用户名: 密码: 验证码:
白藜芦醇增强抗肿瘤药物活性的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤化学治疗最大障碍之一是肿瘤细胞对药物的耐受性。为了减少肿瘤耐药性的产生、降低药物毒副作用、增强药物疗效,一般采用联合用药。联合用药是近年来治疗肿瘤的重要进展之一,已成为肿瘤治疗的趋势,并得到广泛的应用。
     白藜芦醇(Resveratrol, RES)是植物产生的一种抗毒素,是非黄酮类多酚天然化合物,具有抗炎症、抗氧化、抗肿瘤等生物活性。白藜芦醇在抗肿瘤及心血管疾病方面具有非常巨大的应用价值。
     吉西他滨(Gemcitabine, GEM)化学名称为双氟脱氧胞苷,是脱氧胞嘧啶类似物,在细胞内活化后参入DNA合成,同时抑制核苷酸还原酶和脱氧胞嘧啶脱氨酶活性,是细胞周期特异性抗代谢类药物。
     本研究研探索了白藜芦醇增强吉西他滨体内外抗肿瘤疗效,及其增效作用的分子机制,为提高吉西他滨的临床抗肿瘤效果,减少不良反应发生提供指导意义。同时,对白藜芦醇增强DNA损伤药物抗肿瘤活性,及几个白藜芦醇新衍生物的抗肿瘤效果进行了初探性研究。
     1.RES增强GEM对多种细胞系的体外生长抑制作用
     我们选用低剂量吉西他滨与白藜芦醇联合作用于11种细胞,包括人正常细胞系:人胚肺成纤维细胞系2BS,人肝细胞系L02;人肿瘤细胞系:人肝癌细胞系HepG2和Bel-7402,人非小细胞肺癌细胞系A549,人结肠癌细胞系HCT116(包括p53野生型wild type, wt和p53突变型mutant,ko),人喉癌系KB及其耐药株KBV,人子宫颈癌细胞系HeLa;小鼠肝癌细胞系H22。我们发现RES不会增强GEM对正常细胞(2BS、L02)的生长抑制作用,即药物合用降低了GEM对正常细胞的毒性;RES与GEM合用除了对HeLa、HCT116 wt细胞没有增效作用,对其他几株细胞均有不同程度的协同增效作用,尤其对HepG2细胞的增效作用最为显著。20μM RES与0.5μM GEM联合用药指数CI值为0.52,具有显著协同增效作用。
     接下来我们在小鼠体内检测了RES联合GEM对H22移植瘤的体内生长抑制增效作用。结果表明RES(10 mg/kg)与GEM(25 mg/kg)低剂量合用,两药合用CI为0.73;RES(10 mg/kg)与GEM(50 mg/kg)高剂量合用,两药合用CI为0.56,RES与GEM合用体内抑瘤协同作用非常显著。
     2.RES增强GEM诱导肝癌HepG2细胞凋亡作用
     我们使用染色质凝集、流式检测PI染色、western blot几种实验方法,证明了RES能增强GEM诱导HepG2细胞凋亡的作用。20μM RES使0.5μM GEM诱导的HepG2凋亡细胞比例显著升高。
     3.RES增强GEM诱导肝癌HepG2细胞凋亡作用机制
     我们的研究发现RES能增强GEM体内外抗肝癌作用。接着我们进一步研究了增效作用的机制。结果表明RES增强GEM对HepG2细胞抑制作用不依赖于SIRT1、p53;RES增强GEM对HepG2细胞抑制作用与RES增强GEM诱导的HepG2细胞S期周期阻滞,及细胞内ROS水平升高有关;RES能下调HepG2内NF-KB表达水平,上调NF-κB抑制因子IκBα蛋白水平;且RES与GEM合用后,能显著下调NF-κB下游促存活靶蛋白:Survivin、Bcl-2、Bcl-xL、c-myc、Cyclin D1表达水平,上调促凋亡蛋白因子Bax蛋白水平,表明RES通过调节NF-κB及其靶蛋白水平来增强GEM对HepG2细胞凋亡的诱导作用。
     4.较低剂量下合用,RES增强GEM诱导肝癌HepG2细胞衰老样表型(SLP)发生
     我们使用低剂量RES(10μM)与低剂量GEM(0.05μM、0.1μM)和用处理HepG2细胞发现,在选用合用剂量下,RES没有增强GEM诱导的HepG2细胞凋亡,而是促使HepG2细胞衰老,生长停滞。因此低剂量下和用,RES同样增强了GEM对HepG2细胞的生长抑制作用。
     5.RES增强DNA损伤药物抗肿瘤活性
     接着我们又探索了RES与DNA损伤药物:博莱霉素(Bleomycin, BLM)、博安霉素(Boanmycin, BAM)、NC0604、多柔比星(DOX)联合用药对几株细胞的生长抑制作用。结果表明RES与博莱霉素家族抗生素联合作用于HepG2细胞,在一定浓度范围内具有协同增效作用,但增效作用并不显著;与DNA断裂药物DOX联合作用于HepG2细胞具有显著增效作用;RES与BAM、NC0604、DOX联用于Bel-7402细胞,也具有一定的协同增效作用,而RES与BAM联合用作用于HeLa细胞,CI值均大于1,表明两药合用拮抗,这与RES、GEM联合处理HeLa细胞结果相似,表明HeLa细胞对RES与GEM、BAM合用并不敏感,反而耐受。
     RES与BAM联合用药对小鼠体内H22移植瘤的抑制研究结果表明,RES(10mg/kg)、BAM(10 mg/kg)联合用药组与BAM(10 mg/kg)单药组相比较,小鼠瘤重有显著差异(P<0.05),联合用药指数CI值为0.73,具有协同增效作用。
     同时我们对NC0604抗肿瘤活性机制进行了初步探索,发现NC0604能损伤HepG2细胞DNA,通过影响调控细胞凋亡、存活的蛋白因子表达水平,来诱导细胞发生凋亡
     6.三种白藜芦醇衍生物抗肿瘤活性及联合用药初探
     白藜芦醇衍生物B1、B4、B5对HepG2细胞具有不同程度的生长抑制作用。其中B1、B4,尤其B4,抑瘤效果显著强于RES,具有进一步研究、开发的价值。接着我们将抑瘤效果相对较差的B1、B5与GEM、DNA损伤药物(BAM、NC0604、DOX)联合处理HepG2细胞,结果表明B1、B5与所选药物联合用药作用于HepG2细胞,合用效果均不理想。
     以上研究表明,白藜芦醇作为抗肿瘤化学增敏剂,具有潜在的临床应用价值。
Despite aggressive therapies, resistance of many tumors to current treatment protocols still constitutes a major problem in cancer chemotherapy. To potentiate the efficacy and decrease the resistance and side effect of antitumor drugs, drug combination is widely used clinically. Drug combination is an important progress in the treatment of cancer in recent years and has become the trend of cancer treatment.
     Resveratrol (RES), a plant produced anti-toxin, is a kind of non-flavonoid polyphenol, natural compound with anti-inflammatory, antioxidant, anti-tumor and some other bio-logical activity. Resveratrol has a very great value in anti-tumor and cardiovascular dis-ease.
     Gemcitabine (GEM) is a deoxycytidine analogue. It participates in DNA synthesis af-ter activation in the cell. Meanwhile, it inhibits the activity of ribonucleotide reductase and deoxycytidine deaminase. And it is a cell cycle specific anti-metabolic drug.
     In this study, we explored the effect of resveratrol on potentiating anti-tumor activity of gemcitabine in vivo and in vitro, and the molecular mechanism of the synergy with Gemcitabine. This research provides guidance for enhancing the anti-tumor effect and reducing the incidence of adverse reaction of gemcitabine clinically. Meanwhile, we studied the activity of resveratrol enhancing the anti-tumor effect of DNA damage drugs, and the anti-tumor effect of several new derivatives of resveratrol.
     1. The effect of RES on enhancing anti-tumor activity of GEM in vivo and in vitro
     We explored the synergy of RES and GEM on 11 kinds of cell lines, including human normal cell lines, such as embryonic lung fibroblast cell line 2BS, human liver cell line L02, and human tumor cell lines, such as human hepatoma cell line HepG2 and Bel-7402, human non-small cell lung cancer cell line A549, human colon cancer cell line HCT116 (p53 wide type:wt, and p53 mutant:ko), human laryngeal carcinoma line KB and its drug resistant strain KBV, human cervical cancer cell line HeLa, mouse hepatoma cell line H22. We found that RES did not enhance the effect of GEM on inhibition in human normal cell lines, which means drug combination reduced the cytotoxicity of GEM to normal cells. Except for HeLa and HCT116 wt, RES combination with GEM had differ-ent levels of synergies on the other several tumor cell lines, in particular, the synergy of HepG2 cells was most significant with CI value of 0.52.
     Then we examined the synergic effect of RES combination with GEM on H22 tumor growth inhibition in mice. The results showed that RES(10mg/kg) combination with GEM at low dose (25mg/kg) and high dose (50mg/kg) had the CI value of 0.73 and 0.56 respectively, which means RES combination with GEM synergy is very significant in vivi.
     2. RES potentiates the effect of GEM on apoptosis induction in HepG2 cells.
     The results of heochst33258 stain、PI stain、western blot, showed RES enhanced the apoptosis induction activity of GEM in HepG2 cells.
     3. The molecular mechanism of the synergy of RES combination with GEM
     We further studied the mechanism of synergy. The results showed that RES potentiate the inhibition effect of GEM in HepG2 cells in SIRT1-and p53-independent way, but it is associated with cell cycle S phase arrest and elevated levels of intracellular ROS; RES can reduce the expression of NF-κB and increase IκBαlevel in HepG2 cells; RES combination with GEM, reduced the downstream target proteins of NF-κB, including Survivin、Bcl-2、Bcl-xL、c-myc、Cyclin D1, while Bax level was promoted. The data indicated that RES enhance apoptosis induction activity of GEM in HepG2 cells and is associated with the inhibition of NF-κB signal pathway.
     4. Low dose combination of RES and GEM induces senescence-like phenotype occurred in HepG2 cells.
     We treated HepG2 cells with low dose of RES(10μM) and low doses of GEM(0.05、0.1μM) and found RES did not enhance the GEM-induced apoptosis in HepG2 cells, but led HepG2 cells senescence and growth arrest. Therefore, low dose RES also enhanced the inhibition effect of GEM on HepG2 cells growth.
     5. RES enhances the anti-tumor activity of DNA damage drugs
     We also explored the synergy of RES combination with DNA damage drugs, including Bleomycin(BLM)、Boanmycin(BAM)、NC0604、Doxorubicin(DOX), in several tumor cell lines. The result showed RES can enhance anti-tumor activity of bleomycin family in a certain concentration range, but not significantly; however the synergy of RES and DOX combination was significant; RES combination with BAM、NC0604、DOX was synergic at a certain level in Bel-7402 cells, but antagonistic in HeLa cells with CI value greater than 1.
     RES (10mg/kg) combination with BAM (10mg/kg) on mice H22 tumor inhibition re-sults showed that, they were synergic with CI value of 0.73.
     At the same time we explored the anti-tumor activity of NC0604. The results showed DNA was damaged by NC0604 in HepG2 cells, and apoptosis was induced by NC0604 in HepG2 cells through regulating apoptosis associated proteins.
     6. The preliminary exploration of three resveratrol derivatives and the combination of anti-tumor.
     Resveratrol derivatives B1, B4, B5 showed different levels of growth inhibition in HepG2 cells. The anti-tumor effects of B1, B4 were stronger than RES significantly, de-serving further study. However, the results of B1、B5 combination with DNA damage drugs(BAM、NC0604、DOX) in HepG2 cells, were not satisfactory.
     This study showed that resveratrol as an anti-tumor sensitizer, has a great potential value in clinical therapy.
引文
[1]JORDI B, JOSEP M L. Hepatitis B virus and hepatocellular carcinoma [J]. Journal of hepatology,2003,39:59-63.
    [2]BOSCH F X, RIBES J, BORRAS J. Epidemiology of primary liver cancer [J]. Semin Liver Dis,1999,19(3):271-85.
    [3]BISHAYEE A, POLITIS T, DARVESH A S. Resveratrol in the chemoprevention and treatment of hepatocellular carcinoma [J]. Cancer Treat Rev,2010,36(1):43-53.
    [4]EL-SERAG H B, RUDOLPH K L. Hepatocellular carcinoma:epidemiology and molecular carcinogenesis [J]. Gastroenterology,2007,132(7):2557-76.
    [5]PARKIN D M, BRAY F, FERLAY J, et al. Global cancer statistics,2002 [J]. CA Cancer J Clin,2005,55(2):74-108.
    [6]ATHAR M, BACK J H, KOPELOVICH L, et al. Multiple molecular targets of resveratrol:Anti-carcinogenic mechanisms [J]. Arch Biochem Biophys,2009, 486(2):95-102.
    [7]JANG M, CAI L, UDEANI G O, et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes [J]. Science,1997,275(5297): 218-20.
    [8]KRAFT T E, PARISOTTO D, SCHEMPP C, et al. Fighting cancer with red wine? Molecular mechanisms of resveratrol [J]. Crit Rev Food Sci Nutr,2009,49(9): 782-99.
    [9]HUANG C, MA W Y, GORANSON A, et al. Resveratrol suppresses cell transformation and induces apoptosis through a p53-dependent pathway [J]. Carcinogenesis,1999,20(2):237-42.
    [10]LIN H Y, SHIH A, DAVIS F B, et al. Resveratrol induced serine phosphorylation of p53 causes apoptosis in a mutant p53 prostate cancer cell line [J]. J Urol,2002, 168(2):748-55.
    [11]LIU H S, PAN C E, YANG W, et al. Antitumor and immunomodulatory activity of resveratrol on experimentally implanted tumor of H22 in Balb/c mice [J]. World J Gastroenterol,2003,9(7):1474-6.
    [12]WU S L, SUN Z J, YU L, et al. Effect of resveratrol and in combination with 5-FU on murine liver cancer [J]. World J Gastroenterol,2004,10(20):3048-52.
    [13]CHEN Y, TSENG S H, LAI H S, et al. Resveratrol-induced cellular apoptosis and cell cycle arrest in neuroblastoma cells and antitumor effects on neuroblastoma in mice [J]. Surgery,2004,136(1):57-66.
    [14]CHEN J C, CHEN Y, LIN J H, et al. Resveratrol suppresses angiogenesis in gliomas: evaluation by color Doppler ultrasound [J]. Anticancer Res,2006,26(2A):1237-45.
    [15]ZHOU H B, CHEN J J, WANG W X, et al. Anticancer activity of resveratrol on implanted human primary gastric carcinoma cells in nude mice [J]. World J Gastroenterol,2005,11(2):280-4.
    [16]PROVINCIALI M, RE F, DONNINI A, et al. Effect of resveratrol on the development of spontaneous mammary tumors in HER-2/neu trans genic mice [J]. Int J Cancer,2005,115(1):36-45.
    [17]SHIBATA M A, AKAO Y, SHIBATA E, et al. Vaticanol C, a novel resveratrol tetramer, reduces lymph node and lung metastases of mouse mammary carcinoma carrying p53 mutation [J]. Cancer Chemother Pharmacol,2007,60(5):681-91.
    [18]PAN M H, GAO J H, LAI C S, et al. Antitumor activity of 3,5,4'-trimethoxystilbene in COLO 205 cells and xenografts in SCID mice [J]. Mol Carcinog,2008,47(3): 184-96.
    [19]LI T, FAN G X, WANG W, et al. Resveratrol induces apoptosis, influences IL-6 and exerts immunomodulatory effect on mouse lymphocytic leukemia both in vitro and in vivo [J]. Int Immunopharmacol,2007,7(9):1221-31.
    [20]CLEMENT M V, HIRPARA J L, CHAWDHURY S H, et al. Chemopreventive agent resveratrol, a natural product derived from grapes, triggers CD95 signaling-dependent apoptosis in human tumor cells [J]. Blood,1998,92(3): 996-1002.
    [21]DORRIE J, GERAUER H, WACHTER Y, et al. Resveratrol induces extensive apoptosis by depolarizing mitochondrial membranes and activating caspase-9 in acute lymphoblastic leukemia cells [J]. Cancer Res,2001,61(12):4731-9.
    [22]STIVALA L A, SAVIO M, CARAFOLI F, et al. Specific structural determinants are responsible for the antioxidant activity and the cell cycle effects of resveratrol [J]. J Biol Chem,2001,276(25):22586-94.
    [23]HSIEH T C, JUAN G, DARZYNKIEWICZ Z, et al. Resveratrol increases nitric oxide synthase, induces accumulation of p53 and p21(WAF1/CIP1), and suppresses cultured bovine pulmonary artery endothelial cell proliferation by perturbing progression through S and G2 [J]. Cancer Res,1999,59(11):2596-601.
    [24]ESTROV Z, SHISHODIA S, FADERL S, et al. Resveratrol blocks interleukin-lbeta-induced activation of the nuclear transcription factor NF-kappaB, inhibits proliferation, causes S-phase arrest, and induces apoptosis of acute myeloid leukemia cells [J]. Blood,2003,102(3):987-95.
    [25]RAGIONE F D, CUCCIOLLA V, BORRIELLO A, et al. Resveratrol arrests the cell division cycle at S/G2 phase transition [J]. Biochem Biophys Res Commun,1998, 250(1):53-8.
    [26]BERNHARD D, TINHOFER I, TONKO M, et al. Resveratrol causes arrest in the S-phase prior to Fas-independent apoptosis in CEM-C7H2 acute leukemia cells [J]. Cell Death Differ,2000,7(9):834-42.
    [27]KIMURA Y, OKUDA H, ARICHI S. Effects of stilbenes on arachidonate metabolism in leukocytes [J]. Biochim Biophys Acta,1985,834(2):275-8.
    [28]CHUNG M I, TENG C M, CHENG K L, et al. An antiplatelet principle of Veratrum formosanum [J]. Planta Med,1992,58(3):274-6.
    [29]PACE-ASCIAK C R, HAHN S, DIAMANDIS E P, et al. The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis:implications for protection against coronary heart disease [J]. Clin Chim Acta,1995,235(2):207-19.
    [30]GRINDEY G, BODER G, HERTEL L, et al. Antitumor activity of 2',2'-difluorodeoxycytidine (LY188011) [J]. Proc Am Assoc Cancer Res,1986,27: 296.
    [31]HERTEL L W, BODER G B, KROIN J S, et al. Evaluation of the antitumor activity of gemcitabine (2',2'-difluoro-2'-deoxycytidine) [J]. Cancer Res,1990,50(14): 4417-22.
    [32]BRAAKHUIS B J M, HAPEREN V W T R V, WELTERS M J P, et al. Schedule-dependent therapeutic efficacy of the combination of gemcitabine and cisplatin in head and neck cancer xenografts [J]. European Journal of Cancer,1995, 31(13-14):2335-40.
    [33]BOVEN E, SCHIPPER H, ERKELENS C A, et al. The influence of the schedule and the dose of gemcitabine on the anti-tumour efficacy in experimental human cancer [J]. Br J Cancer,1993,68(1):52-6.
    [34]MERRIMAN R L, HERTEL L W, SCHULTZ R M, et al. Comparison of the antitumor activity of gemcitabine and ara-C in a panel of human breast, colon, lung and pancreatic xenograft models [J]. Invest New Drugs,1996,14(3):243-7.
    [35]JANSEN W J M, PINEDO H M, VAN DER WILT C L, et al. The influence of BIBW22BS, a dipyridamole derivative, on the antiproliferative effects of 5-fluorouracil, methotrexate and gemcitabine in vitro and in human tumour xenografts [J]. European Journal of Cancer,1995,31(13-14):2313-9.
    [36]VAN MOORSEL C J, PETERS G J, PINEDO H M. Gemcitabine:Future Prospects of Single-Agent and Combination Studies [J]. Oncologist,1997,2(3):127-34.
    [37]KANG S M, TRAN A C, GRILLI M, et al. NF-kappa B subunit regulation in nontransformed CD4+ T lymphocytes [J]. Science,1992,256(5062):1452-6.
    [38]SU H, BIDERE N, ZHENG L, et al. Requirement for caspase-8 in NF-kappaB activation by antigen receptor [J]. Science,2005,307(5714):1465-8.
    [39]HAYDEN M S, GHOSH S. Signaling to NF-kappaB [J]. Genes Dev,2004,18(18): 2195-224.
    [40]HAYDEN M S, GHOSH S. Shared principles in NF-kappaB signaling [J]. Cell, 2008,132(3):344-62.
    [41]VALLABHAPURAPU S, KARIN M. Regulation and function of NF-kappaB transcription factors in the immune system [J]. Annu Rev Immunol,2009,27: 693-733.
    [42]甄永苏主编.抗肿瘤药物研究与开发[M].北京:化学工业出版社,2004.
    [43]BEBAWY M, MORRIS M B, ROUFOGALIS B D. Selective modulation of P-glycoprotein-mediated drug resistance [J]. Br J Cancer,2001,85(12):1998-2003.
    [44]SANDOR V, WILSON W, FOJO T, et al. The role of MDR-1 in refractory lymphoma [J]. Leuk Lymphoma,1997,28(1-2):23-31.
    [45]SUBBARAMAIAH K, CHUNG W J, MICHALUART P, et al. Resveratrol inhibits cyclooxygenase-2 transcription and activity in phorbol ester-treated human mammary epithelial cells [J]. J Biol Chem,1998,273(34):21875-82.
    [46]SEVE M, CHIMIENTI F, DEVERGNAS S, et al. Resveratrol enhances UVA-induced DNA damage in HaCaT human keratinocytes [J]. Med Chem,2005, 1(6):629-33.
    [47]BHAT K P L, KOSMEDER J W,2ND, PEZZUTO J M. Biological effects of resveratrol [J]. Antioxid Redox Signal,2001,3(6):1041-64.
    [48]CAL C, GARBAN H, JAZIREHI A, et al. Resveratrol and cancer:chemoprevention, apoptosis, and chemo-immunosensitizing activities [J]. Curr Med Chem Anticancer Agents,2003,3(2):77-93.
    [49]BHAT K P, PEZZUTO J M. Cancer chemopreventive activity of resveratrol [J]. Ann N Y Acad Sci,2002,957:210-29.
    [50]ROEMER K, MAHYAR-ROEMER M. The basis for the chemopreventive action of resveratrol [J]. Drugs Today (Barc),2002,38(8):571-80.
    [51]HWANG J T, KWAK D W, LIN S K, et al. Resveratrol induces apoptosis in chemoresistant cancer cells via modulation of AMPK signaling pathway [J]. Ann N YAcad Sci,2007,1095:441-8.
    [52]TINHOFER I, BERNHARD D, SENFTER M, et al. Resveratrol, a tumor-suppressive compound from grapes, induces apoptosis via a novel mitochondrial pathway controlled by Bcl-2 [J]. FASEB J,2001,15(9):1613-5.
    [53]BORRA M T, SMITH B C, DENU J M. Mechanism of human SIRT1 activation by resveratrol [J]. J Biol Chem,2005,280(17):17187-95.
    [54]LEVINE A J. p53, the cellular gatekeeper for growth and division [J]. Cell,1997, 88(3):323-31.
    [55]PRIVES C, HALL P A. The p53 pathway [J]. J Pathol,1999,187(1):112-26.
    [56]VOGELSTEIN B, LANE D, LEVINE A J. Surfing the p53 network [J]. Nature, 2000,408(6810):307-10.
    [57]VAZIRI H, DESSAIN S K, NG EATON E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase [J]. Cell,2001,107(2):149-59.
    [58]LUO J, NIKOLAEV A Y, IMAI S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress [J]. Cell,2001,107(2):137-48.
    [59]LANGLEY E, PEARSON M, FARETTA M, et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence [J]. EMBO J,2002,21(10): 2383-96.
    [60]JEONG J, JUHN K, LEE H, et al. SIRT1 promotes DNA repair activity and deacetylation of Ku70 [J]. Exp Mol Med,2007,39(1):8-13.
    [61]YUAN Z, ZHANG X, SENGUPTA N, et al. SIRT1 regulates the function of the Nijmegen breakage syndrome protein [J]. Mol Cell,2007,27(1):149-62.
    [62]GHOSH H S, SPENCER J V, NG B, et al. Sirt1 interacts with transducin-like enhancer of split-1 to inhibit nuclear factor kappaB-mediated transcription [J]. Biochem J,2007,408(1):105-11.
    [63]YANG Y, HOU H, HALLER E M, et al. Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation [J]. EMBO J,2005,24(5):1021-32.
    [64]CHUA K F, MOSTOSLAVSKY R, LOMBARD D B, et al. Mammalian SIRT1 limits replicative life span in response to chronic genotoxic stress [J]. Cell Metab, 2005,2(1):67-76.
    [65]COLLINS K, JACKS T, PAVLETICH N P. The cell cycle and cancer [J]. Proc Natl Acad Sci U S A,1997,94(7):2776-8.
    [66]AHMAD N, ADHAMI V M, AFAQ F, et al. Resveratrol causes WAF-1/p21-mediated G(1)-phase arrest of cell cycle and induction of apoptosis in human epidermoid carcinoma A431 cells [J]. Clin Cancer Res,2001,7(5):1466-73.
    [67]JOE A K, LIU H, SUZUI M, et al. Resveratrol induces growth inhibition, S-phase arrest, apoptosis, and changes in biomarker expression in several human cancer cell lines [J]. Clin Cancer Res,2002,8(3):893-903.
    [68]LARROSA M, TOMAS-BARBERAN F A, ESPIN J C. Grape polyphenol resveratrol and the related molecule 4-hydroxystilbene induce growth inhibition, apoptosis, S-phase arrest, and upregulation of cyclins A, E, and B1 in human SK-Mel-28 melanoma cells [J]. J Agric Food Chem,2003,51(16):4576-84.
    [69]LI C, YANG Z, ZHAI C, et al. Maslinic acid potentiates the anti-tumor activity of tumor necrosis factor alpha by inhibiting NF-kappaB signaling pathway [J]. Mol Cancer,2010,9:73.
    [70]SUN C, HU Y, LIU X, et al. Resveratrol downregulates the constitutional activation of nuclear factor-kappaB in multiple myeloma cells, leading to suppression of proliferation and invasion, arrest of cell cycle, and induction of apoptosis [J]. Cancer Genet Cytogenet,2006,165(1):9-19.
    [71]YEUNG F, HOBERG J E, RAMSEY C S, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase [J]. EMBO J,2004,23(12):2369-80.
    [72]TSAI S H, LIN-SHIAU S Y, LIN J K. Suppression of nitric oxide synthase and the down-regulation of the activation of NFkappaB in macrophages by resveratrol [J]. Br J Pharmacol,1999,126(3):673-80.
    [73]BHARDWAJ A, SETHI G, VADHAN-RAJ S, et al. Resveratrol inhibits proliferation, induces apoptosis, and overcomes chemoresistance through down-regulation of STAT3 and nuclear factor-kappaB-regulated antiapoptotic and cell survival gene products in human multiple myeloma cells [J]. Blood,2007, 109(6):2293-302.
    [74]BENITEZ D A, POZO-GUISADO E, ALVAREZ-BARRIENTOS A, et al. Mechanisms involved in resveratrol-induced apoptosis and cell cycle arrest in prostate cancer-derived cell lines [J]. J Androl,2007,28(2):282-93.
    [75]HARIKUMAR K B, KUNNUMAKKARA A B, SETHI G, et al. Resveratrol, a multitargeted agent, can enhance antitumor activity of gemcitabine in vitro and in orthotopic mouse model of human pancreatic cancer [J]. International Journal of Cancer,2010, epub ahead of print.
    [76]TAMM I, WANG Y, SAUSVILLE E, et al. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs [J]. Cancer Res,1998,58(23):5315-20.
    [77]SHIN S, SUNG B J, CHO Y S, et al. An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and-7 [J]. Biochemistry,2001,40(4):1117-23.
    [78]LIU T, BROUHA B, GROSSMAN D. Rapid induction of mitochondrial events and caspase-independent apoptosis in Survivin-targeted melanoma cells [J]. Oncogene, 2004,23(1):39-48.
    [79]SELVAKUMARAN M, LIN H K, MIYASHITA T, et al. Immediate early up-regulation of bax expression by p53 but not TGF beta 1:a paradigm for distinct apoptotic pathways [J]. Oncogene,1994,9(6):1791-8.
    [80]TE POELE R H, OKOROKOV A L, JARDINE L, et al. DNA damage is able to induce senescence in tumor cells in vitro and in vivo [J]. Cancer Res,2002,62(6): 1876-83.
    [1]LEIST M, JAATTELA M. Four deaths and a funeral:from caspases to alternative mechanisms [J]. Nat Rev Mol Cell Biol,2001,2(8):589-98.
    [2]DEGTEREV A, HUANG Z, BOYCE M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury [J]. Nat Chem Biol, 2005,1(2):112-9.
    [3]HE S, WANG L, MIAO L, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha [J]. Cell,2009,137(6):1100-11.
    [4]CHO Y S, CHALLA S, MOQUIN D, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation [J]. Cell,2009,137(6):1112-23.
    [5]ZHANG D W, SHAO J, LIN J, et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis [J]. Science,2009, 325(5938):332-6.
    [6]EDINGER A L, THOMPSON C B. Death by design:apoptosis, necrosis and autophagy [J]. Curr Opin Cell Biol,2004,16(6):663-9.
    [7]ASHFORD T P, PORTER K R. Cytoplasmic components in hepatic cell lysosomes [J]. J Cell Biol,1962,12:198-202.
    [8]KLIONSKY D J. The molecular machinery of autophagy:unanswered questions [J]. J Cell Sci,2005,118(Pt 1):7-18.
    [9]LOCK R, DEBNATH J. Extracellular matrix regulation of autophagy [J]. Curr Opin Cell Biol,2008,20(5):583-8.
    [10]OHSUMI Y. Molecular dissection of autophagy:two ubiquitin-like systems [J]. Nat Rev Mol Cell Biol,2001,2(3):211-6.
    [11]LEVINE B, KROEMER G. Autophagy in the pathogenesis of disease [J]. Cell,2008, 132(1):27-42.
    [12]VELLAI T, TAKACS-VELLAI K, SASS M, et al. The regulation of aging:does autophagy underlie longevity? [J]. Trends Cell Biol,2009,19(10):487-94.
    [13]YORIMITSU T, KLIONSKY D J. Autophagy:molecular machinery for self-eating [J]. Cell Death Differ,2005,12 Suppl 2:1542-52.
    [14]CHERA S, BUZGARIU W, GHILA L, et al. Autophagy in Hydra:a response to starvation and stress in early animal evolution [J]. Biochim Biophys Acta,2009, 1793(9):1432-43.
    [15]RAJAWAT Y S, HILIOTI Z, BOSSIS I. Aging:central role for autophagy and the lysosomal degradative system [J]. Ageing Res Rev,2009,8(3):199-213.
    [16]MEIJER A J, CODOGNO P. Signalling and autophagy regulation in health, aging and disease [J]. Mol Aspects Med,2006,27(5-6):411-25.
    [17]SPERANDIO S, DE BELLE I, BREDESEN D E. An alternative, nonapoptotic form of programmed cell death [J]. Proc Natl Acad Sci U S A,2000,97(26):14376-81.
    [18]SPERANDIO S, POKSAY K, DE BELLE I, et al. Paraptosis:mediation by MAP kinases and inhibition by AIP-1/Alix [J]. Cell Death Differ,2004,11(10):1066-75.
    [19]YOON M J, KIM E H, LIM J H, et al. Superoxide anion and proteasomal dysfunction contribute to curcumin-induced paraptosis of malignant breast cancer cells [J]. Free Radic Biol Med,2010,48(5):713-26.
    [20]SUN Q, CHEN T, WANG X, et al. Taxol induces paraptosis independent of both protein synthesis and MAPK pathway [J]. J Cell Physiol,2010,222(2):421-32.
    [21]FOMBONNE J, PADRON L, ENJALBERT A, et al. A novel paraptosis pathway involving LEI/L-DNaseⅡ for EGF-induced cell death in somato-lactotrope pituitary cells [J]. Apoptosis,2006,11(3):367-75.
    [22]WANG Y, LI X, WANG L, et al. An alternative form of paraptosis-like cell death, triggered by TAJ/TROY and enhanced by PDCD5 overexpression [J]. J Cell Sci, 2004,117(Pt 8):1525-32.
    [23]MOLZ L, BOOHER R, YOUNG P, et al. cdc2 and the regulation of mitosis:six interacting mcs genes [J]. Genetics,1989,122(4):773-82.
    [24]MARGOTTIN-GOGUET F, HSU J Y, LOKTEV A, et al. Prophase destruction of Emil by the SCF(betaTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase [J]. Dev Cell,2003, 4(6):813-26.
    [25]EOM Y W, KIM M A, PARK S S, et al. Two distinct modes of cell death induced by doxorubicin:apoptosis and cell death through mitotic catastrophe accompanied by senescence-like phenotype [J]. Oncogene,2005,24(30):4765-77.
    [26]CASTEDO M, PERFETTINI J L, ROUMIER T, et al. Mitotic catastrophe constitutes a special case of apoptosis whose suppression entails aneuploidy [J]. Oncogene,2004,23(25):4362-70.
    [27]CASTEDO M, PERFETTINI J L, ROUMIER T, et al. The cell cycle checkpoint kinase Chk2 is a negative regulator of mitotic catastrophe [J]. Oncogene,2004, 23(25):4353-61.
    [28]TAYLOR B F, MCNEELY S C, MILLER H L, et al. p53 suppression of arsenite-induced mitotic catastrophe is mediated by p21CIP1/WAF1 [J]. J Pharmacol Exp Ther,2006,318(1):142-51.
    [29]DOWLING M, VOONG K R, KIM M, et al. Mitotic spindle checkpoint inactivation by trichostatin a defines a mechanism for increasing cancer cell killing by microtubule-disrupting agents [J]. Cancer Biol Ther,2005,4(2):197-206.
    [30]ANAND S, PENRHYN-LOWE S, VENKITARAMAN A R. AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol [J]. Cancer Cell,2003,3(1):51-62.
    [31]DELUCA J G, MOREE B, HICKEY J M, et al. hNuf2 inhibition blocks stable kinetochore-microtubule attachment and induces mitotic cell death in HeLa cells [J]. J Cell Biol,2002,159(4):549-55.
    [32]NITTA M, KOBAYASHI O, HONDA S, et al. Spindle checkpoint function is required for mitotic catastrophe induced by DNA-damaging agents [J]. Oncogene, 2004,23(39):6548-58.
    [33]YAN Y Q, XU Q Z, WANG L, et al. Vanillin derivative 6-bromine-5-hydroxy-4-methoxybenzaldehyde-elicited apoptosis and G2/M arrest of Jurkat cells proceeds concurrently with DNA-PKcs cleavage and Akt inactivation [J]. Int J Oncol,2006,29(5):1167-72.
    [34]HEMSTROM T H, SANDSTROM M, ZHIVOTOVSKY B. Inhibitors of the PI3-kinase/Akt pathway induce mitotic catastrophe in non-small cell lung cancer cells [J]. Int J Cancer,2006,119(5):1028-38.
    [35]WEAVER B A, CLEVELAND D W. Decoding the links between mitosis, cancer, and chemotherapy:The mitotic checkpoint, adaptation, and cell death [J]. Cancer Cell,2005,8(1):7-12.
    [36]CASTEDO M, PERFETTINI J L, ROUMIER T, et al. Cell death by mitotic catastrophe:a molecular definition [J]. Oncogene,2004,23(16):2825-37.
    [37]ELEZ R, PIIPER A, KRONENBERGER B, et al. Tumor regression by combination antisense therapy against Plkl and Bcl-2 [J]. Oncogene,2003,22(1):69-80.
    [38]RELLO-VARONA S, GAMEZ A, MORENO V, et al. Metaphase arrest and cell death induced by etoposide on HeLa cells [J]. Int J Biochem Cell Biol,2006,38(12): 2183-95.
    [39]YOSHIKAWA R, KUSUNOKI M, YANAGI H, et al. Dual antitumor effects of 5-fluorouracil on the cell cycle in colorectal carcinoma cells:a novel target mechanism concept for pharmacokinetic modulating chemotherapy [J]. Cancer Res, 2001,61(3):1029-37.
    [40]PARK S S, EOM Y W, CHOI K S. Cdc2 and Cdk2 play critical roles in low dose doxorubicin-induced cell death through mitotic catastrophe but not in high dose doxorubicin-induced apoptosis [J]. Biochem Biophys Res Commun,2005,334(4): 1014-21.
    [41]MAJNO G, JORIS I. Apoptosis, oncosis, and necrosis. An overview of cell death [J]. Am J Pathol,1995,146(1):3-15.
    [42]PHELPS P C, SMITH M W, TRUMP B F. Cytosolic ionized calcium and bleb formation after acute cell injury of cultured rabbit renal tubule cells [J]. Lab Invest, 1989,60(5):630-42.
    [43]ELSASSER A, SUZUKI K, SCHAPER J. Unresolved issues regarding the role of apoptosis in the pathogenesis of ischemic injury and heart failure [J]. J Mol Cell Cardiol,2000,32(5):711-24.
    [44]TRUMP B F, BEREZESKY I K, CHANG S H, et al. The pathways of cell death: oncosis, apoptosis, and necrosis [J]. Toxicol Pathol,1997,25(1):82-8.
    [45]MILLS E M, XU D, FERGUSSON M M, et al. Regulation of cellular oncosis by uncoupling protein 2 [J]. J Biol Chem,2002,277(30):27385-92.
    [46]GUJRAL J S, FARHOOD A, JAESCHKE H. Oncotic necrosis and caspase-dependent apoptosis during galactosamine-induced liver injury in rats [J]. Toxicol Appl Pharmacol,2003,190(1):37-46.
    [47]RYOKE T, GU Y, IKEDA Y, et al. Apoptosis and oncosis in the early progression of left ventricular dysfunction in the cardiomyopathic hamster [J]. Basic Res Cardiol, 2002,97(1):65-75.
    [48]LIEBERTHAL W, MENZA S A, LEVINE J S. Graded ATP depletion can cause necrosis or apoptosis of cultured mouse proximal tubular cells [J]. Am J Physiol, 1998,274(2 Pt 2):F315-27.
    [49]HOLLER N, ZARU R, MICHEAU O, et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule [J]. Nat Immunol,2000,1(6):489-95.
    [50]MA F, ZHANG C, PRASAD K V, et al. Molecular cloning of Porimin, a novel cell surface receptor mediating oncotic cell death [J]. Proc Natl Acad Sci U S A,2001, 98(17):9778-83.
    [51]LEMASTERS J J, QIAN T, HE L, et al. Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis, and autophagy [J]. Antioxid Redox Signal,2002,4(5):769-81.
    [52]HARRIMAN J F, LIU X L, ALEO M D, et al. Endoplasmic reticulum Ca(2+) signaling and calpains mediate renal cell death [J]. Cell Death Differ,2002,9(7): 734-41.
    [53]CUMMINGS B S, MCHOWAT J, SCHNELLMANN R G. Phospholipase A(2)s in cell injury and death [J]. J Pharmacol Exp Ther,2000,294(3):793-9.
    [54]DAVIDSON W F, HAUDENSCHILD C, KWON J, et al. T cell receptor ligation triggers novel nonapoptotic cell death pathways that are Fas-independent or Fas-dependent [J]. J Immunol,2002,169(11):6218-30.
    [55]CHANG S H, PHELPS P C, BEREZESKY I K, et al. Studies on the mechanisms and kinetics of apoptosis induced by microinjection of cytochrome c in rat kidney tubule epithelial cells (NRK-52E) [J]. Am J Pathol,2000,156(2):637-49.
    [56]LEIST M, SINGLE B, NAUMANN H, et al. Inhibition of mitochondrial ATP generation by nitric oxide switches apoptosis to necrosis [J]. Exp Cell Res,1999, 249(2):396-403.
    [57]KERN J C, KEHRER J P. Acrolein-induced cell death:a caspase-influenced decision between apoptosis and oncosis/necrosis [J]. Chem Biol Interact,2002, 139(1):79-95.
    [58]HAYFLICK L. The Limited in Vitro Lifetime of Human Diploid Cell Strains [J]. Exp Cell Res,1965,37:614-36.
    [59]NARITA M, NUNEZ S, HEARD E, et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence [J]. Cell,2003,113(6): 703-16.
    [60]ITAHANA K, CAMPISI J, DIMRI G P. Methods to detect biomarkers of cellular senescence:the senescence-associated beta-galactosidase assay [J]. Methods Mol Biol,2007,371:21-31.
    [61]SERRANO M, LIN A W, MCCURRACH M E, et al. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a [J]. Cell,1997,88(5):593-602.
    [62]SARKISIAN C J, KEISTER B A, STAIRS D B, et al. Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis [J]. Nat Cell Biol,2007,9(5):493-505.
    [63]DI MICCO R, FUMAGALLI M, CICALESE A, et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication [J]. Nature,2006,444(7119):638-42.
    [64]BARTKOVA J, REZAEI N, LIONTOS M, et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints [J]. Nature, 2006,444(7119):633-7.
    [65]SINGH R, GEORGE J, SHUKLA Y. Role of senescence and mitotic catastrophe in cancer therapy [J]. Cell Div,2010,5:4.
    [66]SORIA J, SMIT E F, KHAYAT D, et al. Phase Ib study of recombinant human (rh)Apo2L/TRAIL in combination with paclitaxel, carboplatin, and bevacizumab (PCB) in patients (pts) with advanced non-small cell lung cancer (NSCLC) [J]. J Clin Oncol,2008 ASCO Annual Meeting 2008,26(15s):3539.
    [67]MOM C H, VERWEIJ J, OLDENHUIS C N, et al. Mapatumumab, a fully human agonistic monoclonal antibody that targets TRAIL-R1, in combination with gemcitabine and cisplatin:a phase I study [J]. Clin Cancer Res,2009,15(17): 5584-90.
    [68]LEONG S, COHEN R B, GUSTAFSON D L, et al. Mapatumumab, an antibody targeting TRAIL-R1, in combination with paclitaxel and carboplatin in patients with advanced solid malignancies:results of a phase Ⅰ and pharmacokinetic study [J]. J Clin Oncol,2009,27(26):4413-21.
    [69]HOTTE S J, HIRTE H W, CHEN E X, et al. A phase 1 study of mapatumumab (fully human monoclonal antibody to TRAIL-R1) in patients with advanced solid malignancies [J]. Clin Cancer Res,2008,14(11):3450-5.
    [70]GRECO F A, BONOMI P, CRAWFORD J, et al. Phase 2 study of mapatumumab, a fully human agonistic monoclonal antibody which targets and activates the TRAIL receptor-1, in patients with advanced non-small cell lung cancer [J]. Lung Cancer, 2008,61(1):82-90.
    [71]TOLCHER A W, MITA M, MEROPOL N J, et al. Phase Ⅰ pharmacokinetic and biologic correlative study of mapatumumab, a fully human monoclonal antibody with agonist activity to tumor necrosis factor-related apoptosis-inducing ligand receptor-1 [J]. J Clin Oncol,2007,25(11):1390-5.
    [72]CAMIDGE D R. Apomab:an agonist monoclonal antibody directed against Death Receptor 5/TRAIL-Receptor 2 for use in the treatment of solid tumors [J]. Expert Opin Biol Ther,2008,8(8):1167-76.
    [73]MARINI P. Drug evaluation:lexatumumab, an intravenous human agonistic mAb targeting TRAIL receptor 2 [J]. Curr Opin Mol Ther,2006,8(6):539-46.
    [74]PLUMMER R, ATTARD G, PACEY S, et al. Phase 1 and pharmacokinetic study of lexatumumab in patients with advanced cancers [J]. Clin Cancer Res,2007,13(20): 6187-94.
    [75]WAKELEE H A, PATNAIK A, SIKIC B I, et al. Phase I and pharmacokinetic study of lexatumumab (HGS-ETR2) given every 2 weeks in patients with advanced solid tumors [J]. Ann Oncol,2010,21(2):376-81.
    [76]TOTH S, NAGY K, PALFIA Z, et al. Cellular autophagic capacity changes during azaserine-induced tumour progression in the rat pancreas. Up-regulation in all premalignant stages and down-regulation with loss of cycloheximide sensitivity of segregation along with malignant transformation [J]. Cell Tissue Res,2002,309(3): 409-16.
    [77]QU X, YU J, BHAGAT G, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene [J]. J Clin Invest,2003,112(12):1809-20.
    [78]LIANG X H, YU J, BROWN K, et al. Beclin 1 contains a leucine-rich nuclear export signal that is required for its autophagy and tumor suppressor function [J]. Cancer Res,2001,61(8):3443-9.
    [79]TAKEUCHI H, KONDO Y, FUJIWARA K, et al. Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors [J]. Cancer Res,2005,65(8):3336-46.
    [80]YU K, TORAL-BARZA L, DISCAFANI C, et al. mTOR, a novel target in breast cancer:the effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer [J]. Endocr Relat Cancer,2001,8(3):249-58.
    [81]RAYMOND E, ALEXANDRE J, FAIVRE S, et al. Safety and pharmacokinetics of escalated doses of weekly intravenous infusion of CCI-779, a novel mTOR inhibitor, in patients with cancer [J]. J Clin Oncol,2004,22(12):2336-47.
    [82]CHAN S, SCHEULEN M E, JOHNSTON S, et al. Phase Ⅱ study of temsirolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer [J]. J Clin Oncol,2005,23(23):5314-22.
    [83]AMATO R J, JAC J, GIESSINGER S, et al. A phase 2 study with a daily regimen of the oral mTOR inhibitor RAD001 (everolimus) in patients with metastatic clear cell renal cell cancer [J]. Cancer,2009,115(11):2438-46.
    [84]AWADA A, CARDOSO F, FONTAINE C, et al. The oral mTOR inhibitor RAD001 (everolimus) in combination with letrozole in patients with advanced breast cancer: results of a phase Ⅰ study with pharmacokinetics [J]. Eur J Cancer,2008,44(1): 84-91.
    [85]SHINGU T, FUJIWARA K, BOGLER O, et al. Inhibition of autophagy at a late stage enhances imatinib-induced cytotoxicity in human malignant glioma cells [J]. Int J Cancer,2009,124(5):1060-71.
    [86]MAIURI M C, LE TOUMELIN G, CRIOLLO A, et al. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1 [J]. EMBO J, 2007,26(10):2527-39.
    [87]BURSCH W, ELLINGER A, KIENZL H, et al. Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture:the role of autophagy [J]. Carcinogenesis,1996,17(8): 1595-607.
    [88]PAN J, CHEN B, SU C H, et al. Autophagy induced by farnesyltransferase inhibitors in cancer cells [J]. Cancer Biol Ther,2008,7(10):1679-84.
    [89]FELS D R, YE J, SEGAN A T, et al. Preferential cytotoxicity of bortezomib toward hypoxic tumor cells via overactivation of endoplasmic reticulum stress pathways [J]. Cancer Res,2008,68(22):9323-30.
    [90]WEIHUA Z, TSAN R, HUANG W C, et al. Survival of cancer cells is maintained by EGFR independent of its kinase activity [J]. Cancer Cell,2008,13(5):385-93.
    [91]SAMADDER P, BITTMAN R, BYUN H S, et al. A glycosylated antitumor ether lipid kills cells via paraptosis-like cell death [J]. Biochem Cell Biol,2009,87(2): 401-14.
    [92]WANG Y, YANG Z, ZHAO X. Honokiol induces paraptosis and apoptosis and exhibits schedule-dependent synergy in combination with imatinib in human leukemia cells [J]. Toxicol Mech Methods,2010,
    [93]VALAMANESH F, TORRIGLIA A, SAVOLDELLI M, et al. Glucocorticoids induce retinal toxicity through mechanisms mainly associated with paraptosis [J]. Mol Vis,2007,13:1746-57.
    [94]CHEN Y, DOUGLASS T, JEFFES E W, et al. Living T9 glioma cells expressing membrane macrophage colony-stimulating factor produce immediate tumor destruction by polymorphonuclear leukocytes and macrophages via a "paraptosis"-induced pathway that promotes systemic immunity against intracranial T9 gliomas [J]. Blood,2002,100(4):1373-80.
    [95]JADUS M R, CHEN Y, BOLDAJI M T, et al. Human U251MG glioma cells expressing the membrane form of macrophage colony-stimulating factor (mM-CSF) are killed by human monocytes in vitro and are rejected within immunodeficient mice via paraptosis that is associated with increased expression of three different heat shock proteins [J]. Cancer Gene Ther,2003,10(5):411-20.
    [96]HOA N, MYERS M P, DOUGLASS T G, et al. Molecular mechanisms of paraptosis induction:implications for a non-genetically modified tumor vaccine [J]. PLoS One, 2009,4(2):e4631.
    [97]CERUTI S, MAZZOLA A, ABBRACCHIO M P. Resistance of human astrocytoma cells to apoptosis induced by mitochondria-damaging agents:possible implications for anticancer therapy [J]. J Pharmacol Exp Ther,2005,314(2):825-37.
    [98]OGBOURNE S M, SUHRBIER A, JONES B, et al. Antitumor activity of 3-ingenyl angelate:plasma membrane and mitochondrial disruption and necrotic cell death [J]. Cancer Res,2004,64(8):2833-9.
    [99]SCOTT G K, ATSRIKU C, KAMINKER P, et al. Vitamin K3 (menadione)-induced oncosis associated with keratin 8 phosphorylation and histone H3 arylation [J]. Mol Pharmacol,2005,68(3):606-15.
    [100]YIN L, OHNO T, WEICHSELBAUM R, et al. The novel isocoumarin 2-(8-hydroxy-6-methoxy-l-oxo-1H-2-benzopyran-3-yl) propionic acid (NM-3) induces lethality of human carcinoma cells by generation of reactive oxygen species [J]. Mol Cancer Ther,2001,1(1):43-8.
    [101]LOO D, PRYER N, YOUNG P, et al. The glycotope-specific RAV12 monoclonal antibody induces oncosis in vitro and has antitumor activity against gastrointestinal adenocarcinoma tumor xenografts in vivo [J]. Mol Cancer Ther, 2007,6(3):856-65.
    [102]ZHAO G F, SENG J J, ZHAO S, et al. Oncosis in human esophageal squamous cell carcinoma and its relationship with apoptosis and microvessel density [J]. Chin Med J (Engl),2007,120(22):1999-2001.
    [103]TE POELE R H, OKOROKOV A L, JARDINE L, et al. DNA damage is able to induce senescence in tumor cells in vitro and in vivo [J]. Cancer Res,2002,62(6): 1876-83.
    [104]ROBERSON R S, KUSSICK S J, VALLIERES E, et al. Escape from therapy-induced accelerated cellular senescence in p53-null lung cancer cells and in human lung cancers [J]. Cancer Res,2005,65(7):2795-803.
    [105]LLEONART M E, ARTERO-CASTRO A, KONDOH H. Senescence induction; a possible cancer therapy [J]. Mol Cancer,2009,8(1):3.
    [106]XUE L, FLETCHER G C, TOLKOVSKY A M. Autophagy is activated by apoptotic signalling in sympathetic neurons:an alternative mechanism of death execution [J]. Mol Cell Neurosci,1999,14(3):180-98.
    [107]BAUVY C, GANE P, ARICO S, et al. Autophagy delays sulindac sulfide-induced apoptosis in the human intestinal colon cancer cell line HT-29 [J]. Exp Cell Res,2001,268(2):139-49.
    [108]KANZAWA T, KONDO Y, ITO H, et al. Induction of autophagic cell death in malignant glioma cells by arsenic trioxide [J]. Cancer Res,2003,63(9):2103-8.
    [109]XUE L, FLETCHER G C, TOLKOVSKY A M. Mitochondria are selectively eliminated from eukaryotic cells after blockade of caspases during apoptosis [J]. Curr Biol,2001,11(5):361-5.
    [110]MELENDEZ A, TALLOCZY Z, SEAMAN M, et al. Autophagy genes are essential for dauer development and life-span extension in C. elegans [J]. Science, 2003,301(5638):1387-91.
    [111]SALMINEN A, KAARNIRANTA K. SIRT1:Regulation of longevity via autophagy [J]. Cellular Signalling,2009,21(9):1356-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700