用户名: 密码: 验证码:
参松养心胶囊抗心律失常机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:心律失常是临床上常见且又对患者的生活质量和生命安全影响极大的心血管疾病。长期以来,人们一直致力于抗心律失常治疗的研究。随着科学技术的进步,心律失常的非药物疗法,如除颤、起搏、射频消融、手术等在临床治疗中虽然起到越来越大的作用,但是许多类型的心律失常至今仍依赖于药物治疗,抗心律失常新药开发仍然是我国防治快速性心律失常的重要研究内容。
     临床心律失常的种类繁杂,不能用一种机制来解释其发生的原因,从根本上说心肌细胞膜离子通道表达或功能异常将会影响动作电位的时程,进而引起心脏不同部位复极离散增大,是形成各种心律失常的最重要的病理生理基础。目前临床应用的抗心律失常西药主要包括钠通道阻断剂、β受体阻断剂、延长动作电位时程药(主要是钾离子通道阻断剂)和钙离子通道阻断剂。尽管药物分类不同,其作用机制有差异,归根到底是通过对各种心肌细胞离子通道功能的调节来起作用的。药物在发挥抗心律失常作用的同时,有潜在的致心律失常发生的危险,尤其是导致继发性QT间期延长和尖端扭转型室性心动过速,可增加患者死亡率。从90年代CAST和CASTII试验结果公布以来,人们开始重视抗心律失常药物治疗的收益与风险评估。重新评价临床应用的一些抗心律失常药物的安全性,以及开发广谱有效且副作用低的新型抗心律失常药物是目前研究的热点。能够改善离子通道紊乱并恢复其正常生理功能的药物,才能防治心律失常的发生并提高远期疗效。
     同西药相比,抗心律失常作用的中药不仅对心脏离子通道功能有影响,而且中药往往是复合药物,具有多离子通道靶点的作用,因而毒性低副作用小。从中药中筛选出高效、低毒的抗心律失常药物是我国中药现代化的重要组成部分。用科学的方法来研究和评价中药的抗心律失常作用机理,对于指导临床用药和研发新药都有着重要的意义。
     参松养心胶囊(SSYX)是一种复方制剂,方中多数药物均有较好的抗心律失常作用。动物实验证明,SSYX可以明显抑制药物诱发的心律失常;随机临床验显示,SSYX对治疗冠心病心律失常有明显疗效。关于SSYX抗心律失常的机制和对心肌细胞离子通道的影响至今未见报道。
     目的:观察SSYX干粉提取溶液对单个心室肌细胞L型钙电流(I_(Ca),L),钠电流(I_(Na)),瞬时外向钾电流(I_to)),内向整流钾电流(I_(K1)),延迟整流钾电流慢成分(I_(Ks))的影响,以及对在HEK293细胞表达hERG通道电流(I_(Kr))的影响。探讨SSYX在离子通道水平的抗心律失常作用机制。
     方法:急性分离豚鼠和大鼠心脏,用Langendoff灌流系统离体灌流,联合使用胶原酶Ⅱ和蛋白酶E,分离获得单个的心室肌细胞。培养HEK293细胞,用脂质体瞬时转染pcDNA3.1-hERG和pEGFP-C1质粒,于转染后24~48h在荧光显微镜下,对有绿色荧光表达的细胞进行电生理记录。用标准的全细胞膜片钳记录技术,记录豚鼠心室肌细胞的I_(Ca),L,I_(Na),I_(k)电流,大鼠心室肌细胞的I_(to)和I_(K1)电流,以及转基因阳性HEK293细胞的I_(Kr)电流。观察SSYX干粉提取溶液对各种离子通道电流的影响。
     结果:通过酶解法得到的豚鼠和大鼠心室肌细胞能够记录到动作电位和各种离子通道电流,表明其具有良好的细胞电生理特性。大约40%~60%瞬时转染后HEK293细胞表达绿色荧光蛋白,同时可记录到I_(Kr)通道电流,表明细胞模型构建成功。
     1.SSYX对动作电位的影响:在0.5%的药物使用前后,大鼠心室肌细胞的静息膜电位分别为-65.02±5.96mV和-62.67±7.59mV(n=6,P>0.05);动作电位超射幅度降低,超射值分别为101.31±8.78mV和84.84±5.47mV(n=6,P<0.05);复极时程延长,50%动作电位时程(APD_(50))分别为23.92±5.50ms和41.99±5.39ms(n=6,P<0.05);90%动作电位时程(APD_(90))分别为46.97±7.89ms和65.3±5.84ms(n=6,P<0.05)。
     2.SSYX对I_(Ca),L通道的影响:记录稳态激活的I_(Ca),L电流,观察到药物对I_(Ca),L有抑制作用。以测试电压为+10 mV引出的I_(Ca-L)峰值电流密度作为统计指标,当药物浓度为1%,0.5%,0.25%时,分别对I_(Ca),L的峰值电流密度的抑制率为50.69%±5.64%,44.82%±6.50%,和19.22%±1.10%,(n=5,P<0.05)。药物可以使I_(Ca),L的电流密度-电压(I-V)曲线上移,但不改变其激活电压、峰值电压和反转电位。分别用单指数和双指数方程拟合+10 mV引出电流的时间依赖性激活和失活曲线,药物浓度0.5%时,用药前后通道的激活时间常数(τ)分别为1.04±0.17ms和1.52±0.19ms(n=6,P<0.05),通道的快失活时间常数(τ_f)分别为13.00±3.72 ms和42.74±10.10ms(n=6,P<0.05),慢失活时间常数(τ_s)分别为97.75±20.79 ms和177.26±28.29ms(n=6,P<0.05)。用Boltzmann方程分别拟合稳态激活和失活曲线。0.5%SSYX不改变I_(Ca-L)稳态激活曲线,可使I_(Ca-L)稳态失活曲线左移,用药前后的失活半电压(V_(1/2))分别为-15.38±2.4 mV和-20.44.2±5.01 mV(n=6,P<0.05),斜率因子(K)分别为5.25±0.61和5.33±0.51(n=6,P>0.05)。记录通道的失活后恢复曲线,用单指数方程为最佳拟合,得到恢复时间常数(τ),0.5%SSYX使τ从85.24±20.18ms增大到158.42±38.23 ms(n=5,P<0.05)。
     3.SSYX对I_(Na)通道的影响:记录稳态激活I_(Na)的I-V曲线,0.5%SSYX在每一指令电压水平上都减小I_(Na)电流密度,但不改变激活电压、峰值电压、反转电位和曲线的形状。当药物浓度为0.5%时,在测试电压为-20 mV的条件下,可以使I_(Na)峰值电流密度从27.21±5.35(pA/pF)降至14.88±2.75(pA/pF),平均抑制率为44.84%±7.65%(n=5,P<0.05)。用单指数方程拟合-20 mV条件下引出电流的时间依赖性激活和失活曲线,浓度0.5%药物使用前后,通道的激活τ分别为0.44±0.15ms和0.36±0.11 ms(n=5,P>0.05);失活τ分别为1.84±0.34ms和2.05±0.51 ms(n=5,P>0.05)。0.5%药物使用前后,通道稳态激活V_(1/2)分别为-34.27±2.38mV和-31.40±1.63mV(n=5,P<0.05);稳态失活V_(1/2)分别为-73.68±4.80mV和-75.15±4.50mV(n=5,P>0.05)。0.5%药物使用前后,通道的失活后恢复τ分别为19.03±1.13 ms和21.75±1.48 ms(n=5,P>0.05)。
     4.SSYX对I_(to)通道的影响:当药物浓度0.5%时,在60mV条件下使大鼠心室肌细胞I_(to)电流峰值密度从-19.82±7.10(pA/pF)降至-10.02±3.93(pA/pF),平均抑制率为50.60±10.77%(n=6,P<0.05)。用单指数方程拟合I_(to)通道的时间依赖性失活曲线,0.5%药物使用前后,失活的τ值分别为29.06±4.66ms和21.44±3.12ms(n=6,P<0.05);0.5%药物使I_(to)通道稳态失活曲线左移,用药前后的V_(1/2)分别为-15.67±2.52mV和-26.45±3.88mV,K分别为3.41±0.67和6.38±2.02(n=7,P<0.05)。0.5%药物使用前后,I_(to)通道的失活后恢复减慢,τ分别为12.86±0.31ms和18.52±3.76ms(n=5,P<0.05)。
     5.SSYX对I_(K1)通道的影响:药物浓度0.5%时,可以使大鼠心肌细胞I_(k1)内向成分降低,以测试电压-100mV时引出的电流为统计指标,I_(k1)电流密度从-10.78±1.80(pA/pF)降至-7.18±2.05(pA/pF),平均抑制率为33.10%±16.85%(n=11,P<0.05),但药物不改变电流的翻转电位及整流特性。
     6.SSYX对I_(Ks)通道的影响:使用钾离子通道细胞内外液,维持电压-40mV,测试电压+50mV持续5s,可以在豚鼠心室肌细胞引出I_(Ks)电流。当SSYX药物浓度0.5%时,可以使豚鼠心肌细胞I_(Ks)最大电流密度从4.02±0.27(pA/pF)降低到1.39±0.30(pA/pF),平均抑制率为65.21%±8.5%(n=5,P<0.05),同时对其尾电流的抑制率是30.77%±1.11%(n=5,P<0.05)。
     7.SSYX对I_(Kr)通道的影响:为了更好的观察SSYX对单纯的I_(Kr)电流的影响,我们用HEK293细胞瞬时表达hERG基因来研究药物对I_(Kr)的影响。在转染hERG基因阳性的HEK293细胞上记录到的I_(Kr)自—20mv激活,外向电流随去极化而增大,约在+20mV达到最大值,之后随进一步去极化电流幅值下降,具有内向整流特性。0.5%SSYX对I_(Kr)电流无显著影响。用药前后,在Vt为+20mV时,峰值电流密度分别为18.56±2.47 pA/pF和16.57±3.57 pA/pF(n=5,P>0.05)。用标化的I_(Kr)尾电流对测试电压作图,得到I_(Kr)的稳态激活曲线,用Boltzmann方程拟合曲线,得到用药前激活V_(1/2)和K分别为-3.78±5.30 mV和8.14±1.26,0.5%药物使用后V_(1/2)和K分别为-5.65±5.29 mV和8.43±1.79(n=5,P>0.05)。0.5%药物使用前后,在Vt-20mV时I_(Kr)尾电流的失活时间常数分别为16.85±3.78和14.76±1.34(n=5,P>0.05),I_(Kr)失活后恢复时间常数为6.29±0.84和5.94±0.50(n=5,P>0.05),差异均无显著性。
     结论:参松养心胶囊干粉提取溶液对I_(Ca),L、I_(Na)、I_(to)、I_(Ks)和I_(K1)多种心室肌离子通道均具有不同程度的阻滞作用。SSYX可以抑制豚鼠心室肌细胞I_(Ca),L的峰值,电流,使通道的时间依赖性激活和失活减慢,并促进通道的电压依赖性失活,使稳态失活曲线的V_(1/2)左移。SSYX可以抑制豚鼠心室肌细胞I_(Na)的峰值电流,并使通道的稳态激活曲线右移。SSYX可以抑制大鼠心室肌细胞I_(to)峰值电流,加速通道时间依赖性失活,并促进通道的电压依赖性失活。SSYX可以抑制大鼠心室肌细胞I_(K1)的内向成分。SSYX可以抑制豚鼠心室肌细胞I_K电流,主要是作用于其慢激活成分I_(Ks)。SSYX对hERG通道的电流幅度,通道失活速度及通道失活后恢复速度无显著影响。SSYX对这些通道的综合作用可使得心肌细胞的除极幅度降低,动作电位时程和有效不应期延长,这可能是其产生抗心律失常作用的机制。同时这种多通道阻滞作用可能降低药物引发心律失常的风险,参松养心胶囊可能有广谱的抗心律失常作用。
Study on the mechanism of antiarrhythmic effects of ShenSongYangXin
     Background: Cardiac arrhythmia is a kind of common cardiovascular diseases in the clinical practice, which have great effects on life quality and safety of the patients. People have been continuously devoted to investigation and development of antiarrhythmic drugs in the recent decades. Along with the progress in science and technology, non-pharmacotherapy (such as defibrillation, pacing, radio frequency ablation, surgery and so on) plays more and more roles in clinical treatment, but pharmacotherapy is still the essential way in control cardiac tachy-arrhythmia.
     Cardiac arrhythmias result from abnormalities of impulse generation, conduction, or both. It is difficult, however, to illustrate the underlying mechanisms for all the clinical arrhythmias. At present, antiarrhythmic drugs have been classified as sodium channel blockers, [3-receptor blockers, action potential duration prolong agents (mainly potassium channel blockers) and calcium channel blockers. The abnormalities of expression and function of the membrane ion channels can impact on action potential duration, amplify dispersion of repolarization, induce triggered activity, and thus contribute to the development of cardiac arrhythmias. Although the classification of antiarrhythmic drugs are different, modulation the ion channels function is the basic mechanism. Besides the antiarrhythmic efforts, many antiarrhythmic agents have potential risk for proarrhythmia. The adverse side effects of drug may induce polymorphic ventricular tachycardia or torsade de pointes (TdP), which can increase mortality of the cardiovascular diseases. Since CAST and CASTⅡstudy published, it attached more attention to value the benefit risk ratio when antiarrhythmic drugs were applied. People begin to revalue the safety of antiarrhythmic drugs currently used in clinic and to develop new agents with fewer side effects.
     Compared to Western medicine, some antiarrhythmic Chinese herbs with many components can multi-target modulate the disorder of ion channel function. It might exert antiarrhythmic efforts with lower incidence of adverse effects. Screening antiarrhythmic Chinese herbs might lead to a new trend in pharmacotherapy.
     Shensong Yongxin (SSYX) is one of the compound recipe of Chinese materia medica including 12 ingredients such as Panax ginseng, dwarf lilyturf tuber, Nardostachys root, etc. Previous studies on animal model showed that SSYX significantly inhibited the arrhythmias induced by toxic chemical compounds or ischemia-reperfusion injury. Small random double-blind clinical trials also suggested that SSYX reduced the number of ventricular extra beats in patients with or without structure heart disease. However, the antiarrhythmic mechanisms of SSYX have not been studied.
     Objectives: To determine the effects of ShenSongYangXin(SSYX) on L-type calcium channels( I_(Ca), L), sodium channels(I_(Na)), transient outward potassium current (I_(to)), delayed rectifier current (I_K), and inward rectifier potassium currents(I_(K1)) in isolated ventricular myocytes, and on hERG channel(I_(Kr)) in transfected HEK293 cells. To investigate the pharmacological mechanism of SSYX on the ion channels.
     Methods: Single ventricular myocytes of guinea pigs and rats were obtained by enzymatic dissociation method. Cultured HEK293 cells were transfected transiently with pcDNA3.1-hERG by a lipofectamine method and green fluorescent protein cDNA (pEGFP-C1) was co-transfected to serve as an indicator. 24~48h after transfection, electrical studis were applied in cells with green fluorescence. Whole cell patch-clamp technique was used to record ion channel currents. I_(Ca,L,) I_(Na,) I_K were studied in ventricular myocytes of guinea pigs; I_(to,)I_(K1) were studied in ventricular myocytes of rats; and I_(Kr) were studied in transfected HEK293 cells.
     Results: The action potential and ion currents could be recorded in the isolated ventricular myocytes of guinea pigs and rats, which indicated the myocytes had satisfactory electrophysiological properties. Approximate 40~60 percent transfected HEK293 cells took green fluorescence, in which I_(Kr) could be recorded.
     1. The effect of SSYX on action potential. Before and after 0.5% drug application, the rest membrane potential of rat ventricular myocytes were -65.02±5.96mV and -62.67±7.59mV (n=6,P>0.05); the action potential amplitude were 101.31±8.78mV and 84.84±5.47mV(n=6, P<0.05); 50% action potential duration(APD_(50)) were 23.92±5.50ms and 41.99±5.39ms(n=6, P<0.05); 90% action potential duration(APD_(90)) were 46.97±7.89ms and 65.3±5.84ms(n=6, P<0.05).
     2. The effect of S SYX on I_(Ca,L.) At the test potential of+10 mV, S SYX inhibited L-type calcium current in a dose-dependent manner. At 0.25%, 0.5%, 1% of concentration, the peak I_(Ca,L) was reduced by 19.22%±1.10 %, 44.82%±6.50 % and 50.69%±5.64%, respectively (n=5, all P<0.05). In the presence of SSYX 0.5%, the current density-voltage curve was moved up and activation potential, the potential of peak current, and the shape of the I-V curve did not change. The avtivation time constant(τ) was measure as the monoexponential fit to the curret curve induced at+10 mV, andτincreased from 1.04±0.17ms to 1.52±0.19ms(n=6, P<0.05) after 0.5% drug application. The steady-state inactivation curve was fitted by a Boltzmann function. It was moved to more negative potential, the half inactivation potential (V_(1/2)) was -15.38±2.4 mV and -20.44.24±5.01 mV(n=6, P<0.05) in control and SSYX 0.5% respectively. Monoexponential function was best fit the curve of recovery time from inactivation. After 0.5% drug use, the channel recovery time constant increased, from 85.24±20.18ms to 158.42±38.23 ms(n=5, P<0.05).
     3. The effect of SSYX on I_(Na.) At the test potential of -20 mV, SSYX 0.5% decreased peak I_(Na) by 44.84%±7.65 % from 27.21±5.35 to 14.88±2.75 pA/pF (n=5, P<0.05). SSYX up shifted the I-V curve of I_(Na) without changing the threshold, peak and reverse potentials. Vt -20mV, before and after SSYX 0.5% application, the time constant of activation were 0.444±0.15 ms and 0.364±0.11 ms (n=5, P>0.05); the time constant of inactivation were 1.84±0.34ms and 2.054±0.51 ms (n=5, P>0.05). Before and after SSYX 0.5% use, steady-state activation V_(1/2) were -34.27±2.38mV and -31.40±1.63mV (n=5, P<0.05); steady-state inactivation V_(1/2) were -73.68±4.80mV and -75.15±4.50mV(n=5, P>0.05); channel recovery time constant were 19.03±1.13 ms and 21.754±1.48 ms(n=5, P>0.05).
     4. The effect of SSYX on I_(to.) At 0.5% of concentration, the drug blocked the transient component of I_(to) by 50.60 % at membrane voltage of 60mV, from -19.82±7.10(pA/ pF) to -10.02±3.93 ( pA/ pF). SSYX 0.5% could accelerate the inactivation of I_(to,) the time constant were 29.06±4.66ms and 21.4 4±3.12ms (n=6, P<0. 05). SSYX 0.5% negatively shifted the inactivation curve, the inactivation V_(1/2) were -15.67±2.52 mV and -26.45±3.88 mV (n=7, P<0.05) respectively in control and in drug group. SSYX 0.5% delayed the channel recovery from inactivation. Before and after drug use, the recovery time constant were 12.86±0.31ms and 18.52±3.76ms (n=5, P<0.05).
     5. The effect of SSYX on I_(K1.) SSYX 0.5% inhibited the I_(K1) from -10.78±1.80 (pA/pF) to -7.18±2.05 (pA/pF)by 33.10 %±16.85 % (n=11, P<0.05) at the test potential of-100mV with little effect on reversal potential and the rectification property.
     6. The effect of SSYX on/Ks. Holding potential at -40mV and test potential at +50mV last 5s could elicit time dependent increased I_(Ks) in isolated guinea pig ventricular cells. SSYX 0.5% inhibited I_(Ks) from 4.02±0.27(pA/pF) tol.39±0.30(pA/pF), by 65.21%±8.5%(n=5, P<0.05), and inhibited I_(Ks,tail) by 30.77%±1.11%(n=5, P<0.05).
     7. The effect of SSYX on I_(Kr.) I_(Kr) was recorded in hERG-transfected HEK293 cells. During the depolarizing steps, the outward current was activated at voltages positive to -20mV, and the current amplitude was increased to reach a maximum at +20inV. With further depolarization, the current amplitude decreased progressively, because of the inward rectification. Test potential at +20mV, after 0.5% SSYX use the I_(Kr) amplitude changed from 18.56±2.47 pA/pF to16.57±3.57 pA/pF (n=5, P>0.05). Activation curve mearured with I_(Kr,tail) and fitted to a Boltzmann relationship. Before 0.5%SSYX use, the V_(1/2) and K were -3.78±5.30 mV and 8.14±1.26, and after drug use the V_(1/2) and K were -5.65±5.29 mV and 8.43±1.79 (n=5,P>0.05). Test potential at -20mV, before and after 0.5% SSYX use, the I_(Kr,tail) inactivation time constant were 16.85±3.78 and 14.76±1.34 (n=5, P>0.05); the recovery time constant from inactivation were 6.29±0.84 and 5.94±0.50 (n=5, P>0.05).
     Conclusions: It reveals that SSYX could block multiple ion channels includeI_(Ca,L) I_(Na,) I_(to,) I_(K1) and I_(Ks.) SSYX could inhibit I_(Ca,L) peak current, slow down time dependent activation and inactivation, and promote channel voltage dependent inactivation. SSYX could decrease I_(Na) peak current, and right shift the steady-state activation curve. SSYX could depress I_(to) peak current, promote channel time dependent and voltage dependent inactivation. SSYX could inhibit the inward current component of I_(K1.) SSYX could inhibit the slowly-activating component of I_K on guinea pig ventricular myocytes. SSYX had few effects on I_(Kr) current amplitude, time dependent inactivation and recovery from inactivation. The integrated effects of SSYX may change the action potential duration and contribute to some of its antiarrhythmic effects. Moreover, the block effect on multiple ion channels would be beneficial to reduce proarrhythmic side effects. SSYX may be expected to have a wild spectrum of antiarrhythmic effect with less proarrhythmic potential.
引文
1. Epstein AE, Bigger JT, Jr., Wyse DG, et al. Events in the Cardiac Arrhythmia Suppression Trial (CAST): mortality in the entire population enrolled[J]. J Am Coll Cardiol, 1991, 18(1): 14-19.
    2. Every NR, Hlatky MA, McDonald KM, et al. Estimating the proportion of post-myocardial infarction patients who may benefit from prophylactic implantable defibrillator placement from analysis of the CAST registry. Cardiac Arrhythmia Suppression Trial[J]. Am J Cardiol, 1998, 82(5): 683-685, A688.
    3. Nemec J, Shen WK. Antiarrhythmic drugs: new agents and evolving concepts[J]. Expert OpinInvestigDrug, 2003, 12(3); 435—453.
    4.黄从新.Ⅲ类抗心律失常药物研究进展.中国实用内科杂志2006,26,1279-1280.
    5. Khan IA. Pharmacological cardioversion of recent onset atrial fibrillation. EurHeart J, 2004. 25: 1274.
    6. Geflach U. I_(Ks) channel blockers: potential antiarrhythmic agents. Curt Med Chem Cardiovasc Hematol Agents, 2003, 1(3): 243—252.
    7. Zicha S, Tsuji Y, Shiroshita-Takeshita A, et al. Beta-blockers as antiarrhythmic agents. Handb Exp Pharmacol. 2006; (171): 235-66.
    8. Weissenburger J, Nesterenko ⅤⅤ, Antzelevitch C,. Transmural heterogeneity of ventricular repolarization under baseline and long QT conditions in the canine heart in vivo: torsades de pointes develops with halothane but not pentobarbital anesthesia. J Cardiovasc Electrophysiol. 2000; 11(3): 290-304
    9. Antzelevitch C, Brugada P, Brugada J, et al. Brugada syndrome: A decade of progress. Circ Res, 2002; 91: 1114-8.
    10. Antzelevitch C, Shimizu W, Cellular mechanisms underlying the long QT syndrome. Curr Opin Cardiol, 2002; 17: 43-51.
    11.黄飞翔.单味中药治疗快速性心律失常近况.中国中医急症,2005,14(10),996—997
    12.易京红,中医药治疗快速性心律失常的研究现状, 北京中医,1999,18(4):55
    13.黄伯舜,甘松的临床应用心得,中国中药杂志,2004,29(4):283
    14.吴以岭,络病学,北京:中国科学技术出版社,2004:280-283
    15.徐贵成;霍保民;吴以岭等,参松养心胶囊治疗冠心病室性早搏随机双盲、阳性药对照、多中心临床研究[J],中国中医基础医学杂志,2003,03
    16.谷春华吴以岭田书彦等,参松养心胶囊对冠心病室性早搏疗效及心脏自主神经功能的影响.中国中西医结合杂志.2005,25:783-786
    17.王彦方;郑晓辉;郝增光;参松养心胶囊治疗室性期前收缩疗效临床观察.疑难病杂志,2006,02
    18.马江洪;贾连旺;孟仲蔚;吴相得;胡鹰;参松养心胶囊治疗冠心病无症状心肌缺血伴室性早搏疗效观察,现代中西医结合杂志,2006,18
    19. Tytgat J. How to isolate cardiac myocytes. Cardiovasc Res, 1994, 28(2): 280-283.
    20.刘恭鑫,顾全堡,郭棋,等.大鼠、豚鼠心肌细胞的简单、快速分离[J].中国应用生理学杂志,1997,13(4):361-362.
    21. Irie H, Gao J, Gaudette GR, Cohen IS, Mathias RT, Saltman AE, et al, Both metabolic inhibition and mitochondrial K(ATP) channel opening are myoprotective and initiate a compensatory sarcolemmal outward membrane current.Circulation. 2003; 108(Suppl 1):Ⅱ341-347
    22.陈吉球.心肌细胞分离术[J].中国病理生理杂志,1999,15(5):475-477
    23. Hamill OP, Marry A, Neher E, Sakmann B, Siqworth FJ. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch, 1981, 391(2): 85-100.
    24.贾宏钧.细胞膜离子通道[A].见:贾宏钧,王钟林,杨期东,主编.离子通道与心脑血管疾病一基础与临床[M].北京:人民卫生出版社,2001.24-71
    25. Antzelevitch C, Dumaine R. Electrical heterogeneity in the heart: physiological, pharmacological and clinical implications. In: Handbook of Physiology. The Cardiovascular System. The Heart. Am. Physiol. Soc. 2002, Ⅰ(2): 654-692.
    26. Carmeliet E, Biermans G, Callewaert G, et al. Potassium currents in cardiac cells[J]. Experientia, 1987, 43(11-12): 1175-1184.
    27. Nerbonne JM. Molecular basis of functional voltage-gated K+ channel diversity in the mammalian myocardium[J]. J Physiol, 2000, 525 Pt 2: 285-298.
    28.张琼,王晓良.比较奎尼丁、E-4031对大鼠和豚鼠药物诱发心律失常模型的作用[J].中国药理学与毒理学杂志,1998,12(3):181-183.
    29. Varro A, Nanasi PP, Lathrop DA. Potassium currents in isolated human atrial and ventricular cardiocytes[J]. Acta Physiol Scand, 1993, 149(2): 133-142.
    30. Ono K, Fozzard HA. Phosphorylation restores activity of L-type calcium channels after rundown in inside-out patches from rabbit cardiac cells[J]. J Physiol, 1992, 454: 673-688.
    31. Hodgkin AL and Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve.J Physiol 1952; 117:500-544
    32. Papp Z, Peineau N, Szigeti G, et al. Calcium-dependent modulation of the plateau phase of action potential in isolated ventficular cells of rabbit heart. Acta Physiol Scand. 1999 Oct; 167(2): 119-29.
    33. Tolkacheva EG, Anumonwo JM, Jalife J.Action potential duration restitution portraits of mammalian ventricular myocytes: role of calcium current. Biophys J. 2006 Oct 1;91(7):2735-45.
    34. Bers DM and Perez-Reyes E. Ca channels in cardiac myocytes:structure and function in Ca influx and intracellular Ca release. Cardiovasc Res 1999, 42: 339-360.
    35. Linz KW, Meyer R. The late component of L-type calcium current during guinea-pig cardiac action potentials and its contribution to contraction. Pflugers Arch. 1998 Oct;436(5):679-88.
    36. Katra RP, Laurita KR. Cellular mechanism of calcium-mediated triggered activity in the heart. Circ Res. 2005 Mar 18;96(5):535-42.
    37. Laurita KR, Katra RP. Delayed after depolarization-mediated triggered activity associated with slow calcium sequestration near the endocardium. J Cardiovasc Electrophysiol. 2005 Apr;16(4):418-24.
    38. Hagihara H, Yoshikawa Y, Ohga Y, et al. Na~+/Ca~(2+) exchange inhibition protects the rat heart from ischemia-reperfusion injury by blocking energy-wasting processes. Am J Physiol Heart Circ Physiol. 2005 Apr;288(4):H1699-707.
    39. Fozzard HA. Cardiac sodium and calcium channels: a history of excitatory currents. Cardiovasc Res 2002, 55: 1-8.
    
    40. Fozzard HA and Hanck DA. Structure and function of voltage dependent sodium channels: comparison of brain II and cardiac isoforms. Physiol Rev, 1996, 76:887-926.
    
    41. Rivolta I, Clancy CE, Tateyama M,et al. A novel SCN5A mutation associated with long QT-3: alteredinactivation kinetics and channel dysfunction. Physiol Gen, 2002,10:191-197.
    
    42. Delmar M. Role of potassium currents on cell excitability in cardiac ventricular myocytes. J Cardiovasc Electrophysiol ,1992,3: 474-486.
    
    43. Nerbonne JM. Molecular analysis of voltage-gated K+ channel diversity and functioning in the mammalian heart. In: Handbook of Physiology. The Cardiovascular System. The Heart. Bethesda, MD: Am. Physiol. Soc, 2002, sect. 2, vol. I, p. 568-594.
    
    44. Nerbonne JM and Guo W. Heterogeneous expression of voltagegated potassium channels in the heart: roles in normal excitation and arrhythmias. J Cardiovasc Electrophysiol 13: 406-409, 2002.
    
    45. Escande D, Coulomber A, Faivre J F, et al. Two types of transient outward current s in adult human atrial cells. Am J Physiol , 1987 , 252 (1 Pt 2):H142-148
    
    46. Yu H, McKinnon D, Dixon JE, et al. Transient outward current, Ito1, is altered in cardiac memory[J]. Circulation, 1999, 99(14): 1898-1905.
    
    47. Koster OF, Szigeti GP, Beuckelmann DJ. Characterization of a [Ca2+]; dependent current in human atrial and ventricular cardiomyocytes in the absence of Na+ and K+[J]. Cardiovasc Res, 1999, 41(1): 175-187.
    
    48. Yang XC, Zhou P, Li CL. Electrical heterogeneity of canine right ventricular transient outward potassium currents[J]. Chin Med J (Engl), 2004, 117(4): 528-531.
    
    49. Li GR , Feng J , Yue L. Carrier M. Transmural heterogeneity of action potentials and Ito1 in myocytes isolated from the human right ventricle . Am J Physiol, 1998 , 275 (2 Pt 2) :H369 - H377.
    50. Yoshida H, Sugiyama A, Satoh Y, et al. Comparison of the in vivo electrophysiological and proarrhythmic effects of amiodarone with those of a selective class III drug, sematilide, using a canine chronic atrioventricular block model. Circ J. 2002 Aug;66(8):758-62.
    
    51. Lopatin AN, Nichols CG. Inward rectifiers in the heart: an update on I(K1). J Mol Cell Cardiol. 2001 Apr;33(4):625-38
    
    52. Nichols CG and Lopatin AN. Inward rectifier potassium channels. Annu Rev Physiol, 1997, 59: 171-191.
    
    53. Tsuboi M, Antzelevitch C. Cellular basis for electrocardiographic and arrhythmic manifestations of Andersen-Tawil syndrome (LQT7). Heart Rhythm. 2006 ;3(3):328-35
    
    54. Seemann G, Sachse FB, Weiss DL, et al. Modeling of IK1 mutations in human left ventricular myocytes and tissue. Am J Physiol Heart Circ Physiol. 2007 ;292(1):H549-59
    
    55. Sung RJ, Wu SN, Wu JS, et al.Electrophysiological mechanisms of ventricular arrhythmias in relation to Andersen-Tawil syndrome under conditions of reduced Ik1: a simulation study. Am J Physiol Heart Circ Physiol. 2006 ;291(6):H2597-605.
    
    56. Silva J, Rudy Y. Subunit interaction determines Iks participation in cardiac repolarization and repolarization reserve. Circulation. 2005;112(10):1384-91
    
    57. Li GR, Feng J, Yue L, Carrier M, and Nattel S. Evidence for two components of delayed rectifier K+ current in human ventricular myocytes. Circ Res, 1996, 78: 689-696.
    
    58. Yang T, Snyders DJ, Roden DM, Rapid inactivation determines the rectification[K+]。 dependence of the rapid component of the delayed rectifier K+ current in cardiac cells. Cir Res 1997; 80: 782-789
    
    59. Spector PS, Curran ME, Zou A, et al. Fast inactivation causes rectification of the IKr channel.J Gen Physiol 1996; 107: 611-619
    
    60. Cheng JH, Kodama I. Two component of delayed rectifier K+ current in heart: molecular basis, functional diversit, and contribution to repolarization.Acta Pharmacol Sin, 2004, 25:137-145.
    
    61. Sanguinetti MC, Jurkiewicz NK, Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol 1990; 96:195-215.
    
    62. Zeng J, Laurita KR,Rosenbau Ds, et al. Two componentsof the delayed rectifier K+ current in ventricular myocytes of the guinea pig type.Theoretical formulation and their role in repolarization. Cir Res 1995, 77: 140-152
    
    63. Yue L, Feng J, Li GR, and Nattel S. Transient outward and delayed rectifier currents in canine atrium: properties and role of isolation methods. Am J Physiol Heart Circ Physiol, 1996, 270: H2157-H2168.
    
    64. Abbott GW, Sesti F, Splawski I, et al. MiRP1 forms Ikr potassium channels with HERG and is associated with cardiac arrhythmia.Cell. 1999 Apr 16; 97 (2): 175-87.
    
    65. Sanguinetti MC, Tristani-Firouzi M. hERG potassium channels and cardiacarrhythmia. Nature 2006; 440: 463-469.
    
    66. Kodama I, Kamiya K, Toyama J. Cellular electropharmacology of amiodarone. Cardiovasc Res 1997,35: 13-29.
    
    67. Kamiya K, Nishiyama A,Yasui K, et al. Short- and long-term effects of amiodarone on the two components of cardiac delayed rectifier K(+) current. Circulation. 2001,6; 103:1317-24
    
    68. Le Bouter S, El Harchi A, Marionneau C, et al. Long-term amiodarone administration remodels expression of ion channel transcripts in the mouse heart. Circulation. 2004 Nov 9;110(19):3028-35
    
    69. Lalevee N, Nargeot J, Barrere-Lemaire S, et al. Effects of amiodarone and dronedarone on voltage-dependent sodium current in human cardiomyocytes. J Cardiovasc Electrophysiol. 2003 Aug;14(8):885-90
    
    70. Kodama I, Kamiya K, Toyama J. Amiodarone: ionic and cellular mechanisms of action of the most promising class III agent. Am J Cardiol. 1999;84:20R-28R.
    
    71. Fung RC, Chan WK, Chu CM, et,al. Low dose amiodarone-induced lung injury. Int J Cardiol. 2006 Oct 26;113(1):144-5.
    1. Bezzina CR, Rook MB, Wilde AA. Cardiac sodium channel and inherited arrhythmia syndromes[J]. Cardiovasc Res, 2001, 49(2): 257-271.
    
    2. Shirai N, Makita N, Sasaki K, et al. A mutant cardiac sodium channel with multiple biophysical defects associated with overlapping clinical features of Brugada syndrome and cardiac conduction disease[J]. Cardiovasc Res, 2002, 53(2): 348-354.
    
    3. Rivolta I, Clancy CE, Tateyama M, et al. A novel SCN5A mutation associated with long QT-3: altered inactivation kinetics and channel dysfunction[J]. Physiol Genomics, 2002, 10(3): 191-197.
    
    4. Schott JJ, Alshinawi C, Kyndt F,et al. Cardiac conduction defects associate with mutations in SCN5A [J]. (Letter) Nature Genet. 1999,23:20.
    
    5. Wang DW, Viswanathan PC, Balser JR et al. Clinical, genetic, and iophysical characterization of SCN5A mutations associated wit atrioventricular conduction block. Circulation. 2002,105(3):341-346.
    
    6. Herfst LJ, Potet F, Bezzina CR, et al. Na+ channel mutation leading to loss of function and non-progressive cardiac conduction defects. J Mol Coll Cardiol. 2002,25:549-557.
    
    7. Valdivia CR, Chu WW, Pu J, et al. Increased late sodium current in myocytes from a canine heart failure model and from failing human heart[J]. J Mol Cell Cardiol, 2005, 38(3): 475-483.
    
    8. Benitah JP, Gomez AM, Fauconnier J, et al. Voltage-gated Ca2+ currents in the human pathophysiologic heart: a review[J]. Basic Res Cardiol, 2002, 97 Suppl 1: 111-18.
    
    9. McCall E, Ginsburg KS, Bassani RA, et al. Ca flux, contractility, and excitation-contraction coupling in hypertrophic rat ventricular myocytes[J]. Am J Physiol, 1998, 274(4 Pt 2): H1348-1360.
    
    10. Ming Z, Nordin C, Aronson RS. Role of L-type calcium channel window current in generating current-induced early afterdepolarizations[J]. J Cardiovasc Electrophysiol, 1994, 5(4): 323-334.
    
    11. Splawski I, Timothy KW, Sharpe LM,et al.Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism.Cell. 2004 Oct 1;119(1):19-31.
    
    12. Antzelevitch C, Pollevick GD, Cordeiro JM, et al. Loss-of-Function Mutations in the Cardiac Calcium Channel Underlie a New Clinical Entity Characterized by ST-Segment Elevation, Short QT Intervals, and Sudden Cardiac Death. Circulation. 2007 ,30;115:442-9.
    
    13. Wolfe JT, Wang H, Howard J, et al. T-type calcium channel regulation by specific G-protein betagamma subunits[J]. Nature, 2003, 424(6945): 209-213.
    14. Zhang L, Kelley J, Schmeisser G, et al. Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane [J]. J Biol Chem. 1997 Sep 12;272(37):23389-97.
    
    15. Cheng H, Wang SQ. Calcium signaling between sarcolemmal calcium channels and ryanodine receptors in heart cells[J]. Front Biosci, 2002, 7: d1867-1878.
    
    16. Priori SG, Napolitano C, Tiso N, et al. Mutations in the Cardiac Ryanodine Receptor Gene (hRyR2) Underlie Catecholaminergic Polymorphic Ventricular Tachycardia[J]. Circulation. 2001; 103:196-200.
    
    17. Lahat H, Pras E, Olender T, et al. A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel [J]. Am J Hum Genet. 2001 Dec; 69(6):1378-84.
    
    18. Yu H, McKinnon D, Dixon JE, et al. Transient outward current, Itol, is altered in cardiac memory[J]. Circulation, 1999, 99(14): 1898-1905.
    
    19. Koster OF, Szigeti GP, Beuckelmann DJ. Characterization of a [Ca2+]i-dependent current in human atrial and ventricular cardiomyocytes in the absence of Na+ and K+[J]. Cardiovasc Res, 1999,41(1): 175-187.
    
    20. Jost N, Virag L, Bitay M, et al.Restricting excessive cardiac action potential and QT prolongation: a vital role for Iks in human ventricular muscle.Circulation. 2005 Sep 6;112(10):1392-9. Epub 2005 Aug 29.
    
    21. Tsuji K, Akao M, Ishii TM, et al..Mechanistic basis for the pathogenesis of long QT syndrome associated with a common splicing mutation in KCNQ1 gene.J Mol Cell Cardiol. 2007; 42(3):662-9.
    
    22. Witchel HJ. The hERG potassium channel as a therapeutic target. Expert Opin Ther Targets. 2007 Mar; 11(3):321-36..
    
    23. Fedida D, Eldstrom J, Hesketh JC, et al. Kv1.5 is an important component of repolarizing K+ current in canine atrial myocytes[J]. Circ Res, 2003, 93(8): 744-751
    
    24. Varro A, Biliczki P, Iost N,et al.Theoretical possibilities for the development of novel antiarrhythmic drugs. Curr Med Chem. 2004 Jan;11(1):1-11
    
    25. Karle CA, Zitron E, Zhang W, et al. Human cardiac inwardly-rectifying K+ channel Kir(2.1b) is inhibited by direct protein kinase C-dependent regulation in human isolated cardiomyocytes and in an expression system[J]. Circulation, 2002, 106(12): 1493-1499.
    
    26. Fodstad H, Swan H, Auberson M, et al.Loss-of-function mutations of the K(+) channel gene KCNJ2 constitute a rare cause of long QT syndrome. J Mol Cell Cardiol. 2004 Aug;37(2):593-602.
    
    27. Xiao YF, Morgan JP. Cocaine blockade of the acetylcholine-activated muscarinic K+ channel in ferret cardiac myocytes[J]. J Pharmacol Exp Ther, 1998, 284(1): 10-18.
    
    28. Sukhodub A, Jovanovic S, Du Q, et al.AMP-activated protein kinase mediates preconditioning in cardiomyocytes by regulating activity and trafficking of sarcolemmal ATP-sensitive K(+) channels. Cell Physiol. 2007;210(1):224-36.
    
    29. Olschewski A, Brau ME, Olschewski H, et al. ATP-dependent potassium channel in rat cardiomyocytes is blocked by lidocaine. Possible impact on the antiarrhythmic action of lidocaine [J]. Circulation, 1996, 93(4): 656-659.
    
    30. Stieber J, Hofmann F, Ludwig A. Pacemaker channels and sinus node arrhythmia. Trends Cardiovasc Med. 2004 Jan;14(1):23-8.
    
    31. Van Bogaert PP, Pittoors F. Use-dependent blockade of cardiac pacemaker current (If) by cilobradine and zatebradine[J]. Eur J Pharmacol, 2003, 478(2-3): 161-171.
    
    32. E ric Schulze-Bahr,Axel Neu,Patrick Friederich..Pacemaker channel dysfunction in a patient with sinus node disease. The Journal of Clinical Investigation. 2003;111(10):1537-45
    
    33. van Veen AA, van Rijen HV, Opthof T. Cardiac gap junction channels: modulation of expression and channel properties[J]. Cardiovasc Res, 2001, 51(2): 217-229.
    
    34. Desplantez T, Halliday D, Dupont E, et al. Cardiac connexins Cx43 and Cx45: formation of diverse gap junction channels with diverse electrical properties [J]. Pflugers Arch, 2004,448(4): 363-375.
    
    35. Cornelius F, Mahmmoud YA. Themes in ion pump regulation[J]. Ann N Y Acad Sci, 2003, 986: 579-586.
    
    36. Artigas P, Gadsby DC. Ion channel-like properties of the Na+/K+ Pump[J]. Ann N Y Acad Sci, 2002, 976: 31-40.
    
    37. Schulze DH, Polumuri SK, Gille T, et al. Functional regulation of alternatively spliced Na+/Ca2+ exchanger (NCX1) isoforms[J]. Ann N Y Acad Sci, 2002, 976: 187-196.
    
    38. Sakmann B, Noma A, Trautwein W. Acetylcholine activation of single muscarinic K+ channels in isolated pacemaker cells of the mammalian heart.Nature. 1983 May 19-25;303(5914):250-3.
    
    40 Clusin WT. Calcium and cardiac arrhythmias: DADs, EADs, and alternans. Crit Rev Clin Lab Sci. 2003 Jun;40(3):337-75.
    
    41 Guinamard R, Chatelier A, Demion M,et al. Functional characterization of a Ca(2+)-activated non-selective cation channel in human atrial cardiomyocytes.J Physiol. 2004 Jul 1;558(Pt 1):75-83.
    
    42 Ter Keurs HE, Boyden PA. Calcium and arrhythmogenesis. Physiol Rev. 2007 Apr;87(2):457-506.
    43 Priori SG, Napolitano C, Tiso N,et,al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation. 2001 Jan 16; 103(2): 196-200.
    
    44 Wu Y, MacMillan LB, McNeill RB, et,al. CaM kinase augments cardiac L-type Ca2+ current: a cellular mechanism for long Q-T arrhythmias. Am J Physiol. 1999 Jun;276(6 Pt 2):H2168-78.
    
    45 Roden D, Lazzara R, Rosen M, et,al. Multiple mechanisms in the long-QT syndrome. Current knowledge, gaps, and future directions. The SADS Foundation Task Force on LQTS. Circulation. 1996 Oct 15;94(8):1996-2012
    
    46 Tomaselli GF, Beuchelmann DJ, Calkins HG,et al. Sudden cardiac death in heart failure. The role of abnormal repolarization. Circulation 1994;902534-9.
    
    47 Antzelevitch. C.Basic mechanisms of reentrant arrhythmias.Curr Opin Cardiol. 2001 Jan; 16(1): 1-7.
    
    48 Hoyt RH, Cohen ML, Corr PB, et al. Alterations of inter cellular junctions induced by hypoxia in canine myocardium.Am J Physiol 1990,258 :H1439-48.
    
    49 Peters NS, Green CR, Poole-Wilson PA, et al. Reduced content of connexin43 gap junctions inventricular myocardium fron hypertrophied and ischemic human hearts. Circulation,1993;88:864-75.
    
    50 Guerrero PA, Schuessler RB, Davis LM, et al. Slow ventricular conduction in mice heterozygous for a connexin43 mull mutation. J Clin Inves 1997;991991-8.
    
    51 Peters NS, Coromilas J,Severs NJ, et al. Disturbed connexin43 gap junction distribution correlates with the lacation of renntrant cirvuits in the epicardial border zone of healing canine infarcts that cause ventricular tachycardia. Circulation. 1997, 95:988-96
    
    52 Sheldon RS, Duff HJ, Hill RJ. Class I anti-arrhythmic drugs: structure and function at the cardiac sodium channel[J]. Clin Invest Med, 1991, 14(5): 458-465.
    
    53 Epstein AE, Bigger JT, Jr., Wyse DG, et al. Events in the Cardiac Arrhythmia Suppression Trial (CAST): mortality in the entire population enrolled[J]. J Am Coll Cardiol, 1991, 18(1): 14-19.
    
    54 Every NR, Hlatky MA, McDonald KM, et al. Estimating the proportion of post-myocardial infarction patients who may benefit from prophylactic implantable defibrillator placement from analysis of the CAST registry. Cardiac Arrhythmia Suppression Trial[J]. Am J Cardiol, 1998, 82(5): 683-685, A688.
    
    55 Zicha S, Tsuji Y, Shiroshita-Takeshita A, et al. Beta-blockers as antiarrhythmic agents.Handb Exp Pharmacol. 2006;(171):235-66.
    
    56 Virag L, Iost N, Opincariu M, et al. The slow component of the delayed rectifier potassium current in undiseased human ventricular myocytes[J]. Cardiovasc Res, 2001, 49(4): 790-797.
    57 Nakaya H. [Electropharmacological assessment of the risk of drug-induced long-QT syndrome using native cardiac cells and cultured cells expressing HERG channels][J]. Nippon Yakurigaku Zasshi, 2003, 121(6): 384-392.
    
    58 Yue L, Feng JL, Wang Z, et al. Effects of ambasilide, quinidine, flecainide and verapamil on ultra-rapid delayed rectifier potassium currents in canine atrial myocytes[J]. Cardiovasc Res, 2000,46(1): 151-161.
    
    59 Hondeghem LM, Snyders DJ. Class III antiarrhythmic agents have a lot of potential but a long way to go. Reduced effectiveness and dangers of reverse use dependence[J]. Circulation, 1990, 81(2): 686-690.
    
    60 Doggrell SA, Hancox JC. Dronedarone: an amiodarone analogue[J]. Expert Opin Investig Drugs, 2004, 13(4): 415-426.
    
    61 Murray KT. Ibutilide[J]. Circulation, 1998, 97(5): 493-497.
    
    62 Watanabe H, Watanabe I, Nakai T, et al. Frequency-dependent electrophysiological effects of flecainide, nifekalant and d,l-sotalol on the human atrium[J]. Jpn Circ J, 2001, 65(1): 1-6.
    
    63 Chen F, Esmailian F, Sun W, et al. Azimilide inhibits multiple cardiac potassium currents in human atrial myocytes[J]. J Cardiovasc Pharmacol Ther, 2002, 7(4): 255-264.
    
    64 Das B, Sarkar C. Mitochondrial K ATP channel activation is important in the antiarrhythmic and cardioprotective effects of non-hypotensive doses of nicorandil and cromakalim during ischemia/reperfusion: a study in an intact anesthetized rabbit model[J]. Pharmacol Res, 2003, 47(6): 447-461.
    
    65 Yoshida T, Niwano S, Inuo K, et al. Bepridil prevents paroxysmal atrial fibrillation by a class III antiarrhythmic drug effect[J]. Pacing Clin Electrophysiol, 2003,26(1 Pt 2): 314-317.
    
    66 Wellington K, Scott LJ. Azelnidipine[J]. Drugs, 2003, 63(23): 2613-2621; discussion 2623-4.
    
    67 Antzelevitch C, Brugada P, Brugada J, et al.Brugada syndrome :A decade of progress. Circ Res, 2002 ; 91 :1114-8.
    
    68 Antzelevitch C, Shimizu W, Cellular mechanisms underlying the long QT syndrome. Curr Opin Cardiol ,2002 ;17 :43-51.
    
    69 Bednar MM, Harrigan EP, Anziano RJ,et al.The QT interval .Prog Cardiovasc Dis,2001 ;43 :l-45.
    
    70 Sanguinetti MC, Tristani-Firouzi M. hERG potassium channels and cardiacarrhythmia. Nature 2006; 440:463-469.
    
    71 Fernandez D, Ghanta A, Kauffman GW, Sanguinetti MC. Physicochemical features of the HERG channel drug binding site. J Biol Chem 2004; 279:10120-10127.
    
    72 Haverkamp W, Breithardt G, Camm AJ, et al. The potential for QT prolongation and pro-arrhythmia by non-anti-arrhythmic drugs: clinical and regulatory implications. Report on a Policy Conference of the European Society of Cardiology. Cardiovasc Res. 2000 Aug;47(2):219-233.
    
    73 Hohnloser SH, Proarrhythmia with class III antiarrhythmic drugs :Type, risk, and management. Am J Cardiol.1997, 80 ;82G-89G.
    
    74 Kober L, Bloch Thomsen PE, Moller M, et al. Effect of dofetilide in patients with recent myocardial infarction and left-ventricular sysfunction:A randomized trial. Lancet,2000; 356:2052-2058.
    
    75 Stambler BS, Wood MA, Ellenbogen KA, et al. Effecacy and sagety of repeated intravenous doses of ibutilide for rapid conversion of atrial flutter or fibrillation Ibutilide Repeat Dose Study Investigators. Circulation, 1996,1613-1621.
    
    76 Drug-induced torsades de pointes: The evolving role of pharmacogenetics. Heart Rhythm 2005;2:S30-S37
    
    77 Anson BD, Weaver JG, Ackerman MJ, et, al. Blockade of HERG channels by HIV protease inhibitors.Lancet 2005;365:682- 686.
    
    78 Ahmed P, Gardella J, Nanda S. Wealth effect of drug withdrawals on firms and their competitors. Financial Management 2002;31:21- 41.
    
    79 Haverkamp W, Breithardt G, Camm AJ, et,al. The potential for QT prolongation and pro-arrhythmia by non-anti-arrhythmic drugs: clinical and regulatory implications. Report on a Policy Conference of the European Society of Cardiology. Cardiovasc Res 2000; 47:219 -233.
    
    80 Fenichel RR, Malik M, Antzelevitch C, et, al. Cantilena LR, Independent Academic Task. Drug-induced torsades de pointes and implications for drug development. J Cardiovasc Electrophysiol 2004; 15:475-495.
    
    81 De Ponti F, Poluzzi E, Vaccheri A, et, al.Non-antiarrhythmic drugs prolonging the QT interval: considerable use in seven countries. Br J Clin Pharmacol 2002;54: 171-177.
    
    82 FDA. Clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs. Center for Drug Evaluation and Research, 2004.
    
    83 Antzelevitch C, Heterogeneity of cellular repolarization in LQTS. The role of M cells. Eur Heart J Suppl 3 , 2001, K2-K16.
    
    84 Antzelevitch C, Shimizu W, Yan GX, et al. The M cell,Its contribution to the ECGand to normal and abnormal electrical function of the heart. J Cardiovasc Electrophysiol, 1999, 10: 1124-1152.
    
    85 Weissenburger J, Nesterenko W, Antzelevitch C,. Transmural heterogeneity of ventricular repolarization under baseline and long QT conditions in the canine heart in vivo: torsades de pointes develops with halothane but not pentobarbital anesthesia. J Cardiovasc Electrophysiol. 2000;11(3):290-304
    86 Akar FG, Yan GX,, et al. Unique topographical distribution of M cells underlies reentrant mechanism of torsade de pointes in the long-QT syndrome. Circulation. 2002 Mar 12;105(10):1247-53
    
    87 Rosen MR, Anyukhovsky EP, Sosunov EA, et al. The M cell. J Cardiovasc Electrophysiol. 1999 Sep;10(9): 1297-9.
    
    88 Shimizu W, Antzelevitch C, Cellular basis for the ECG features of the LQT1 form of the long-QT syndrome: effects of beta-adrenergic agonists and antagonists and sodium channel blockers on transmural dispersion of repolarization and torsade de pointes.Circulation. 1998 Nov 24;98(21):2314-22.
    
    89 Schwartz PJ, Priori SG, Spazzolini C,et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias.Circulation. 2001 Jan2;103(1):89-95.
    
    90 Yan GX, Antzelevitch C .Cellular basis for the normal T wave and the electrocardiographic manifestations of the long-QT syndrome.Circulation. 1998 Nov 3;98(18): 1928-36.
    
    91 Shimizu W, Antzelevitch C. Sodium channel block with mexiletine is effective in reducing dispersion of repolarization and preventing torsade des pointes in LQT2 and LQT3 models of the long-QT syndrome. Circulation. 1997 Sep 16;96(6):2038-47
    
    92 Li GR, Feng J,Yue L. et al. Transmural heterogeneity of action potentials and Ito1 in myocytes isolated from the human right ventricle.Am J Physiol. 1998 Aug;275(2 Pt 2): H369-77.
    
    93 Shimizu W, Antzelevitch C. Differential effects of beta-adrenergic agonists and antagonists in LQT1, LQT2 and LQT3 models of the long QT syndrome. J Am Coll Cardiol. 2000 Mar l;35(3):778-86.
    
    94 Abbott GW, Sesti F, Splawski I, et al. MiRP1 forms Ikr potassium channels with HERG and is associated with cardiac arrhythmia.Cell. 1999 Apr 16;97(2):175-87.
    
    95 Yang P, Kanki H , Drolet B, et al. Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation. 2002 Apr 23;105(16):1943-8
    
    96 Kannankeril PJ, Roden DM, Norris KJ, et al. Genetic susceptibility to acquired long QT syndrome: pharmacologic challenge in first-degree relatives. Heart Rhythm 2005; 2:134-140.
    
    97 Splawski I, Timothy KW, Tateyama M, et al. Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science. 2002 Aug 23;297(5585): 1333-6
    
    98 Ford GA, Wood SM, Daly AK. CYP2D6 and CYP2C19 genotypes of patients with terodiline cardiotoxicity identified through the yellow card system. Br J Clin Pharmacol. 2000 Jul;50(1):77-80
    
    99 Roden DM. Pharmacogenetics and drug induced arrhythmias. Cardiovasc Res 50:224-231,2001.
    
    100 Balser JR, Bennett PB, Hondeghem LM, et al. Suppression of time-dependent outward current in guinea pig ventricular myocytes. Actions of quinidine and amiodarone.Circ Res. 1991 Aug;69(2):519-29.
    
    101 Anyukhovsky EP, Sosunov EA, Feinmark SJ, et al. Effects of quinidine on repolarization in canine epicardium, midmyocardium, and endocardium: II. In vivo study. Circulation. 1997 Dec 2;96(11):4019-26
    
    102 Shimizu W, McMahon B,Antzelevitch C, Sodium pentobarbital reduces transmural dispersion of repolarization and prevents torsades de Pointes in models of acquired and congenital long QT syndrome. J Cardiovasc Electrophysiol. 1999 Feb; 10(2): 154-64
    
    103 Sun ZQ, Eddlestone GT, Antzelevitch C, Ionic mechanisms underlying the effects of sodium pentobarbital to diminish transmural dispersion of repolarization.[abstract]. Pacing Clin Electrophysiol,20:11-1116,1997.
    
    104 Sicouri S, Moro S, Litovsky S, et al. Chornic amiodarone reduces transmural dispersion of repolarization in the canine heart. J Cardiovasc Electrophysiol. 1997;8:1269-1279
    
    105 Van Opstal JM, Schoenmekers M, Verduyn SC, et al. Chronic amiodarone evokes no torsade de pointes arrhythmias despite QT lengthening in an animal model of acquired long-QT syndrome Circulation. 2001 Nov 27;104(22):2722-7.
    
    106 Zygmunt AC, Thomas GP, Belardinelli L, et al. Ranolazine produces ion channel effects similar to those obserbed with chronic amiodarone in canine cardiac ventricular myocytes. .[abstract]. Pacing Clin Electrophysiol, 2002,25,11-626.
    
    107 Yang T, Synders D, Roden DM, Drug block of I(kr): model systems and relevance to human arrhythmias.J Cardiovasc Pharmacol. 2001 Nov;38(5): 737-44.
    
    108 Emori T, Antzelevitch C, Cellular basis for complex T waves and arrhythmic activity following combined I(Kr) and I(Ks) block. J Cardiovasc Electrophysiol. 2001 Dec;12(12):1369-78
    
    109 Lubinski A, Lewicka-Nowak E, New insight into repolarization abnormalities in patients with congenital long QT syndrome: the increased transmural dispersion of repolarization.Pacing Clin Electrophysiol. 1998 Jan;21(1 Pt 2):172-5.
    
    110 Viitasalo M, Oikarinen L, Swan H, et al. Ambulatory electrocardiographic evidence of transmural dispersion of repolarization in patients with long-QT syndrome type 1 and 2.Circulation. 2002 Nov 5;106(19):2473-8.
    
    111 Yoshiga Y, Shimizu A, Yamagata T, et al. Beta-blocker decreases the increase in QT dispersion and transmural dispersion of repolarization induced by bepridil. Circ J. 2002, Nov; 66 :1024-8.
    
    112 Makkar RR, Fromm BS, Steinman RT, et al. Female gender as a risk factor for torsades de pointes associated with cardiovascular drugs. JAMA 1993; 270:2590-2597.
    
    113 Arya A. Gender-related differences in ventricular repolarization: beyond gonadal steroids. J Cardiovasc Electrophysiol 2005; 16:525-527.
    
    114 Numaguchi H, Johnson JP Jr, Petersen Cl, Balser JR. A sensitive mechanism for cation modulation of potassium current. Nat Neurosci 2000; 3:429-430.
    
    115 Etheridge SP, Compton SJ, Tristani-Firouzi M, Mason JW. A new oral therapy for long QT syndrome: long-term oral potassium improves repolarization in patients with HERG mutations. J Am Coll Cardiol 2003; 42:1777-1782.
    
    116 Darbar D, Harris P, Hardy A, et al. Marked steepening of QT restitution following cardioversion of atrial fibrillation [abstract]. Heart Rhythm 2004; 1:S192.
    
    117 McCray R, Ritchie MD, Roden DM, Darbar D. Persistent atrial fibrillation is associated with reduced risk of torsades de pointes in patients with drug-induced long QT syndrome [abstract]. Heart Rhythm 2006; 3:S114- S115
    
    118 Morissette P, Hreiche R, Turgeon J. Drug-induced long QT syndrome and torsade de pointes. Can J Cardiol 2005; 21.857-864.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700