1.35] Mizutani T, Ohno Y, Akita M, Kishimoto S and Maezawa K, A study on current collapse in AlGaN/GaN HEMTs induced by bias stress, IEEE Transactions on Electron Devices, vol. 50, 2003, pp.2015-2020
    [1.36] Shealy J R, Kaper V, Tilak V, Prunty T, Smart J A, Green B and Eastman L F, An AlGaN/GaN high-electron-mobility transistor with an AlN sub-buffer layer, J. Phys.: Condens. Matter, vol. 14, 2002, pp.3499
    [1.37] Ando Y, et al, 10W/mm AlGaNGaN HFET with a field modulating plate, IEEE Electron Device Lett., Vol.24, 2003, pp.289-291
    [1.38] Chini A, Buttari D, R Coffie, Shen L, Heikman S, Chakraborty A, Keller S, ishra U K, Power and Linearity Characteristics of Field-Plated Recessed-Gate AlGaN-GaN HEMTs, IEEE Electron Device Letters, vol. 25, 2004, pp.221-223
    [1.39] Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Mishra U K, Parikh P, 30-W/mm GaN HEMTs by Field Plate Optimization, IEEE Electron Device Letters, Vol. 25, 2004, pp.117-119
    [1.40] Chu R M, Shen L, Fichtenbaum N, Brown D, Chen Z, Keller S, Denbaars S and Mishra U K, V-gate GaN HEMTs for X-Band power applications, IEEE Electron Device Letters, vol 29, 2008, pp.974-976
    [1.41] Chu R M, Chen Z, Pei Y, Newman S, Denbaars S P, Mishra U K, MOCVD-Grown AlGaN buffer GaN HEMTs with V-Gate for microwave power applications, IEEE Electron Device Letters, vol 30, 2009, pp.910-912
    [1.42] Ping A T, Piner E, Redwing J, Khan M A and Adesida I, Microwave noise performance of AlGaN/GaN HEMTs, Electronics Letters, vol. 36, 2000, pp.175-176
    [1.43] Nguyen N X, Micovic M, Wong W S, Hashimoto P, Janke P, Harvey D and Nguyen C, Robust low microwave noise GaN MODFETs with 0.60 dB noise figure at 10 GHz, Electronics Letters, vol. 36, 2000, pp.469-471
    [1.44] Winslow T A and Trew R J, Principles of large-signal MESFET operation, IEEE Trans. Microwave Theory Tech., vol. 42, 1994, pp.935–942.
    [1.45] Khan M Asif, Hu X, Sumin G, et al, AlGaN/GaN Metal Oxide Semiconductor Heterostructure Field Effect Transistor, IEEE Electron Device Letters, vol.21,2000, pp.63-65
    [1.46] Saygi S, Fatima H, He X, Rai S, Koudymov A , Adivarahan V, Yang J, Simin G and Asif Khan M, Performance stability of high-power III-nitride metal oxide semiconductor-heterostructure field-effect transistors, Phys. Stat. Sol. (c), vol.2 pp.2651-2654.
    [1.47] Khan M A, Hu X, Sumin G, et al, Strain-engineered novel III-N electronic devices with high quality dielectric/semiconductor interfaces, Phys. Stat. Sol. (a), vol.200, 2003, pp.155-160
    [1.48] Hu X, Koudymov A, Simin G, SiN/AlGaN/GaN metal oxide semiconductor heterostructure field effect transistors, Appl. Phys. Lett., vol.79, 2001, pp.28-30
    [1.49] Tamotsu H, Shinya O and Hideki H, Suppression of current collapse in insulated gate AlGaN/GaN heterostructure field effect transistors using ultranthin Al2O3 dielectric, Appl. Phys. Lett., vol.83, 2003, pp.6-8.
    [1.50] Ye P D, Yang B, Ng K K, et al, GaN MOS-HEMT using atomic layer deposition Al2O3 as gate dielectric and surface passivation, International Journal of High Speed Electronics and Systems, vol.14, 2004, pp.791-796
    [1.51] Yue Y Z, Hao Y, Zhang J C, Ni J Y, Mao W, Feng Q and Liu L J, AlGaN/GaN MOS-HEMT with HfO2 dielectric and Al2O3 interfacial passivation layer grown by atomic layer deposition, IEEE Electron Device Letter. Vol.29, 2008, pp.838-890
    [1.52] Casey H C, Fountain G G, Alley R G, Keller B P and DenBaars S P, Low inteface trap density for remote plasma deposited SiO2 on n-type GaN, Applied Physics Letters, Vol. 68, 1996, pp.1850.
    [1.53] Nakasaki R, Hashizume T and Hasegawa, Insulator-GaN interface structures formed by plasma-assisted checmical vapor deposition, Physica E, 2000, pp. 953.
    [1.54] Nakano Y and Jimbo T, Interface properties of thermally oxidized n-GaN metal-insulator-semiconductor capacitors,”Applied Physics Letters, Vol. 82, 2003.
    [1.55] Kim J,et al., Characteristics of MgO/GaN gate-controlled metal oxide semiconductor diodes, Applied Physics Letters, Vol. 80, 2002.
    [1.56] Adivarahan V, Gaevski M, Sun W H, Fatima H, Yang J, Afir Khan M, Tarakji , Shur M S , Submicron Gate SiN/AlGaN/GaN Metal Insulator Semiconductor Heterostructure Field-Effect Transistors, IEEE ElectronDevice Letter, vol.24, 2003, pp.541-543
    [1.57] Adivarahan V, Yang J, Koudymov A, Simin G, Asif Khan M, Stable CW operation of field-plated GaN-AlGaN MOSHFETs at 19W/mm, IEEE Electron Device Letter. Vol.26, 2005, pp.535-537
    [1.58] Koudymov A, Wang C X, Adivarahan V, Yang J, Simin G, Asif Khan M, Power stability of AlGaN/GaN HFETs at 20W/mm in the Pinched-off Operation Mode, IEEE Electron Device, vol.28, pp.5-7.
    [1.59] Sayan S, Emge T, Garfunkel E, Zhao X Y, Wielunski L, Bartynski R A, Vanderbilt D, Suzer S, Banaszak M, Band alignment issues related to HfO2/SiO2/p-Si gate stack, Journal of Applied Physics, vol.96, 2004, pp.7485-7491
    [1.60] Sun Q Q, Zhang C, Dong L, Shi Y, Ding J, Zhang D W, Effect of chlorine residue on electrical performance of atomic layer deposited hafnium silicate, Journal of Applied Physics, vol.103 ,2008, pp.011201
    [1.61] Lee M L, Fitzgerald E A, Bulsara M T, Currie M T, Lochtefeld A, Strained Si, SiGe and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors, Journal of Applied Physics, vol.97, 2005, pp.011101
    [1.62] Takagi S, Understanding and Engineering of Carrier Transport in Advanced MOS Channels, Sispad: 2008 International Conference on Simulation of Semiconductor Processes and Devices, 2008, pp.9-12
    [1.63] Yue Y Z, Hao Y, Feng Q, et al, Study of ultrathin Al2O3 dielectric AlGaN/GaN MOS-HEMT, Science in China, vol.39, 2009, pp.239-243.
    [1.64] Yue Y Z, Hao Y, Zhang J C, et al, AlGaN/GaN MOS-HEMT with HfO2 dielectric and Al2O3 interfacial passivation layer grown by atomic layer deposition, IEEE Electron Device Lett., vol.29, 2008, pp.838-840.
    [1.65] Yue Y Z, Hao Y, Zhang J C, AlGaN/GaN MOSHEMT with HfAlO dielectric grown by atomic layer deposition, 2008 International Workshop on Nitride Semiconductors, 2008, pp.556, Montreux, Switzerland.
    [2.1]张进成,AlGaN/GaN异质结材料生长和HEMT器件制造研究,西安电子科技大学博士学位论文,2004. pp.71-74
    [2.2] Link A, Ambacher O, Smorchkova I P, Mishra U K et al, Formation and Electronic Transport of 2D Electron and Hole Gates in AlGaN/GaN Heterostructures, Materials Science Forum, vol.353-356, 2001, pp.787-790.
    [2.3] Delagebeaudeuf D and Linh N T, Metal-(n)A1GaAs-GaAs Two-dimensional Electron Gas FET, IEEE Transactions on Electron Devices, 1982, vol. ED-29, pp.955-960.
    [2.4] Cao X A, Piao H, Li J, Lin J Y, Jiang H X, Surface chemical and electronic properties of plasma-treated n-type AlGaN, Physica Status Solidi (A) Applications and material, 2007, Vol. 204, No. 10, pp. 3410-3416
    [2.5] Fitih M, Liang W, Deepak S, Hubert H and Ilesanmi A, Ohmic contact formation mechanism of Ta/Al/Mo/Au and Ti/Al/Mo/Au metallizations on AlGaN/GaN HEMTs, J. Vac. Sci. Technol. B 23, 2005, pp.2330-2335
    [2.6] Basu A, Mohammed F M, Guo S, Peres B and Adesida I, Mo/Al/Mo/Au Ohmic contact annealed at 500℃, J. Vac. Sci. Technol. B 24, 2006, L16
    [2.7] Fitih M, Liang W, Metallizations on AlGaN/GaN heterostructures, Appl. Phys. Lett. Vol.87, 2005, pp.2621
    [2.8] Chaturvedi N, Zeimer U, Wurfl J, Trankle G, Mechanism of ohmic contact formation in AlGaN/GaN high electron mobility transistors, Semiconductor Science and Technology, 2006, Vol. 21, No. 2, pp. 175-179
    [2.9] Xu C, Wang J Y, Jin H, Zhou J, Wen C P, Analysis of the abnormal resistance in AlGaN/GaN heterostructure’s ohmic contact tests, Rare Metals, 2007, Vol. 26, No. 5, pp. 463-469
    [2.10] Li R, Dai T, Zhu L, Pan H P, Xu K, Zhang B, Yang Z J, Zhang G Y, The reactive ion etching characteristics of AlGaN/GaN SLs and etch-induced damage study of n-GaN using Cl2/SCl4/Ar plasma, Journal of Crystal Growth, 2007, Vol. 298, pp. 375-378
    [2.11] Green B M, Chu K K, Chumbes E M, Smart J A, Shealy J R, Eastman L F, the effect of surface passivation on the microwave characterstics of undoped AlGaN/GaN HEMTs, IEEE Electron Device Lett, 2001, Vol. 6, pp. 268
    [2.12] Bouddrt B, Gaqulere C, Guhel Y, Jaeger J C, Polsson M A, Electrical effects of SiNx deposition on GaN MESFETs, Electron. Lett, 2001, Vol. 37, No. 8, pp. 37527
    [2.13] Yang L, Hu G Z, Hao Y, Ma X H, Quan S, Yang L Y, Jiang S G, Electric-stress reliability and collapse of different thickness SiNx passivated AlGaN/GaN high electron mobility transistors, Chin. Phys. B, 2010, Vol. 19, No. 19
    [2.14] Yang L, Hao Y, Ma X H, Quan S, Hu G Z, Jiang S G, Yang L Y, Various recipes of SiNx passivation AlGaN/GaN High Mobility Transistors in correlation with current slump, CHIN. PHYS. LETT, 2009, Vol. 26, No. 11,pp. 117104
    [2.15] Feng M S, et al, Reactive ion etching of GaN with BCl3/SF6 plasmas, Materials Chemistry and Physics, 1996, Vol. 45, No. 1, pp. 80-83
    [2.16] Fan Q, Chevtchenko, Reactive ion etch damage on GaN and its recovery, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 2006, Vol. 24, No. 3, pp. 1197-1201
    [2.17] Xu M, Zhang C, Ding S J, et al, Mechanism of interfacial layer suppression after performing surface Al(CH3)3 pretreatment during atomic layer deposition of Al2O3, J. Appl. Phys., 2006, 100, 106101
    [2.18] Xu M, Xu C, Ding S J, et al, Spectroscopic and electrical properties of atomic layer deposition Al2O3 gate dielectric on surface pretreated Si substrate, J. Appl. Phys.,2006,99,074109
    [2.19] Qiao D, Lau S S, Yu L S, Redwing J M, Lin J Y, Jiang H X, and Yu L S, Dependence of Ni/AlGaN Schottky barrier height on Al mole fraction, Journal of applied physics, 2000, Vol. 87, No. 2
    [2.20] Bradley S T, Goss S H, Hwang J, Schaff W J, Brillson L J, Surface cleaning and annealing effects on Ni/AlGaN interface atomic compostion and Schottky arrier height, Journal of applied physics, 2004, Vol. 85, pp.1368
    [2.21] Sawada T, Izumi Y, Kimura N, et al, Properties of GaN and AlGaN Schottky contacts revealed from I-V-T and C-V-T measurements, Applied surface cience, 2003, Vol. 216, pp. 192
    [3.1] Khan M A, Bhattarai A, Kuznia J N, High electron mobility transistor based on Ga Al N heterojunction. Appl Phys Lett, vol.63, 1993, pp.1214
    [3.2] Wu Y F, Saxler A, Moore M, 30W/mm GaN HEMT by field plate optimization, IEEE Electron Device Lett, vol.25, 2004, pp.117
    [3.3] Singhal S, Roberts J C, Rajagopal P, et al, GaN on Si failure mechanisms and reliability improvements, 44th Annual International Relibility Physics Symposium, 2006, pp.95-98
    [3.4] Chu K K, Chao P C, Pizzella M T, et al. 9.4W/mm power density AlGaN-GaN HEMTs on free-standing GaN substrates, IEEE Electron Device Lett, vol. 25, 2004, pp.596-598
    [3.5] Adivarahan V, Yang J, Koudymov A, et al. Stable CW operation of field-plated GaN-AlGaN MOSHFETs at 19W/mm, IEEE Electron DeviceLetters, vol.26, 2005, pp.535-537
    [3.6] Wang W K, Li Y J, Lin C K, Chan Y J, Chen G T, Chyi J I, Low damage, Cl2-based gate recess etching for 0.3-μm gate-length AlGaN/GaN HEMT fabrication, IEEE Electron Device Letters, vol.25, 2004, pp.52-54
    [3.7] Ketteniss N, Eickelkamp M, Noculak A, Jansen R H, Vescan A, Processing and characterization of recessed-gate AlGaN/GaN HFETs, 2008 International Conference on Advanced Semiconductor Devices and Microsystems, 2008, pp.151-154
    [3.8] Arulkumaran S., Egawa T., Ishikawa H., et al, High–temperature effects of AlGaN/GaN high electron mobility transistors on sapphire and semi-insulating SiC substrates Appl Phys Lett, vol.80, 2002, pp.2186
    [3.9] Krispin P., Spruytte S. G., Harris J. S., et al, Electrical depth profile of p-type GaAs/Ga(As,N)/GaAs heterostructures determined by capacitance–voltage measurements, Journal of Appllied Physics, vol.88, 2000, pp.4153-4158.
    [3.10] Stoklas R, Gregu?ováD, Novák J, Vescan A and Kordo?1P, Investigation of trapping effects in AlGaN/GaN/Si field-effect transistors by frequency dependent capacitance and conductance analysis, Applied Physics Letter, vol.93, 2008, pp.124103
    [3.11] Miczek M, Mizue C, Hashizume T and Adamowicz B, Effects of interface states and temperature on the C-V behavior of metal/insulator/AlGaN/GaNheterostructure capacitors, Journal of Applied Physics, vol.103, 2008, pp.104510
    [3.12]施敏(S.M.),《半导体器件物理》,第三版,西安交通大学出版社,165-170.
    [3.13] Cai Y , Zhou Y G, Chen K J, Lau K M, High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment, IEEE Electron Device Letters, vol.26, 2005, pp.435-437
    [3.14] Cai Y, Zhou Y G, Lau K M, Chen K J, Control of threshold voltage of AlGaN/GaN HEMTs by fluoride-based plasma treatment: from depletion mode to enhancement mode, IEEE Transactions on Electron Devices, vol.53, 2006, pp.2207-2215
    [3.15] Kuliev A, Kumar V, Schwindt R, Selvanathan D, Dabiran A M, Chow P, Adesida I, Effect of recess length on DC and RF performance of gate-recessed AlGaN/GaN HEMTs, Proceedings IEEE Lester Eastman Conference on High Performance Devices, 2002, pp.428-435,
    [3.16] Lin, Huang H K, Hsiu F, Lin H, DC and RF characterization of AlGaN/GaNHEMTs with different gate recess depths, Solid-State Electronics, vol.54, 2010, pp.582-585
    [3.17] Kim H, et al, Effects of SiN passivation and high-electric field on AlGaN-GaN HFET degradation, IEEE Electron Device Letters, vol.24, 2003, pp.421.
    [3.18] Arulkumarana S and Ng G I, Effect of gate-source and gate-drain Si3N4 passivation on current collapse in AlGaN/GaN high-electron-mobility transistors on silicon, Appl. Phys. Lett., vol.90, 2007, pp.173504
    [3.19] Okamoto Y, Ando Y, Nakayama T, Hataya K, Miyamoto H, Shibata N, uzuhara M, High-power recessed-gate AlGaN-GaN HFET with a field-modulating plate, IEEE Transactions on Electron Devices, vol.51, 2004, pp.2217-2222
    [3.20] Chini A, Buttari D, Coffie R, Shen L, Heikman S, Chakraborty A, Keller S, Mishra U K, Power and linearity characteristics of field-plated recessed-gate AlGaN-GaN HEMTs, IEEE Electron Device Letters, vol.25, 2004, pp.229-231
    [4.1] Chu R M, Shen L K, Fichtenbaum N, Brown D, Keller S and Mishra Umesh K, Plasma Treatment for Leakage Reduction in AlGaN/GaN and GaN Schottky Contacts, IEEE Electron Device Letter, vol.29, 2008, pp.297-299
    [4.2] Chung J W, Roberts J C, Piner E L and Palacios T, Effect of Gate Leakage in the Subthreshold Characteristics of AlGaN/GaN HEMTs, IEEE Electron Device Letter, vol.29, 2008, pp.1196-1998
    [4.3] Selvaraj S L, Egawa T, Oxygen plasma treated aluminum as a gate dielectric for AlGaN/GaN high electron mobility transistors, Journal of the Electrochemical Society, vol.156, 2009, pp. H690-3.
    [4.4] Tajima M, Kotani J, Hashizume T, Effects of surface oxidation of AlGaN on DC characteristics of AlGaN/GaN high-electron-mobility transistors, Japanese Journal of Applied Physics, vol.48, 2009, pp. 020203
    [4.5] Gale W F and Totemeier T C, Smithells Metals Reference Book, 8th ed.Elsevier, 2004.
    [4.6] Buckingham M J, Noise in Electronic Devices and Systems. New York: John Wiley & Sons, 1983.
    [4.7] Streetman B G and Banerjee S, Solid State Electronic Devices, 5th ed., ser.Solid State Physical Electronics. Upper Saddle River, NJ: Prentice Hall, 2000.
    [4.8] Mitrofanov O and Manfra M, Dynamics of trapped charge in GaN/AlGaN/ GaN high electron mobility transistors grown by plasma-assisted molecular beam epitaxy, Applied Physics Letters, vol. 84, 2004, pp.422-424.
    [4.9] Mitrofanov O and Manfra M, Poole-Frenkel electron emission from the traps in AlGaN/GaN transistors, Journal of Applied Physics, vol. 95, 2004, pp.6414-6419
    [5.1] Pezzagna S, Vennegues P, Grandjean N and Massies J, Polarity inversion of GaN (0001) by a high Mg doping, J. Crystal Growth, vol.269, 2004, pp.249-256
    [5.2] Palacios T, Chakraborty A, Heikman S, Keller S, DenBaars S P and Mishra U K, AlGaN/GaN high electron mobility transistors with InGaN back-barriers, EEE Electron Device Letts., vol. 27, 2006, pp.13-15
    [5.3] Ruterana P, Kret S, Vivet A, Maciejewski G and Dluzewski P, Composition fluctuation in InGaN quantum wells made from molecular beam or metalorganic vapor phase epitaxial layers, J. Appl. Phys., vol.91, 2002, pp.8979-8985
    [5.4] Chen Z, Pei Y, Chu R, Newman S, Brown D, Chung R, Keller S, DenBaars S P, Nakamura S, Mishra U K, Growth and characterization of AlGaN/GaN/AlGaN field effect transistors, Physica Status Solidi C, vol.7, 2010, pp.2404-2407
    [5.5] Chu R M, Zhou Y G, Liu J, Wang D L, Chen K J, Lau K M, AlGaN-GaN double-channel HEMTs, IEEE Transactions on Electron Devices, vol.52, 2005, pp.438-46
    [5.6] Chu R M, Chen Z, Pei Y, Newman S, Denbaars S P, Mishra U K, MOCVD-Grown AlGaN buffer GaN HEMTs with V-Gate for microwave power applications, IEEE Electron Device Letters, vol 30, 2009, pp.910-912
    [5.7] Kong Y C, Chu R.M, Zheng Y D, Zhou C H, Shen B, Gu S L, Zhang R, Han P, Shi Y, Jiang R L, Theoretical study of improved two-dimensional electron gas density in AlGaN/GaN/AlGaN double heterostructure, Physica Status Solidi (A) Applications and Materials, vol.203, 2006, pp. 1018-1023
    [5.8] Kim S J, Kim D H, Kim J M, Kim T G, Choi H G, Hahn C K, Reduction of buffer leakage in AIGaN/GaN HEMTs with an AIGaN current-blockingbarrier by using a two-dimensional simulation, Journal of the Korean Physical Society, vol.53, 2008, pp.2572-2577
    [5.9] Rashmi, A. Kranti, S. Haldar and R. S. Gupta, An Accurate Charge Control Modelfor Spontaneous Polarization Dependent Two-dimensional Electron Sheet Charge Density of Lattice Mismatched A1GaN/GaN HEMTs, Solid State Electronics, 2002, vol.46: 621-630.
    [6.1] Hsu L and Walukiewicz W, Effect of polarization fields on transport properties in AlGaN/GaN heterostructures, J. Appl. Phys., vol.89, 2001, pp.1783-1789
    [6.2] Smorchkova I P, Chen L, Mates T, Shen L, Heikman S, Moran B, Keller S, DenBaars S P, Speck J S and Mishra U K, AlN/GaN and (Al,Ga)N/AlN/GaN two-dimensional electron gas structures grown by plasma-assisted molecular-beam epitaxy, J. Appl. Phys., Vol.90, 2001, pp.5196-5201
    [6.3] Tirado J M, Sanchez J L and Izpura J I, Simulation of surface state effects in the transient response of AlGaN/GaN HEMT and GaN MESFET devices, Semiconductor Science and Technology, vol.21, 2006, pp.1150-1159
    [6.4] Tirado J M, Sanchez J L and Izpura J I, Trapping effects in the transient response of AlGaN/GaN HEMT devices, IEEE Transactions on Electron Devices, vol.54, 2007, pp.410-417
    [6.5] Braga N, Mickevicius R, Gaska R, Shur M S, Khan M A and Simin G, Simulation of gate lag and current collapse in gallium nitride field-effect transistors, Applied Physics Letters, vol.85, 2004, pp.4780-4782
    [6.6] Koudymov A, Adivarahan V, Yang J, Simin G and Khan A , Mechanism of current collapse removal in field-plated nitride HFETs, IEEE Electron Device Letters, vol.26, 2005, pp.704-706
    [6.7] Koudymov A, Simin G, Khan M A, Tarakji A, Gaska R and Shur M S, Dynamic current-voltage characteristics of III-NHFETs, IEEE Electron Device Letters, vol.24, 2003, pp.680-682
    [6.8] ISE Integrated Systems Engineering AG, DESSIS ISE TCAD Manual, Release 10.06, 2005
    [6.9] Blotekja K, Transport equations for electrons in 2-valley semiconductors, IEEE Transactions on Electron Devices, vol.Ed17, 1970, pp.38
    [6.10] Matulionis A, Comparative analysis of hot phonon effects in nitride and arsenide channels for HEMTs, in DRC Conference Digest, 2004, pp.145-146
    [6.11] Palacios T, Rajan S, Shen L, Chakraborty A, Heikman S, Keller S, DenBarrs S P, and Mishra U K, Influence of the access resistance in the RF performance of mm-wave AlGaN/GaN HEMTs, in DRC Conference Digest, 2004, pp.75-76
    [6.12] M Nagahara, Kikkawa T, Adachi N, Tateno Y, Kato S, Yokoyana M, Kimura T, Yamaguchi Y, Hara N and Joshin K, Improved intermodulation distortion profile of AlGaN/GaN HEMT at high drain bias voltage, in IEDM Tech. Digest, 2002, pp.693-696
    [6.13] Kaper V S, Thompson R M, Prunty T R and Shealy J R, Signal generation, control, and frequency conversion AlGaN/GaN HEMT MMICs,IEEE Trans. Theory & Tech., vol.53, 2005, pp.55
    [6.14] Kaper V, Thompson R, Prunty T, Shealy J R, X-band AlGaN/GaN HEMT MMIC Voltage-Controlled Oscillator, 11th GAAS Symposium-Munich, 2003
    [6.15] Shealy J, Smart J and Shealy J R, Low-Phase Noise AlGaN/GaN FET-Based Voltage Controlled Oscillators(VCOs), IEEE Microwave and Wireless Components Letters, vol.11, 2001, pp.244
    [6.16] Islam S S and Anwar A F, Spice model of AlGaN/GaN HEMTs and simulation of VCO and power amplifier, International Journal of High Speed Electronics and Systems, vol.14, 2004, pp.853
    [6.17] Statz H, Newman P, Smith I W, Pucel R A and Haus H A, GaAs FET Device and Circuit Simulation in SPICE, IEEE Transactions on Electron Devices, vol.ED-34, 1987, pp.160
    [6.18] Dambrine G, Cappy A, Heliodorf F and Playez E, A new method for determining the FET small-signal equivalent circuit, IEEE Trans. Microwave Theory & Tech., vol.36, 1988, pp.1151
    [6.19] Berroth M, and Bosch R, High-Frequency Equivalent Circuit of GaAs FET’s for Large-Signal Applications, IEEE Trans. Microwave Theory & Tech., vol.39, 1991, pp.224
    [6.20] Vickes H O, Determination of intrinsic FET parameters using circuit partitioning approach, IEEE Trans. Microwave Theory & Tech., vol.39, 1991, pp.363
    [6.21] Shirakawa K, Oikawa H, Shimura T, Kawasaki Y, Ohashi Y, Saito T, and Daido Y, An approach to determining an equivalent circuit for HEMTs, IEEE Trans. Microwave Theory & Tech. vol.43, 1995, pp.499
    [6.22] Rorsman N, Garcia M, Karlsson C and Zirath H, Accurate small-signalmodeling of HFETs for millimeter-wave applications, IEEE Trans. Microwave Theory & Tech. vol.44, 1996, pp.432
    [6.23] Caddemi, Donato N and Crupi G, A robust approach for the determination of the small signal equivalent circuit of HEMTs, Microelectronics Journal, vol.35, 2004, pp.431
    [6.24] Burm J, Schaff W, Eastman L, Amano H and Akasaki I, An improved small-signal equivalent circuit model for III–V nitride MODFET's with large contact resistances, IEEE Trans. Electron Devices, vol.44(5), 1997, pp.906
    [6.25] Chigeava E, Waithes W and Wiegner D, Determination of Small-Signal Parameters of GaN-based HEMTs, Cornell Conference of high performance devices, Cornell University, USA, 2000, pp.115-122
    [6.26] Jarndal A and Kompa G, A new small signal model parameter extraction method applied to GaN devices, IEEE Trans. Microwave Theory & Tech., vol.53, 2005, pp.3440
    [6.27] Tayrani R, Gerber J E, Daniel T, Pengelly RS, Rhode U L, A new and reliable direct parameter extraction method for MESFETs and HEMTs, Proceedings of 23rd European Microwave conference, Madrid, 1993, pp.451-453
    [6.28] Jarndal A, Kompa G, A New Small-Signal Modeling Approach Applied to GaN Devices. IEEE Trans. Microwave Theory Tech., vol.11, 2005, pp.54
    [6.29] Berroth M and Bosch R, High-Frequency Equivalent Circuit of GaAs FET’s for Large-Signal Applications, IEEE Trans. Microwave Theory & Tech., vol.39, 1991, pp.224
    [6.30] Mwema W, A reliable optimization-based model parameter extraction approach for GaAs-based FET's using measurement-correlated parameter starting values, Ph.D. dissertation, Dept. High Freq. Eng., Univ. Kassel, Kassel, 2002, Germany

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700