用户名: 密码: 验证码:
HERG蛋白与胃癌恶性生物学行为关系及相应调控机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钾离子通道和相应的电流在多种生理现象中发挥重要作用,新近的一些研究提示某些钾通道与恶性肿瘤的发生发展有关。其中电压门控钾通道(Voltage-gated potassium channels,Kv)与肿瘤的关系更成为研究的热点。本研究所的前期研究发现,在胃癌细胞存在延迟整流性钾电流,该电流与胃癌细胞的增殖有关,并受到环氧合酶—2(Cyclooxygenase-2,COX-2)的调控。人eag相关基因(human ether-a-go-go-related gene,herg)编码的HERG蛋白为延迟整流性钾通道的α亚单位,国外已有研究发现HERG蛋白在多种肿瘤细胞中高表达。本研究试图阐明HERG蛋白与胃癌恶性生物学行为的关系及可能的调控机制。
     目的:分析HERG蛋白在胃癌组织和细胞中的表达及意义;研究HERG蛋白和电流对胃癌细胞恶性生物学行为的影响;探讨COX—2对HERG电流的影响和相应的调控机制。
     方法:(1)采用免疫组织化学方法研究HERG蛋白在胃癌组织和正常胃组织中的表达情况,并分析HERG蛋白与胃癌患者临床病理资料之间的关系。(2)采用RT—PCR和Western blot方法检测胃癌细胞和永生
Potassium channels and currents play important roles in many physiological functions. Recent studies indicated that some potassium channels were associated with carcinogenesis. Some researchers have focused the relationship between voltage-gated potassium channel and tumor. Our previous studies showed that delayed rectifier potassium currents existed in human gastric cancer cells and the currents were related to the growth of gastric cancer cells. The currents in gastric cancer cells were influenced by COX-2, although the specific mechanism was unclear. Human ether-a-go-go-related gene (herg) encoding a subunit of delayed rectifier potassium channel has been indicated with involvement in tumor cell growth and death. The purpose of the present study is to investigate the role of HERG protein in carcinogenesis of gastric cancer cells and related mechanisms.[Objectives]: 1. To investigate the expression of HERG protein in gastric cancer tissue and cells and analyze the relationship between the expression of HERG protein and the clinicopathological characteristics of patients with gastric cancer; 2. To explore the effects of HERG protein on malicious biological behavior of gastric cancer cells; 3. To
    elucidate the signal transduction pathway, by which COX-2 regulates delayed rectifier potassium currents in gastric cancer cells.[Methods]: [1] The expression of HERG protein in gastric cancer and normal gastric tissues was investigated by immunohistochemistry and the relationship between the HERG expression and clinicopathological characteristics was statistically analyzed. [2] The expressions of HERG mRNA and protein in gastric cancer cells and immortalized gastric epithelial cells were measured by RT-PCR and Western blot, respectively. [3] The whole cell configuration of the patch-clamp technique was employed to record the potassium currents in various cells. [4] HERG-siRNA vector was constructed and transfected into gastric cancer cells, followed by screening and verifying. [5] After interfereing with HERG current and protein by HERG blocker and HERG-siRNA, the growth curve of gastric cancer cells was drawn by MTT method; the ability of clone formation of gastric cancer cells was studied by clone formation assay; the cell cycle distribution of gastric cancer cells was investigated by Flow cytometry; Flow cytometry with Annexin V/PI staining was used to assess apoptosis of gastric cancer cells; the ultrastructure of gastric cancer cells was studied under transmission electron microscope. [6] Transwell invasion assay and tumorigenesis in nude mice were used to determine the effect of HERG-siRNA on the invasiveness and tumorigenicity of gastric cancer cells, respectively. [7] The HERG protein and current in gastric cancer cells transfected with or without COX-2 antisense vector were measured by Western blot and patch-clamp, respectively. [8] cAMP concentration in gastric cancer cells transfected with or without COX-2 antisense vector was measured by ELISA. [9] Construction of mutant of HERG without cAMP-binding domain was completed by PCR and the mutant was transfected into gastric cancer cells. [10] The impact of COX-2 inhibitor and PGE2 on HERG current in gastric cancer cells transfected with or without mutant of HERG without cAMP-binding domain was
    investigated by patch clamp. [11] The effects of agonist and antagonist of cAMP and inhibitor of PKA on HERG current in gastric cancer cells transfected with or without HERG mutant were observed by patch clamp.[Results]: (1) Compared with normal gastric tissues, HERG protein was highly expressed in gastric cancer tissues and the expression of HERG protein was associated with differentiation, TNM stage and lymph node metastasis of gastric cancer (P<0.05). (2) HERG mRNA and protein were positively expressed in four gastric cancer cell lines but negative in immortalized gastric epithelial cell line. (3) HERG current was detected in gastric cancer cell, whereas there was no HERG current in immortalized gastric epithelial cell. (4) Both HERG blocker and HERG-siRNA inhibited proliferation of gastric cancer cells; reduced clone formation ability of gastric cancer cells (P<0.05); inhibited gastric cancer cells entering into S phage from G1 phage; induced apoptosis in gastric cancer cells and there were typical changes of apoptosis under transmission electron microscope. Gastric cancer cells transfected with HERG-siRNA vector presented lower proliferative index. The invasiveness and tumorigenicity of gastric cancer cells were reduced when HERG protein was inhibited (P<0.05). (5) Transfection with COX-2 antisense vector did not alter the expression of HERG protein, but it diminished the amplitude of HERG current in gastric cancer cells (P<0.05). (6) The cAMP concentration in gastric cancer cells transfected with COX-2 antisense vector was lower than that in parental gastric cancer cells (P<0.05). (7) COX-2 inhibitor and PGE2 had influence on the HERG currents in gastric cancer cells. COX-2 inhibitor reduced the amplitude of HERG current in gastric cancer cells and PGE2 enhanced the amplitude. However, in gastric cancer cells transfected with HERG mutant deleting cAMP-binding domain, both COX-2 inhibitor and PGE2 did not show significantly negative or positive effects on HERG current. (8) cAMP agonist enhanced the
引文
1. Miller C. An overview of the potassium channel family. Genome Biol, 2000; 1: 0004.1-0004.5.
    2. Mackinnon R. Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature, 1991; 350: 232-235.
    3. Isacoff EY, Jan YN and Jan LY. Evidence for the formation of heteromultimeric potassium channels in Xenopus oocytes. Nature, 1990; 345: 530-534.
    4. Yu W, Xu J and Li M. NAB domain is essential for the subunit assembly of both α-α and α-β complexes of shaker-like potassium channels. Neuron, 1996; 16: 441-453.
    5. Schmitt N, Schwarz M, Peretz A, Abitbol I, Attali B, Pongs O. A recessive C-terminal Jervell and Lange-Nielsen mutaion of the KCNQ1 channel impairs subunit assembly. EMBO J, 2000; 19: 332-340.
    6. Clement JP4th, Kunjilwar K, Gonzalez G, Schwanstecher M, Panten U, Aguilar-Bryan L, Bryan J. Association and stoichiometry of K_(ATP) channel subunits. Neuron, 1997; 18: 827-838.
    7. Corey S, Krapivinsky G, Krapivinsky L, Clapham DE. Number and stoichiometry of subunits in the native atrial G-Protein-gated potassium channel, IKACh. J Biol Chem, 1998; 273: 5271-5278.
    8. Lesage F, Reyes R, Fink M, Duprat F, Guillemare E, Lazdunski M. Dimerization of TWIK-1 potassium channel subunits via a disulfide bridge. EMBO J, 1996; 15: 6400-6407.
    9. Coetzee WA, Amarillo Y, Chiu J, Chow A, Lau D, McCormack T, Moreno H, Nadal MS, Ozaita A, Pountney D, Saganich M, Vega-Saenz de Micra E, Rudy B. Molecular diversity of potassium channels. Ann N Y Acad Sci, 1999; 868: 233-285.
    10. England SK, Uebele VN, Kodali J, Bennett PB, Tamkun MM. A novel potassium channel β-subunit is produced via alternative mRNA splicing. J Biol Chem, 1995; 270: 28531-28534.
    11. Coghlan MJ, Carroll WA and Gopalakrishnan M. Recent developments in the biology and medicinal chemistry of potassium channel modulators: update from a decade of progress. J Med Chem, 2001; 44: 1627-1653.
    12. Chandy KG, Cahalan M, Pennington M, Norton RS, Wulff H, Gutman GA. Potassium channels in T lymphocytes: toxins to therapeutic immunosuppressants. Toxicon, 2001 ;39:1269-1276.
    13. DeCoursey TE, Chandy KG, Gupta S, Cahalan MD. Voltage-gated potassium channels in human T-lymphocytes: a role in mitogenesis? Nature, 1984;307:465-468.
    14. Matteson DR and Eeutsch C. K channels in lymphocytes: a patch clamp study using monoclonal antibody adhesion. Nature, 1984;307:468-471.
    15. Attali B, Romey G, Honare E, Schmid-Alliana A, Mattei MG, Lesage F, Ricard P, Barhanin J, Lazdunski M. Cloning, functional expression, and regulation of two K channels in human T lymphocytes. J Biol Chem, 1992;267:8650-8657.
    16. Beeton C, Barbaria J, Giraud P, Devaux J, Benoliel AM, Gola M, Sabatier JM, Bernard D, Crest M, Beraud E. Selective blocking of voltage-gated K channels improves experimental autoimmune encephalomyelitis and inhibits T cell activation. J Immunol, 2001;166:936-944.
    17. Koo GC, Blake JT, Shah K, Staruch MJ, Dumont F, Wunderler D, Sanchez M, McManus OB, Sirotina-Meisher A, Fischer P, Boltz RC, Goetz MA, Baker R, Bao J, Kayser F, Rupprecht KM, Parsons WH, Tong XC, Ita IE, Pivnichny J, Vincent S, Cunningham P, Hora D Jr, Feeney W, Kaczorowski G. Correolide and derivatives are novel immunosupressants blocking the lymphocyte Kvl.3 potassium channel. Cell Immunol, 1999; 197:99-107.
    18. Hill RJ, Grant AM, Volberg WR, Rapp L, Faltynek C, Miller D, Pagani K, Baizman E, Wang S, Guiles JW. WIN 17317-3: novel nonpeptide antagonist of voltage-activated K channels in human T lymphocytes. Mol Pharmacol, 1995;49:98-104.
    19. Nguyen A, Kath JC, Hanson DC, Biggers MS, Canniff PC, Donovan CB, Mather RJ, Bruns MJ, Rauer H, Aiyar J, Lepple-Wienhues A, Gutman GA, Grissmer S, Cahalan MD, Chandy KG. Novel nonpeptide agents potently block the C-type inactivated conformation of Kvl.3 and suppress T cell activation. Mol Pharmacol, 1996;50:1672-1679.
    20. Hanson DC, Nguyen A, Mather RJ, Rauer H, Koch K, Burgess LE, Rizzi JP, Donovan CB, Bruns MJ, Canniff PC, Cunningham AC, Verdries KA, Mena E, Kath JC, Gutman GA, Cahalan MD, Grissmer S, Chandy KG. UK-78,282, a novel piperidine compound that potently blocks the Kvl.3 voltage-gated potassium channel and inhibits human T cell activation. Br J Pharmacol, 1999; 126:1707-1716.
    21. Rink TJ and Deutsch C. Calcium-activated potassium channels in lymphocytes. Cell Calcium, 1983;4:463-473.
    22. Grissmer S, Nguyen AN and Cahalan MD. Calcium-activated potassium channels in resting and activated human T lymphocytes. Expression levels, calcium dependence, ion selectivity, and pharmacology. J Gen Physiol, 1993;102:601-630.
    23. Khanna R, Chang MC, Joiner WJ, Kaczmarek LK, Schlichter LC. hSK4/kIKl, a calmodulin-binding K channel in human T-lymphocytes. Roles in proliferation and volume regulation. J Biol Chem, 1999;274:14838-14849.
    24. Ishii TM, Silvia C, Hirschberg B, Bond CT, Adelman JP, Maylie J. A human intermediate conductance calcium-activated potassium channel. Proc Natl Acad Sci USA, 1997;94:11651-11656.
    25. Wulff H, Miller MJ, Hansel W, Grissmer S, Cahalan MD, Chandy KG. Design of a potent and selective inhibitor of the intermediate-conductance Ca-activated K channel, IKCal: a potential immunosuppressant. Proc Natl Acad Sci USA, 2000;97:8151-8156.
    26. Rane SG. The growth regulatory fibroblast IK channel is the prominent electrophysiological feature of rat prostatic cancer cells. Biochem Biophys Res Commun, 2000;269:457-463.
    27. Neylon CB, Lang RJ, Fu Y, Bobik A, Reinhart PH. Molecular cloning and characterization of the intermediate-conductance Ca-activated K channel in vascular smooth muscle: relationship between Kca channel diversity and smooth muscle cell function. Circ Res, 1999;85:33-43.
    28. Pena TL and Rane SG. The fibroblast intermediate conductance Kca channel, FIK, as a prototype for the cell growth regulatory function of the IK channel family. J Membr Biol, 1999;172:249-257.
    29. Snyders DJ. Structure and function of cardiac potassium channels. Cardiovasc Res, 1999;42:377-390.
    30. Sanguinetti MC and Jurkiewicz NK. Two components of cardiac delayed rectifier K current. Differential sensitivity to block by class III anti-arrhythmic agents. J Gen Physiol, 1990;96:195-215.
    31. Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell, 1995;80:795-803.
    32. Abbott GW, Sesti F, Splawski I, Buck ME, Lehmann MH, Timothy KW, Keating MT, Goldstein SA. MiRPl forms Ikr potassium channels with HERG and is associated with cardiac arrhythmia. Cell, 1999;97:175-187.
    33. Sanguinetti MC, Jiang C, Curran ME, Keating MT. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the Ikr potassium channel. Cell, 1995;81:299-307.
    34. Vandenberg JI, Walker BD and Campbell TJ. HERG K channels: friend and foe. Trends Pharmacol Sci, 2001;22:240-246.
    35. Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL, Keating MT. Coassembly of KvLQTl and mink(IsK) proteins to form cardiac IKs potassium channel. Nature, 1996;384:80-83.
    36. Hester JB, Gibson JK, Buchanan LV, Cimini MG, Clark MA, Emmert DE, Glavanovich MA, Imbordino RJ, LeMay RJ, McMillan MW, Perricone SC, Squires DM, Walters RR. Progress toward the development of a safe and effective agent for treating reentrant cardiac arrhythmias: synthesis and evaluation of ibutilide analogues with enhanced metabolic stability and diminished proarrhythmic potential. J Med Chem, 2001 ;44:1099-1115.
    37. Billman GE. The role of the ATP-sensitive K channel in K accumulation and cardiac arrhythmias during myocardial ischemia. Cardiovasc Res, 1994;28:762-769.
    38. Cohen MV, Baines CP and Downey JM. Ischemic preconditioning: from adenosine receptor to KATP channel. Annu Rev Physiol, 2000;62:79-109.
    39. Chiu SY and Ritchie JM. Potassium channels in nodal and internodal axonal membrane of mammalian myelinated fibres. Nature, 1980;284:170-171.
    40. Fehlings MG and Nashmi R. Assessment of axonal dysfunction in an in vitro model of acute compressive injury to adult rat spinal cord axons. Brain Res, 1995;677:291-299.
    41. Fehlings MG and Nashmi R. Changes in pharmacological sensitivity of the spinal cord to potassium channel blockers following acute spinal cord injury. Brain Res, 1996;736:135-145.
    42. Fehlings MF and Nashmi R. A new model of acute compressive spinal cord injury in vitro. J Neurosci Methods, 1997;71:215-224.
    43. Shi R and Blight AR. Differential effects of low and high concentrations of 4-aminopyridine on axonal conduction in normal and injured spinal cord. Neuroscience, 1997;77:553-562.
    44. Blight AR, Toombs JP, Bauer MS, Widmer WR. The effects of 4-aminopyridine on neurological deficits in chronic cases of traumatic spinal cord injury in dogs: a phase I clinical trial. J Neurotrauma, 1991 ;8:103-l 19.
    45. Potter PJ, Hayes KC, Segal JL, Hsieh JT, Brunnemann SR, Delaney GA, Tierney DS, Mason D. Randomized double-blind crossover trial of fampridine-SR(Sustained release 4-aminopyridine) in patients with incomplete spinal cord injury. J Neurotrauma, 1998; 15:837-849.
    46. Johnston D, Hoffman DA, Magee JC, Poolos NP, Watanabe S, Colbert CM, Migliore M. Dendritic potassium channels in hippocampal pyramidal neurons. J Physiol,2000;525:75-81.
    47. Sah P and Davies P. Calcium-activated potassium currents in mammalian neurons. Clin Exp Pharmacol Physiol, 2000;27:657-663.
    48. Lerche H, Biervert C, Alekov Ak, Schleithoff L, Lindner M, Klinger W, Bretschneider F, Mitrovic N, Jurkat-Rott K, Bode H, Lehmann-Horn F, Steinlein OK. A redued K current due to a novel mutation in KCNQ2 causes neonatal convulsions. Ann Neurol, 1999;46:305-312.
    49. Zacaek R, Chorvat RJ, Saya JA, Pierdomenico ME, Maciag CM, Logue AR, Fisher BN, Rominger DH, Earl RA. Two new potent neurotransmitter release enhancers, 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone and 10,10-bis(2-fluoro-4-pyridinylmethy l)-9( 10H)-anthracenone: comparison to linopirdine. J Pharmacol Exp Ther, 1998;285;724-730.
    50. Earl RA, Zazek R, Teleha CA, Fisher BN, Maciag CM, Marynowski ME, Logue AR, Tam SW, Tinker WJ, Huang SM, Chorvat RJ. 2-Fluoro-4-pyridinylmethyl analogues of linopirdine as orally active acetylcholine release-enhancing agents with good efficacy and duration of action. J Med Chem, 1998;41:4615-4622.
    51. Kubisch C, Schroeder BC, Friedrich T, Lutjohann B, El-Amraoui A, Marlin S, Petit C, Jentsch. KCNQ4, a novel potassium channel expressed in sensory outer hair cells,is mutated in dominant deafness. Cell, 1999;96:437-446.
    52. Fournier C, Kourrich S and Soumireu-Mourat B. Apamin improves refernce memory but not procedural memory in rats by blocking small conductance Ca-activated K channels in an olfactory discrimination task. Behav Brain Res, 2001;121:81-93.
    53. Inan SY, Aksu F and Baysal F. The effects of some K channel blockers on scopolamine- or electroconvulsive shock-induced amnesia in mice. Eur J Pharmacol, 2000;407:159-164.
    54. Smart SL, Lopantsev V, Zhang CL, Robbins CA, Wang H, Chiu SY, Schwartzkroin PA, Messing A, Tempel BL. Deletion of the Kvl.l potassium channel causes epilepsy in mice. Neuron, 1998;20:809-819.
    55. Zuberi SM, Eunson LH, Spauschus A, De Silva R, Tolmie J, Wood NW, Mc William RC, Stephenson JP, Kullmann DM, Hanna MG. A novel mutation in the human voltage-gated potassium channel gene (Kvl.l) associates with episodic ataxia type I and sometimes with partial epilepsy. Brain, 1999;122:817-825.
    56. Lorenz E, Alekseev AE, Krapivinsky GB, Carrasco AJ, Clapham DE, Terzic A. Evidence for direct physical association between a K channel (Kir6.2) and an ATP-binding cassette protein (SUR1) which affects cellular distribution and kinetic behavior of an ATP-sensitive K channel. Mol Cell Biol, 1998; 18; 1652-1659.
    57. Sharma N, Crane A, Gonzalez G, Bryan J, Aguilar-Bryan L. Familial hyperinsulinism and pancreatic p-cell ATP-sensitive potassium channels. Kidney Int, 2000;57:803-808.
    58. Grahammer F, Herling AW, Lang HJ, Schmitt-Graff A, Wittekindt OH, Nitschke R, Bleich M, Barhanin J, Warth R. The cardiac K channel, KCNQ1 is essential for gastric acid secretion. Gastroenterology, 2001;120:1363-1371.
    59. Weir SW and Weston AH. The effects of BRL 34915 and nicorandil on electrical and mechanical activity and on 86Rb efflux in rat blood vessels. Br J Pharmacol, 1986;88:121-128.
    60. Standen NB, Quayle JM, Davies NW, Brayden JE, Huang Y, Nelson MT. Hyperpolarizing vasodilators activate ATP-sensitive K channels in arterial smooth muscle. Science, 1989;245:177-180.
    61. Edwards G and Weston AH. Pharmacology of the potassium channel openers. Cardiovasc Drugs Ther, 1995;9(suppl.2):185-193.
    62. Zhang S, Sakai K, Hasuo H, Furuta K, Ureshino H, Shibata O, Sumikawa K. Systemic and coronary hemodynamic effects of JTV-506, a novel potassium channel opener, in conscious dogs: comparison with cromakalim and nicorandil. Res Commun Mol Pathol Pharmacol, 1999;105:l 15-127.
    63. Hirata Y, Kanada A, Miyai H, Mabuchi Y, Aisaka K. Effects of the new potassium channel opener JTV-506 on coronary vessels in vitro and in vivo.Arzneimittelforschung, 1999;49:199-206.
    64. Archer SL, Souil E, Dinh-Xuan, Schremmer B, Mercier JC, El Yaagoubi A, Nguyen-Huu L, Reeve HL, Hampl V. Molecular identification of the role of voltage-gated K channels, Kvl.5 and Kv2.1, in hypoxic pulmanory vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes. J Clin Invest, 1998;101:2319-2330.
    65. Hulme JT, Coppock EA, Felipe A, Martens JR, Tamkun MM. Oxygen sensitivity of cloned voltage-gated K channels expressed in the pulmonary vasculature. Circ Res, 1999;85:489-497.
    66. Neylon CB. Potassium channels and vascular proliferation. Vascular Pharmacology, 2002;38:35-41.
    67. Brugnara C. Therapeutic strategies for prevention of sickle cell dehydration. Blood Cells Mol Dis,2001;27:71-80.
    68. Kimura T, Takahashi MP, Okuda Y, Kaido M, Fujimura H, Yanagihara T, Sakoda S. The expression of ion channel mRNAs in skeletal muscles from patients with myotonic muscular dystrophy. Neurosci Lett, 2000;295:93-96.
    69. Behrens MI, Jalil P, Serani A, Vergara F, Alvarez O. Possible role of apamin-sensitive K channels in myotonic dystrophy. Muscle Nerve, 1994;17:1264-1270.
    70. Miller C. An overview of the potassium channel family. Genome Biol, 2000;l :reviews 0004.0001-0004.0005.
    71. Jiang Y, Ruta V, Chen J, Lee A, MacKinnon R. The principle of gating charge movement in a voltage-dependent K channel. Nature, 2003;423:42-48.
    72. Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R. X-ray structure of a voltage-dependent K channel. Nature, 2003;423:33-41.
    73. Chandy KG, DeCoursey TE, Cahalan MD, McLaughlin C, Gupta S. Voltage-gated potassium channels are required for human T lymphocyte activation. J Exp Med, 1984;160:369-385.
    74. DeCoursey TE, Chandy KG, Gupta S, Cahalan MD. Voltage-gated K channels in human T lymphocytes: a role in mitogenesis? Nature, 1984;307:465-468.
    75. Amigorena S, Choquet D, Teillaud JL, Korn H, Fridman WH. Ion channels and B cell mitogenesis. Mol Immunol, 1990;27:1259-1268.
    76. Amigorena S, Choquet D, Teillaud JL, Korn H Fridman WH. Ion channel blockers inhibit B cell activation at a precise stage of the Gl phase of the cell cycle. Possible involvement of K channels. J Immunol, 1990;144:2038-2045.
    77. Mauro T, Dixon DB, Komuves L, Hanley K, Pappone PA. Keratinocyte K channels mediate Ca-induced differentiation. J Invest Dermatol, 1997; 108:864-870.
    78. Pappas CA and Ritchie JM. Effect of specific ion channel blockers on cultured Schwamm cell proliferation. Glia, 1998;22:113-120.
    79. Strobl JS, Wonderlin WF and Flynn DC. Mitogenic signal transduction in human breast cancer cells. Gen Pharmacol, 1995;26:1643-1649.
    80. Zhou Q, Kwan HY, Chan HC, Jiang JL, Tam SC, Yao X. Blockage of voltage-gated K channels inhibits adhesion and proliferation of hepatocarcinoma cells. Int J Mol Med, 2003; 11:261-266.
    81. Wegman EA, Young JA and Cook DI. A 23-pS Ca2(+)-activated K channel in MCF-7 human breast carcinoma cells: an apparent correlation of channel incidence with the rate of cell proliferation. Pflugers Arch, 1991;417:562-570.
    82. Nilius B and Wohlrab W. Potassium channels and regulation of proliferation of human melanoma cells. J Physiol, 1992;445:537-548.
    83. Lepple-Weinhues A, Berweck S, Bohmig M, Leo CP, Meyling B, Garbe C, Wiederholt M. K channels and the intracellular calcium signal in human melanoma cell proliferation. J Membr Biol, 1996;151:149-157.
    84. Skryma RN, Prevarskaya NB, Dufy-Barbe L, Odessa MF, Audin J, Duty B. Potassium conductance in the androgen-sensitive prostate cancer cell line, LNCaP: involvement in cell proliferation. Prostate, 1997;33:112-122.
    85. Abdul M and Hoosein N. Voltage-gated potassium ion channels in colon cancer. Oncol Rep, 2002;9:961-964.
    86. Gerard V, Rouzaire-Dubois B and Dubois JM. Contribution of a H pump in determining the resting protential of neuroblastoma cells. J Membr Biol, 1994;137;119-125.
    87. Zhou ZH, Unlap T, Li L, Ma HP. Incomplete inactivation of voltage-dependent K channels in human B lymphoma cells. J Membr Biol, 2002;188:97-105.
    88. Pancrazio JJ, Viglione MP, Tabbara IA, Kim YI. Voltage-dependent ion channels in small-cell lung cancer cells. Cancer Res, 1989;49:5901-5906.
    89. Wang L, Shao G, Zhang W, Guo X, Wang C, An J, Zhong G, Zhao H. Influence of 4-aminopyridine on voltage-activated K(+) current and cell proliferation in small cell lung cancer. Zhonghua Zhong Liu Za Zhi, 2002;24:230-233.
    90. Xu D, Wang L, Dai W, Lu L. A requirement for K+ channel activity in growth factor-mediated extracellular signal-regulated kinase activation in human myeloblastic leukemia ML-1 cells. Blood, 1999;94:139-145.
    91. Wang L, Xu B, White RE, Lu L. Growth factor-mediated K+ channel activity associated with human myeloblastic ML-1 cell proliferation. Am J Physiol, 1997;273:1657-1665.
    92. Preussat K, Beetz C, Schrey M, Kraft R, Wolfl S, Kalff R, Part S. Expression of voltage-gated potassium channels Kvl .3 and Kvl .5 in human gliomas. Neurosci Lett, 2003;346:33-36.
    93. Huang Y and Rane SG. Potassium channel induction by the Ras/Raf signal transduction cascade. J Biol Chem, 1994;269:31183-31189.
    94. Draheim HJ, Repp H and Dreyer F. Src-transformation of mouse fibroblasts induces a Ca(2+)-activated K+, current without changing the T-type Ca2+ current. Biochim Biophys Acta, 1995; 1269: 57-63.
    95. Repp H, Draheim H Ruland J, Seidel G, Beise J, Presek P, Dreyer F. Profound differences in potassium current properties of normal and Rous sarcoma virus-transformed chicken embryo fibroblasts. Proc Natl Acad Sci USA, 1993; 90: 3403-3407.
    96. Decker K, Koschinski A, Trouliaris S, Tamura T, Dreyer F, Repp H. Activation of a Ca2+-dependent K+current by the oncogenic receptor protein tyrosine kinase v-Fins in mouse fibroblasts. Naunyn Schiedebergs Arch Pharmacol, 1998; 357: 378-384.
    97. Teulon J, Ronco PM, Geniteau-Legendre M, Baudouin B, Estrade S, Cassingena R, Vandewalle A. Transformation of renal tubule epithelial cells by simian virus-40 is associated with emergence of Ca(2+)-insensitive K+channels and altered mitogenic sensitivity to K+channel blockers. J Cell Physiol, 1992; 151: 113-125.
    98. Parihar AS, Coghlan MJ, Gopalakrishnan M, Shieh CC. Effects of intermediate-conductance Ca(2+)-activated K(+) channel modulators on human prostate cancer cell proliferation. Eur J Pharmacol, 2003; 471: 157-164.
    99. Inglis V, Karpinski E and Benishin C. Gamma-dendrotoxin blocks large conductance Ca2+-activated K+channels in neuroblastoma cells. Life Sci, 2003; 73: 2291-2305.
    100. Carignani C, Roncarati R, Rimini R, Terstappen GC. Pharmacological and molecular characterisation of SK3 channels in the TE671 human medulloblastoma cell line. Brain Res, 2002; 939: 11-18.
    101.吴汉平,吴开春,韩英,时永全,么立萍,王钧,樊代明.人胃癌细胞环氧合酶—2调节延迟整流钾通道的实验研究.中华肿瘤杂志,2002;24:440-443.
    102. Soliven B, Ma L, Bae H, Attali B, Sobko A, Iwase T. PDGF upregulates delayed rectifier via Src family kinases and sphingosine kinase in oligodendroglial progenitors. Am J Physiol Cell Physiol, 2003; 284: 85-93.
    103. Sakai H, Shimizu T, Hori K, Ikari A, Asano S, Takeguchi N. Molecular and pharmacological properties of inwardly rectifying K+channels of human lung cancer cells. Eur J Pharmacol, 2002; 435: 125-133.
    104. Wischmeyer E, Lentes KU and Karschin A. Physiological and molecular characterization of an IRK-type inward rectifier K+ channel in a tumour mast cell line. Pflugers Arch, 1995;429:809-819.
    105. Arcangeli A, Faravelli L, Bianchi L, Rosati B, Gritti A, Vescovi A, Wanke E, Olivotto M. Soluble or bound laminin elicit in human neuroblastoma cells short- or long-term potentiation of a K+ inwardly rectifying current: relevance to neuritogenesis. Cell Adhes Commun, 1996;4:369-385.
    106. Arcangeli A, Becchetti A, Mannini A, Mugnai G, De Filippi P, Tarone G, Del Bene MR, Barletta E, Wanke E, Olivotto M. Integrin-mediated neurite outgrowth in neuroblastoma cells depends on the activation of potassium channels. J Cell Biol, 1993;122:1131-1143.
    107. Pancrazio JJ, Ma W, Grant GM, Shaffer KM, Kao WY, Liu QY, Manos P, Barker JL, Stenger DA. A role for inwardly rectifying K+ channels in differentiation of NG108-15 neuroblastoma x glioma cells. JNeurobiol, 1999;38:466-474.
    108. Hu Q and Shi YL. Characterization of an inward-rectifying potassium current in NG108-15 neuroblastoma x glioma cells. Pflugers Arch, 1997;433:617-625.
    109. Binggeli R and Weinstein R. Membrane potentials and sodium channels: hypotheses for growth regulation and cancer formation based on changes in sodium channels and gap junctions. J Theor Biol, 1986;123:377-401.
    110. Cone CD, Jr. and Tongier M, Jr. Control of somatic cell mitosis by simulated changes in the transmembrane potential level. Oncology, 1971 ;25:168-182.
    111. Kubo Y, Baldwin TJ, Jan YN, Jan LY. Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature, 1993 ;362:127-133.
    112. Ho K, Nichols CG, Lederer WJ, Lytton, Vassilev PM, Kanazirska MV, Hebert SC. Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature, 1993;362:31-38.
    113. Barry DM and Nerbonne JM. Myocardial potassium channels: electrophysiological and molecular diversity. Annu Rev Physiol, 1996;58:363-394.
    114. Rouzaire-Dubois B and Dubois JM. K+ channel block-induced mammalian neuroblastoma cell swelling: a possible mechanism to influence proliferation. J Physiol, 1998;510:93-102.
    115. Rouzaire-Dubois B and Dubois JM. A quantitative analysis of the role of K+ channels in mitogenesis of neuroblastoma cells. Cell Signal, 1991;3:333-339.
    116. Rouzaire-Dubois B, Milandri JB, Bostel S, Dubois JM. Control of cell proliferation by cell volume alterations in rat C6 glioma cells. Pflugers Arch, 2000;440:881-888.
    117. Jansson B. Potassium, sodium, and cancer: a review. J Environ Pathol Toxicol Oncol, 1996;15:65-73.
    118. Nagy IZ, Lustyik G, Nagy VZ, Zarandi B, Bertoni-Freddari C. Intracellular Na+:K+ ratios in human cancer cells as revealed by energy dispersive x-ray microanalysis. J CellBiol, 1981;90:769-777.
    119. Pardo LA, del Camino D, Sanchez A, Alves F, Bruggemann A, Beckh S, Stuhmer W. Oncogenic potential of EAG K(+) channels. Embo J, 1999; 18:5540-5547.
    120. Pei L, Wiser O, Slavin A, Mu D, Powers S, Jan LY, Hoey T. Oncogenic potential of TASK3 (Kcnk9) depends on K+ channel function. Proc Natl Acad Sci U S A, 2003;100:7803-7807.
    121. Stevenson D, Binggeli R, Weinstein RC, Keck JG, Lai MC, Tong MJ. Relationship between cell membrane potential and natural killer cell cytolysis in human hepatocellular carcinoma cells. Cancer Res, 1989;49:4842-4845.
    122. Binggeli R, Weinstein RC and Stevenson D. Calcium ion and the membrane potential of tumor cells. Cancer Biochem Biophys, 1994;14:201-210.
    123. Bianchi L, Wible B, Arcangeli A, Taglialatela M, Morra F, Castaldo P, Crociani O, Rosati B, Faravelli L, Olivotto M, Wande E. herg encodes a K+ current highly conserved in tumors of different histogenesis: a selective advantage for cancer cells? Cancer Res, 1998;58:815-822.
    124. Fontana L, D'Amico M, Crociani O, Biagiotti T, Solazzo M, Rosati B, Arcangeli A, Wanke E, Olivotto M. Long-term modulation of HERG channel gating in hypoxia Biochem Biophys Res Commun, 2001;286:857-862.
    125. Pappas CA, Ullrich N and Sontheimer H. Reduction of glial proliferation by K+ channel blockers is mediated by changes in pHi. Neuroreport, 1994;6:193-196.
    126. Ningaraj NS, Rao M and Black KL. Calcium-dependent potassium channels as a target protein for modulation of the blood-brain tumor barrier. Drug News Perspect, 2003;16:291-298.
    127. Fan D. PG, Ruffoli RR and Jr., Dong Z.Circumvention of multidrug resistance in murine fibrosarcoma and colon carcinoma cells by treatment with the -adrenoceptor antagonist furobenzepine. Int. J. Onco, 1994;4:789-798.
    128. Jirsch J, Deeley RG, Cole SP, Stewart AJ, Fedida D. Inwardly rectifying K+ channels and volume-regulated anion channels in multidrug-resistant small cell lung cancer cells. Cancer Res, 1993;53:4156-4160.
    129. Luckie DB KM, Harper KL, Law TC, Wine JJ. Selection for MDR1/P-glycoprotein enhances swelling-activated K+ and Cl currents in NIH/3T3 cells. Am J Physiol, 1994;267:650-658.
    130. Fan SF and Yazulla S. Modulation of voltage-dependent K+ currents (IK(V)) in retinal bipolar cells by ascorbate is mediated by dopamine Dl receptors. Vis Neurosci, 1999; 16:923-931.
    131. Fan SF and Yazulla S. Suppression of voltage-dependent K+ currents in retinal bipolar cells by ascorbate. Vis Neurosci, 1999;16:141-148.
    132. Abdul M, Santo A and Hoosein N. Activity of potassium channelblockers in breast cancer. Anticancer Res, 2003;23:3347-3351.
    133. Malhi H, Irani AN, Rajvanshi P, Suadicani SO, Spray DC, McDonald TV, Gupta S. KATP channels regulate mitogenically induced proliferation in primary rat hepatocytes and human liver cell lines. Implications for liver growth control and potential therapeutic targeting. JBiol Chem, 2000;275:26050-26057.
    134. Ouadid-Ahidouch H, Le Bourhis X, Roudbaraki M, Toillon RA, Delcourt P, Prevarskaya N. Changes in the K+ currentdensity of MCF-7 cells during progression through the cell cycle: possible involvement of a h-ether.a-gogo K+ channel.Receptors Channels, 2001;7:345-356.
    135. Weaver JL SGJ, Pine PS, Gottesman MM, Goldenberg S, Aszalos A. The effect of ion channel blockers, immunosuppressive agents, and other drugs on the activity of the multi-drug transporter. In tJ Cancer, 1993;54:456-461.
    136. Fan D PG, O'Brian CA, Seid C. Chemosensitization of murine fibrosarcoma cells to drugs affected by the multidrug resistance phenotype by the antidepressant trazodone: an experimental model for the reversal of intrinsic drug resistance. Int J Oncol, 1992;l:735-742.
    137. Cayabyab FS and Schlichter LC. Regulation of an ERG K+ current by Src tyrosine kinase. J Biol Chem 277:13673-13681, 2002.
    138. Rouzaire-Dubois B, Gerard V and Dubois JM. Involvement of K+ channels in the quercetin-induced inhibition of neuroblastoma cell growth. Pflugers Arch, 1993;423:202-205.
    139. Gavrilova-Ruch O, Schonherr K, Gessner G, Schonherr R, Klapperstuck T, Wohlrab W, Heinemann SH. Effects of imipramine on ion channels and proliferation of IGR1 melanoma cells. J Membr Biol, 2002;188:137-149.
    140. Demo SD and Yellen G. Ion effects on gating of the Ca(2+)-activated K+ channel correlate with occupancy of the pore. Biophys J, 1992;61:639-648.
    141. Bianchi L, Arcangeli A, Bartolini P, Mugnai G, Wanke E, Olivotto M. An inward rectifier K+ current modulates in neuroblastoma cells the tyrosine phosphorylation of the ppl25FAK and associated proteins: role in neuritogenesis. Biochem Biophys Res Commun, 1995;210:823-829.
    142. Tufte MJ, Tufte FW and Brewer AK. The response of colon carcinoma in mice to cesium, zinc and vitamin A. Pharmacol Biochem Behav, 1984;21 Suppl 1:25-26.
    143. Messiha FS and Stocco DM. Effect of cesium and potassium salts on survival of rats bearing Novikoffhepatoma Pharmacol Biochem Behav, 1984;21 Suppl 1:31-34.
    144. Messiha FS. Biochemical aspects of cesium administration in tumor-bearing mice. Pharmacol Biochem Behav, 1984;21 Suppl 1:27-30.
    145. Brewer AK. The high pH therapy for cancer tests on mice and humans. Pharmacol Biochem Behav, 1984;21 Suppl 1:1-5.
    146. Sartori HE. Nutrients and cancer: an introduction to cesium therapy. Pharmacol Biochem Behav, 1984;21 Suppl 1:7-10.
    147. Pardo LA, Bruggemann A, Camacho J, Stuhmer W. Cell cycle-related changes in the conducting properties of r-eag K+ channels. J Cell Biol, 1998; 143:767-775.
    148. Bauer CK, Wulfsen I, Schafer R, Glassmeier G, Wimmers S, Flitsch J, Ludecke DK, Schwarz JR. HERG K(+) currents in human prolactin-secreting adenoma cells. Pflugers Arch, 2003;445:589-600.
    149. Aricangeli A, Becchetti A, Mannini A, Mugnai G, De Filippi P, Tarone G, Del Bene MR, Barletta E, Wanke E, Olivotto M. Integrin mediated neurite outgrowth in neuroblastoma cells depends on the activiation of potassium channels. J Cell Biol, 1993;122:1131-1143
    150. Aricangeli A, Bianchi L and Becchetti A. A novel inward-rectifying potassium current with a cell cycle dependence governs the resting potential of mammalian neuroblastoma cells. J Physiol, 1995;489:455-471.
    151. Wang H, Zhang Y, Cao L, Han H, Wang J, Yang B, Nattel S, Wang Z. HERG K+ channel, a regulator of tumor cell apoptosis and proliferation. Cancer Res, 2002;62:4843-4848.
    152. Zhou W, Cayabyab FS, Pennefather PS, DeCoursey TE. HERG-like K+ channels in microglia J Gen Physiol, 1998; 111:781 -794.
    153. Warmke JW and Ganetzky B. A family of potassium channel genes related to eag in Drosophila and mammals. Proc Natl Acad Sci USA. 1994;91:3438-3442.
    154. Splawski I, Shen J, Timothy KW, Vincent GM, Lehmann MH, Keating MT. Genomic structure of three long QT syndrome genes: KVLQT1, HERG, and KCNE1. Genomics, 1998;51:86-97.
    155. Trudeau MC, Warmke JW, Ganetzky B, Robertson GA. HERG, a human inward rectifier in the voltage-gated potassium channel family. Science, 1995;269:92-95.
    156. Tseng GN. Ikr: The HERG channel. J Mol Cell Cardiol, 2001 ;33:835-849.
    157. Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell, 1995;80:795-804.
    158. Christiansen M, Tonder N, Larsen LA, Andersen PS, Simonsen H, Oyen N, Kanters JK, Jacobsen JR, Fosdal I, Wettrell G, Kjeldsen K. Mutations in the HERG K(+)-ion channel: A novel link between long QT syndrome and sudden infant death syndrome. Am J Cardiol, 2005;95:433-444.
    159. Sanguinetti MC, Jiang C, Curran ME, Keating MT. A mechanistic link between an inherited and acquired cardiac arrhythmia: HERG encodes the Ikr potassium channel. Cell, 1995;81:299-307.
    160. Sanguinetti MC and Jurkiewicz NK. Two components of cardiac delayed rectifier potassium current. J Gen Physiol, 1990;96:195-215.
    161. Aydar E and Palmer C. Functional characterization of the C-terminus of the human ether-a-go-go related gene K channel (HERG). J Physiol, 2001;534:l-14.
    162. Walker BD, Singleton CB, Bursill JA, Wyse KR, Valenzuela SM, Qiu MR, Breit SN, Campbell TJ. Inhibition of the human ether-a-go-go-related gene (HERG) potassium channel by cisapride: affinity for open and inactivated states. Br J Pharmacol, 1999; 128:444-450.
    163. Rampe D, Roy ML, Dennis A, Brown AM. A mechanism for the proarrhythmic effects of cisapride (Propulsid) : high affinity blockade of the human cardiac potassium channel HERG. FEBS Lett, 1997;417:28-32.
    164. Paakkari I. Cardiotoxicity of new antihistamaines and cisapride. Toxicol Lett, 2002;127:279-284.
    165. Mohammad S, Zhou Z, Gong Q, January CT. Blockage of the HERG human cardiac K+ channel by the gastrointestinal prokinetic agent cisapride. Am J Physiol, 1997;42:2534-2538.
    166. Yi BA, Minor,Jr DL, Lin YF, Jan YN, Jan LY. Controlling potassium channel activities: interplay between the membrane and intracellular factors. Proc Natl Acad Sci USA, 2001 ;98:11016-11023.
    167. Tristani-Firouzi M and Sanguinetti MC. Structural determinants and biophysical properties of HERG and KCNQ1 channel gating. J Mol Cell Cardiol, 2003;35:27-35.
    168. Chiesa N, Rosati B, Arcangeli A, Olivotto M, Wanke E. A novel role for HERG potassium channels: spike frequency adaptation. J Physiol, 1997;501:313-318.
    169. Faravelli L, Arcangeli A, Olivotto M, Wanke E. A HERG-like potassium channel in rat F-11 DRG cell line: pharmacological identification and biophysical characterization. J Physiol, 1996;496:13-23.
    170. Cherubini A, Taddei GL, Crociani O, Paglierani M, Buccoliero AM, Fontana L, Noci I, Borri P, Borrani E, Giachi M, Becchetti A, Rosati B, Wanke E, Olivotto M, Arcangeli A. HERG potassium channels are more frequently expressed in human endometrial cancer as compared to non-cancerous endometrium. Br J Cancer, 2000;83:1722-1729.
    171. Smith GA, Tsui HW, Newell EW. Functional up-regulation of HERG K channels in neoplastic hematopoietic cells. J Biol Chem, 2002;277: 18528-18534.
    172. Pillozzi S, Brizzi MF, Balzi M, Crociani O, Cherubini A, Guasti L, Bartolozzi B, Becchetti A, Wanke E, Bernabei PA, Olivotto M, Pegoraro L, Arcangeli A. HERG potassium channels are constitutively expressed in primary human acute myeloid leukemias and regulate cell proliferation of normal and leukemic hemopoietic progenitors. Leukemia, 2002;16:1791-1798.
    173. Lastraioli E, Guasti L, Crociani O, Polvani S, Hofmann G, Witchel H, Bencini L, Calistri M, Messerini L, Scatizzi M, Moretti R, Wanke E, Olivotto M, Mugnai G, Arcangeli A. hergl gene and HERG1 protein are overexpressed in colorectal cancers and regulate cell invasion of tumor cells. Cancer Res, 2004; 64: 606-611.
    174.韩英,郎兵,吴汉平,周炜,高瞻,周士胜,李云庆,樊代明.人胃癌SGC7901细胞膜钾离子通道的特性.第四军医大学学报,2002;23:608-610.
    175. Price M, Lee SC and Deutsch C. Charybdotoxin inhibits proliferation and interleukin 2 production in human peripheral blood lymphocytes. Proc Natl Acad Sci USA, 1989; 86: 10171-10175.
    176. Dubois JM and Rouzaire-Dubois B. Role of potassium channels in mitogenesis. Prog Biophys Mol Biol, 1993; 59: 1-21.
    177. Nilius B and Droogmans G. A Role for K+Channels in Cell Proliferation. News Physiol Sci. 1994; 9: 105-1101
    178. Skryma RN, Prevarsksya NB, Dufy-Barbe. Potassium conductance in the androgen-sensitive prostate cancer cell line, LNCaP: involvement in cell proliferation. Prostate, 1997; 33: 112-122.
    179. Crociani O, Guasti L, Balzi M. Cell cycle-dependent expression of HERG1 and HERG1B isoforms in tumor cells. J Biol Chem, 2003; 278: 2947-2955.
    180. Bianchi L, Arcangeli A, Bartolini P. An inward rectifier potassium current modulates in neuroblastoma cells the tyrosine phosphorylation of the pp125~(FAK) and associated protein: role in neuritogenesis. Biochem Biophys Res Commun, 1995; 210: 823-829.
    181. Olivotto M, Arcangeli A, Carla M. Electric fields at the plasma membrane level: a reappraisal of a neglected key to decipher the mechanisms of cell signaling. BioEssays, 1996; 18: 495-504.
    182. Wanke E, Arcangeli A and Olivotto M. A HERG-like potassium current in proliferating myoblasts before fusion. Soc Neurosci Abstr, 1996; 22: 571-572.
    183. Arcangeli A, Rosati B, Cherubini A, Crociani O, Fontana L, Ziller C, Wanke E, Olivotto M. HERG-and IRK-like inward rectifier currents are sequentially expressed during neuronal development of neural crest cells and derivatives. Eur J Neurosci, 1997; 9: 2596-2604.
    184. Nicolella D, Maione P and Gridelli C. Targeted therapies: focus on a new strategy for gastrointestinal tumors. Critical Reviews in Oncology/Hematology, 2003; 1-11.
    185.徐美虹,吴开春,吴汉平,么立萍,樊代明.非甾体类抗炎药对胃癌细胞增殖的抑制作用.中华消化杂志,2002;22:199—202.
    186. Neufang G, Furstenberger G, Heidt M, Marks F, Muller-Decker K. Abnormal differentiation of epidermis in transgenic mice constitutively expressing cyclooxygenase-2 in skin. PNAS, 2001; 98: 7629-7634.
    187. Muller-Decker K, Neufang G, Berger I, Neumann M, Marks F, Furstenberger G. Transgenic cyclooxygenase-2 overexpression sensitizes mouse skin for carcinogenesis. PNAS, 2002; 99: 12483-12488.
    188. Chan G, Boyle JO, Yang EK, Zhang F, Sack PG, Shah JP, Edelstein D, Soslow RA, Koki AT, Woerner BM, Masferrer JL, Dannenberg AJ. Cyclooxygenase-2 expression is up-regulated in squamous cell carcinoma of the head and neck. Cancer Res, 1999; 59: 991-994.
    189. Yu HP, Xu SQ, Liu L, Shi LY, Cai XK, Lu WH, Lu B, Su YH, Li YY. Cyclooxygenase-2 expression in squamous dysplasia and squamous cell carcinoma of the esophagus. Cancer Lett, 2003; 198: 193-201.
    190. Tucker ON, Dannenberg AJ, Yang EK, Zhang F, Teng L, Daly JM, Soslow RA, Masferrer JL, Woener BM, Koki AT, Fahey TJ 3rd. Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer. Cancer Res, 1999; 59: 987-990.
    191. Sung YK, Hwang SY, Kim JO, Bae HI, Kim JC, Kim MK. The correlation between cyclooxygenase-2 expression and hepatocellular carcinogenesis. Mol Cells, 2004; 17: 35-38.
    192.李玲,吴开春,聂永战,吴汉平,王春梅,樊代明.人胃癌细胞系环氧合酶的表达、分布及其意义.中华消化杂志,2000;20:374-377.
    193. To KF, Chan FK, Cheng AS, Lee TL, Ng YP, Sung JJ. Up-regulation of cyclooxygenase-1 and-2 in human gastric ulcer. Aliment Pharmacol Ther, 2001; 15: 25-34.
    194. Saukkonen K, Nieminen O, van Rees B, Vilkki S, Harkonen M, Juhola M, Mecklin JP, Sipponen P, Ristimaki A. Expression of Cyclooxygenase-2 in dyspalsia of the stomach and in intestinal-type gastric adenocarcinoma. Clinical Cancer Res, 2001 ;7:1923-1931.
    195. Uefuji K, Ichikura T and Mochizuki H. Cyclooxygenase-2 expression is related to prostaglandin biosynthesis and angiogenesis in human gastric cancer. Clinical Cancer Res, 2000;6:135-138.
    196. Sinicrope FA, Gill S. Role of Cyclooxygenase-2 in colorectal cancer. Cancer Metastasis Rev, 2004;23:63-75.
    197. Kawahito Y, Wilder RL. Expression of cyclooxygenase-1 and-2 in human colorectal cancer. Cancer Res, 1995;55:3785-3789.
    198. Shoji T, Konno H, Tanaka T, Sakaguchi T, Sunayama K, Baba M, Kamiya K, Ohta M, Kaneko T, Igarashi A, Nakamura S. Orthotopic implantation of a colon cancer xenograft induces high expression of cyclooxygenase-2. Cancer Lett, 2003;195:235-241.
    199. Huang M, Stolina M, Sharma S, Mao JT, Zhu L, Miller PW, Wollman J, Herschman H, Dubinett SM. Non-small cell lung cancer cyclooxygenase-2-dependent regulation of cytokine balance in lymphocytes and macrophages: up-regulation of interleukin
    10 and down-regulation of interleukin 12 production. Cancer Res, 1998;58:1208-1216.
    200. Marrogi AJ, Travis WD, Welsh JA, Khan MA, Rahim H, Tazelaar H, Pairolero P, Trastek V, Jett J, Caporaso NE, Liotta LA, Harris CC. Nitric oxide synthase, cyclooxygenase-2, and vascular endothelial growth factor in the angiogenesis of non-smal cell lung carcinoma. Clinical Cancer Res, 2000;6:4739-4744.
    201. Kim HS, Youm HR, Lee JS, Min KW, Chung JH, Park CS. Correlation between cyclooxygenase-2 and tumor angiogenesis in non-small cell lung cancer. Lung Cancer, 2003; 1-8.
    202. Yoshimura R, Sano H, Masuda C, Kawamura M, Tsubouchi Y, Chargui J, Yoshimura N, Hla T, Wada S. Expression of cyclooxygenase-2 in prostate carcinoma. Cancer, 2000;89:589-596.
    203. Uotila P, Valve E, Martikainen P, Nevalainen M, Nurmi M, Harkonen P. Increased expression of cyclooxygenase-2 and nitric oxide synthase-2 in human prostate cancer. Urol Res, 2001;29:23-28.
    204. Hirahama T, Sakakura C. Overexpression of cyclooxygenase-2 in squamous cell carcinoma of the urinary baldder. Clin Cancer Res, 2001;7:558-561.
    205. Denkert C, Winzer KJ, Hauptmann S. Prognostic impact of cyclooxygenase-2 in breast cancer. Clin Breast Cancer, 2004;4:428-433.
    206. Costa C, Soares R, Reis-Filho JS, Leitao D, Amendoeira I, Schmitt FC. Cyclooxygenase-2 expression is associated with angiogenesis and lymph node metastasis in human breast cancer. J Clin Pahtol, 2002;55:429-434
    207. Wong E, DeLuca C, Boily C, Charleson S, Cromlish W, Denis D, Kargman S, Kennedy BP, Ouellet M, Skorey K, O'Neill GP, Vickers PJ, Riendeau D. Characterization of autocrine inducible prostaglandin H synthase-2 in human osteosarcoma cells. Infiamm Res, 1997;46:51-56.
    208. Nishiyama M, Hashitani H, Fukuta H, Yamamoto Y, Suzuki H. Potassium channels activated in the endothelium-dependent hyperpolarization in guinea-pig coronary artery. J Physiol, 1998;510:455-465.
    209. Zoltay G and Cooper JR. Presynaptic modulation by eicosanoids in cortical synaptosomes. Neurochem Res, 1994; 19:1211 -1215.
    210. Evans AR, Vasko MR, Nicol GD. The cAMP transduction cascade mediates the PGE2-induced inhibition of potassium currents in rat sensory neurons. J Phsiol, 1999;516:163-178.
    211.Kapural L and Fein A. Suppression of the voltage-gated K+ current of human megakaryocytes by thrombin and prostacyclin. Biochim Biophys Acta, 1997;1355:331-342.
    212. Coleman RA, Smith WL, Narumiya S. Classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacological Reviews, 1994;46:205-229.
    213. Thomas D, Zhang W, Karle CA, Kathofer S, Schols W, Kubler W, Kiehn J. Deletion of protein kinase A phosphorylation sites in the HERG potassium channel inhibits activation shift by protein kinase A. J Biol Chem, 1999;274:27457-27462.
    214. Cui J, Melman Y, Palma E, Fishman GI, McDonald TV. Cyclic AMP regulates the

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700