用户名: 密码: 验证码:
含N,S的有机分子体系的电子结构和光谱性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文工作采用DFT(Density functional theory)、CIS(Single-excitation configuration interaction)、和TD-DFT (Time-dependent density functional theory)等理论方法对一系列含N,S的有机小分子体系的基态和激发态几何结构、电子结构以及光吸收和光发射等性质进行了理论研究。通过在理论上对分子结构的调控,进而改善体系的光学性质,为新物质的合成提供有益的指导。主要内容如下:
     1.计算了以[1,3]二硫戊烷基-2-亚基-乙醛为受体,吩噻嗪、苯胺,三苯胺和咔唑等作为电子给体的四种给-受体分子的基态、激发态电子结构,及其在二氯甲烷、四氢呋喃、甲苯和二甲亚砜等溶剂中的光谱性质。并讨论了给体的改变对分子光谱性质的影响和溶剂化效应。研究发现,该体系分子在吸收和发射时的电子转移形式为分子内部电荷跃迁(ICT)。另外吸收,发射,偶极矩和电荷分布都受到了溶剂极性的影响。
     2.计算了以噻吩为基本构成片段,并配以2,3-二甲基-噻吩并[3,4-b]吡嗪,2,1,3-苯并噻二唑,2,3-二甲基-喹喔啉和吡啶等其他不同基团的有机杂环小分子体系的电子结构和光谱性质,并讨论了该体系在二氯甲烷溶液中的光谱性质。研究发现,受激时,发生了由噻吩到其他杂环单元的电子转移,同时由于中间构成单元的不同,体系的低能吸收会产生有规律的位移,从而使四个化合物的叠加吸收光谱能够覆盖从200-600 nm的光波范围。另外计算结果显示化合物产生红光或绿光发射。
Organic optoelectronic functional materials have many advantages compared to traditional inorganic materials, such as greater flexibility, the tunable band and color, easy processing, and lower cost and so on. Therefore to replace the inorganic optoelectronic materials by organic materials in the field will become a development trend. Now, organic light emitting devices (OLED) and organic photovoltaic devices (OPVC) are the main applications to organic optoelectronic materials. In theory, electroluminescence and photovoltaic devices work in reverse process with each other. However, both the light absorption and emission properties of the materials should be considered in the two processes.
     Now the experimental chemists have paid much attention on the synthesis of new kinds of optoelectronic materials with good performance. As the key components of OLED, the luminescent system should emit suitable color with high efficiency. In this aspect, the red, green, and blue light emitting materials has been the focus of the study since the reasonable construction of the red, green, and blue (RGB) light emitting materials can achieve the full-color image display. As for organic photovoltaic devices, to improve the energy conversion efficiency of the devices and make them to be applied in practice as soon as possible are the main task of current research. Therefore, the photovoltaic material should exhibit large scale absorptions to the solar energy with high intensity. Experimental chemists in this area have always been trying to synthesize this kind of material. In addition it also can improve the device performance by dye-sensitization and building heterojunction, and both of the projects need to choose the materials with better properties. Therefore, the oxazole, anthracene, thiophene, fluorene, and other organic compounds, including small molecules, oligomers, and the polymer system, are the main frames of new materials that the experimental chemists have selected in recent years.
     In the meantime, the theoretical chemists are engaged in the investigation on the optoelectronic materials by means of the theoretical calculation. The electronic structures, the mechanism of electronic absorption and emission as well as the carrier transport etc. of the materials can be revealed through the theoretical calculation. The theoretical findings can help to design the new kinds of materials with better properties.
     In this thesis, we chose pyridine, thiophene and other small molecules containing the N and S atoms as the main framework moderated with the special functional group in theory to form the now kinds of optoelectronic material. Through the adjustment to the molecular structures of the theoretical models, the electronic structures can be affected and then the optical and electrical properties of the system can be regulated. We adopted density functional theory (DFT, Density functional theory), single-excitation configuration interaction (CIS, Single-excitation configuration interaction) and Time-dependent density functional theory (TD-DFT) to calculate the geometries and electronic structures of the systems in the ground and excited state respectively, together with the absorption and emission spectra properties. The main research results are as follows:
     1. The electronic structures and spectroscopic properties of a series of donor-π-acceptor (D-π-A) organic compounds based on [1,3]dithiolan-2-ylidene-actaldehyde, which acts as the acceptor, and four different donors, i.e. phenothiazine (1), benzenamine (2), triphenylamine (3), and carbazole (4), bridged by a C-C double bond were investigated theoretically. The quantum calculation revealed the geometry structures of the four compounds in the ground and excited state at the B3LYP/6-311G* and CIS/6-311G* level respectively. Under the TD-DFT level and considering the solvent effect with the PCM model, the absorption and photoluminescence properties of the compounds in toluene, THF, CH2Cl2, and DMSO solvent were explored based on the optimized geometries in the ground and excited states, respectively. The calculation results showed that the lowest-energy absorptions and photoluminescence of these D-π-A molecules are due to the intramolecular charge transfer (ICT) transition. The dipole moments of 1-4 change dramatically from the ground to the excited states and the variation of 1 and 3 is much remarkable compared with 2 and 4. Furthermore, the donor becomes more positive while the bridge and acceptor fragments turn more negative from the ground to excited state and this is in line with the typical characteristic of the donor-acceptor system. Not only the spectroscopic properties (absorption and emission) but also the dipole moments as well as the charge distribution of the systems are influenced by the solvent polarity, and the influence in the excited state is remarkable.
     2. Four new small organic molecules involving N and S atoms were designed theotetically by taking two thiophene rings as the main fragment combined with a 2,3-Dimethyl-thieno[3,4-b]pyrazine (1), 2,1,3-benzothiadiazole (2), 2,3-Dimethyl-quinoxaline (3) and pyridine (4), in which the two thiophenes are located on the head and tail and the heterocycles lie as the center. The geometry structures of the systems in the groud and excited state were optimized at the B3LYP/6-311G* and CIS/6-311g* level, respectively. The optimization results showed that the compounds 1-3 have the C2 symmetry. Compound 1 exhibits quasi-planar conformation both in the ground and excited state, while the two thiophene ring and the middle heterocyclic part showed twist angles of ca. 160.0°in 2 and 3 and 148.4°in 4 in the ground state. However, the geometries of 2-4 were tuned to quasi-plane configuration in the excited state due to the rearrangement of the electrons. Based on the optimized geometry structures, the absorptions and emissions were calculated with the TD-B3LYP/6-311g* method. The absorption results revealed that the lowest-energy absorptions of 1-4 originate from the electron transition from the thiophene to the middle heterocycle units upon excitation. The calculated lowest-energy intense absorptions are blue-shifted from 1 to 4 and the overlapped spectra of them covered the area from 200-600 nm. Compounds 1-4 emit fluorescence in the visible region. Specially, 1 and 3 emits in the red and green color, respectively. The calculations with the SCRF method showed that the solvent has hardly influence to the spectroscopic properties of the system. These theoretical findings can provide the guidance for designing the new kinds of optoelectronic materials.
引文
[1] BEAUJUGE P M, REYNOLD J R. Color control in pi-conjugated organic polymers for use in electrochromic devices [J]. Chem. Rev., 2010, 110:268-320.
    [2] BEAUJUGE P M, PISULA W, TSAO H N, ELLINGER S, MüLLEN K, REYNOLDS J R. Tailoring structure-property relationships in dithienosilole-benzothiadiazole donor-acceptor copolymers [J]. J. Am. Chem. Soc., 2009, 131(22):7514-7515.
    [3] VASILYEVA S V, UNUR E, WALCZAK R M, DONOQHUE E P, RINZLER A G, REYNOLDS J R. Color purity in polymer electrochromic window devices on indium-tin oxide and single-walled carbon nanotube electrodes [J]. ACS Appl. Mater. Interfaces, 2009, 1(10):2288-2297.
    [4] ARMSTRONG N R, WIGHTMAN R M, GROSS EM. Light-emitting electrochemical processes [J]. Annu. Rev. Phys. Chem. 2001, 52:391-422.
    [5] (a) RICHTER M M. Electrochemiluminescence (ECL) [J]. Chem. Rev. 2004, 104(6):3003-3036. (b) KWON T W, KULKARNI A P, JENEKHE S A. Synthesis of new light-emitting donor–acceptor materials: Isomers of phenothiazine–quinoline molecules [J]. Synthetic Metals., 2008, 158:292–298.
    [6] KULKARNI A P, TONZOLA C J, BABEL A, JENEKHE S A. Electron Transport Materials for Organic Light-Emitting Diodes [J].Chem. Mater. 2004, 16(23):4556–4573.
    [7] ZHU Y, KULKARNI A P, JENEKHE S A. Phenoxazine-Based Emissive Donor?Acceptor Materials for Efficient Organic Light-Emitting Diodes [J]. Chem. Mater., 2005, 17:5225-5227.
    [8] RATCLIFF E L, VENEMAN P A, SIMMONDS A, ZACHER B, UEBNER D, SAAVEDRA S S, ARMSTRONG N R. A Planar, Chip-Based, Dual-Beam Refractometer Using an Integrated Organic Light-Emitting Diode (OLED) Light Source and Organic Photovoltaic (OPV) Detectors [J]. Anal. Chem., 2010, 82:2734–2742.
    [9] HAINS A W, LIU J, MARTINSON A B F, IRWIN M D, MARKS T J. AnodeInterfacial Tuning via Electron-Blocking/Hole-Transport Layers and Indium Tin Oxide Surface Treatment in Bulk-Heterojunction Organic Photovoltaic Cells [J]. Adv. Funct. Mater., 2010, 20:595–606.
    [10] HAINS A W, RAMANAN C, IRWIN M D, LIU J, WASIELEWSKI M R, MARKS T J. Designed Bithiophene-Based Interfacial Layer for High-Efficiency Bulk-Heterojunction Organic Photovoltaic Cells. Importance of Interfacial Energy Level Matching [J]. Appl. Mater. Interfaces, 2010, 2(1):175–185.
    [11] HAMMER N I, EMRICK T, BARNES M D. Quantum dots coordinated with conjugated organic ligands: new nanomaterials with novel photophysics [J]. Nanoscale Res Lett., 2007, 2:282–290.
    [12] Bagnis D, Beverina L, Huang Hui, Silvestr Fi, Yao Y, Yan H, Pagani G A, Marks T J, Facchetti A. Marked Alkyl- vs Alkenyl-Substitutent Effects on Squaraine Dye Solid-State Structure, Carrier Mobility, and Bulk-Heterojunction Solar Cell Efficiency [J]. J. Am. Chem. Soc., 2010, 132:4074–4075.
    [13] TANG C W, VANSLYKE S A. Origanic electroluminescent diodes based on conjugated polymer [J]. Nature, 1990, 347:539-541.
    [14] TANG C W, VANSLYKE S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51:913-915.
    [15] TANG C W, VANSLYKE S A, CHEN C H. Electroluminescence of doped organic thin films [J]. J. Appl. Phys., 1989, 65:3610-3616.
    [16] ADACHI C, TSUTSUI T, SAITO S. Blue light-emitting organic electroluminescent devices [J]. Appl. Phys. Lett., 1990, 56:799-801.
    [17] TONG Q X, LAI S L, CHAN M Y, ZHOU Y C, KWONG H L, LEE C S, LEE S T. Highly Efficient Blue Organic Light-Emitting Device Based on a Nondoped Electroluminescent Material[J]. Chem. Mater., 2008, 20(20):6310–6312.
    [18] LEE Y Z, CHEN X, CHEN M C, CHEN S A, HSU J H, FANN W, White-light electroluminescence from soluble oxadiazole-containing phenylene vinylene ether-linkage copolymer[J]. Appl. Phys. Lett., 2001, 79:308-310.
    [19] WU F I, SHIH P I, TSENG Y H, SHU C F, TUNG Y L ,CHI Y. Highly efficient white-electrophosphorescent devices based on polyfluorene copolymers containingcharge-transporting pendent units[J]. J. Mater. Chem., 2007, 17:167-173.
    [20] YEH H C, CHIEN C H, SHIN P I, YUAN M C, SHU C F. Polymers derived from 3,6-fluorene and tetraphenylsilane derivatives: Solution-processable host materials for green phosphorescent OLEDs[J]. Macromolecules, 2008, 41(11):3801-3807.
    [21] TROGLER W C. Polyfluorenes [J]. J. Am. Chem. Soc., 2009,131(8):3119.
    [22] SUN M L, ZHONG C M, LI F, CAO Y, PEI Q B. A Fluorene-Oxadiazole Copolymer for White Light-Emitting Electrochemical Cells [J]. Macromolecules, 2010, 43:1714–1718.
    [23] SUN M L, NIU Q L, DU B, PENG J B, YANG W, CAO Y. Fluorene-Based Single-Chain Copolymers for Color-Stable White Light-Emitting Diodes [J]. Macromol. Chem. Phys., 2007, 208(9):988-993
    [24] EGBE DAM, STEFAN TüRK S, HOPPE H, et al. Anthracene Based Conjugated Polymers: Correlation betweenπ-π-Stacking Ability, Photophysical Properties, Charge Carrier Mobility, and Photovoltaic Performance [J]. Macromolecules, 2010, 43:1261-1269.
    [25] HOU L J, HOU J H, YANG Y, et al. Bandgap and Molecular Level Control of the Low-Bandgap Polymers Based on 3,6-Dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione toward Highly Efficient Polymer Solar Cells[J]. Macromolecules, 2009, 42(17):6564-6571.
    [26] IMAHORI H, UMEYAMA T, ITO S. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells [J]. Acc. Chem. Res., 2009, 42(11): 1809-1818.
    [27] MOON S J, YUM J H, MD K, NAZEERUDDIN M K, et al. Highly Efficient Organic Sensitizers for Solid-State Dye-Sensitized Solar Cells [J]. J. Phys. Chem. C, 2009, 113:16816-16820.
    [28] YANG H Y, YEN Y S, LIN J T, et al.. Organic dyes incorporating the dithieno [3, 2-b: 2', 3'-d] thiophene moiety for efficient dye-sensitized solar cells [J]. Org. Lett., 2010, 12 (1):16-9.
    [29] YANG X H, WU F I, SHU CF, et al. Efficient Red-EmittingElectrophosphorescent Polymers [J]. Chem. Mater., 2008, 20(4):1629-1635.
    [30] PARKER V D. Energetics of Electrode Reactions.Ⅱ. The Relationship between Redox Potentials, Ionization Potentials, Electron Affinities, and Solvation Energies of Aromatic Hydrocarbons [J]. J. Am. Chem. Soc., 1976, 98(1):98-103.
    [31] Encyclopedia of Electrochemistry of the Elements; Bard, A. J. Lund, H., Eds.; Marcel Dekker. New York, 1984; Vol. XV, pp 168-220.
    [32] ARMAND J, BELLEC C, BOULARES L, HAQUIN P, ASURE D, PINSON J. Electrochemical and chemical reduction of furopyrazines, thienopyrazines, furoquinoxalines and thienoquiroxalines[J]. J. Org. Chem., 1991, 56, 4840-4845.
    [33] KOBAYASHI T, KOBAYASHI S. Cyclovoltammetric Investigation into the Homoconjugation of Plural Pyrazine Rings Linked by Bicyclo [2.2.2] octadiene Spacers [J]. Eur. J. Org. Chem., 2002, 2066.
    [34] YEH HC, LEE RH, CHAN LH, LIN T Y J, CHEN C T, BALASUBRAMANIAM E, TAO Y T. Synthesis, Properties, and Applications of Tetraphenylmethane-Based Molecular Materials for Light-Emitting Devices[J]. Chem. Mater., 2001, 13:2788-2796.
    [35] NOZOMU T, CHIHAYA A, KAZUKIYO N. Electroluminescence of 1, 3, 4-Oxadiazole and Triphenylamine-Containing Molecules as an Emitter in Organic Multilayer Light Emitting Diodes [J]. Chem. Mater., 1997, 9:1077-1085.
    [36] KULKARNI A P, WU P T, KWON T W, JENEKHE S A. Phenothiazine-Phenylquinoline Donor?Acceptor Molecules: Effects of Structural Isomerism on Charge Transfer Photophysics and Electroluminescence[J] J. Phys. Chem. B. 2005,109(42):19584-19594.
    [37] KWON T W, KULKARNI A P, JENEKHE S A. Synthesis of new light-emitting donor–acceptor materials: Isomers of phenothiazine–quinoline molecules [J]. Synthetic Metals, 2008, 158:292–298.
    [38] TANG C W, VANSLYKE S A, CHEN C H. Electroluminescence of doped organic thin films [J]. J. Appl. Phys., 1989, 65:3610-3016.
    [39] CHEN C H, SHI J, TANG C W. Recent Developments in Molecular Organic Electroluminescent Materials [J]. Macromolecules Symp., 1998,125:1.
    [40] ZHANG X H, CHEN B J, LIN X Q. A New Family of Red Dopants Based on Chromene-Containing Compounds for Organic Electroluminescent Devices[J]. Chem. Mater., 2001, 13:1565-1569.
    [41] CHEN B J, SUN X W, LIN X Q. Improved luminescent efficiency of a red organic dye with modified molecular structure [J]. Mater Science Engineering B., 2003, 100:59-62
    [42] TAO X T, MIYATA S, SASABE H. Efficient organic red electroluminescent device with narrow emission peak [J]. Appl. Phys. Lett., 2001, 78(3):279-281.
    [43] FOREMAN J B, HEAD-GORDON M, POPLE J A, FRISCH M J. Toward a Systematic Molecular Orbital Theory for Excited States [J]. J. Phys. Chem., 1992, 96:135-149.
    [44] FOREMAN J B, FRISCH ?. Exploring Chemistry with Electronic Structure Methods [M]. Pittsburgh: PA, 1996.
    [45] CASIDA M E. JAMORSKI C, CASIDA K C, SALAHUB D R. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold J.Chem. Phys., 1998, 108(11):4439-4449.
    [46] MIN C G, REN A M, GUO J F, FENG K, et al. A Time-Dependent Density Functional Theory Investigation on the Origin of Red Chemiluminescence [J]. CHEMPHYSCHEM, 2010, 11(1):251-259.
    [47] BAHERS LE T, PAUPORTE′T, SCALMANI G, ADAMO C, CIOFINI I. A TD-DFT investigation of ground and excited state properties in indoline dyes used for dye-sensitized solar cells [J]. Phys. Chem. Chem. Phys., 2009, 11:11276-11284.
    [48] JACQUEMIN D, ERIC A, ADAMO C. Accurate Simulation of Optical Properties in Dyes [J]. Acc. Chem. Res., 2009, 42(2):326-334.
    [49] MENG L Y, SHANG Y, SHUAI Z G, et al. Dynamic Monte Carlo Simulation for Highly Efficient Polymer Blend Photovoltaics [J]. J. Phys. Chem. B, 2010, 114 (1):36-41.
    [50] LONG M Q, TANG L, SHUAI Z G, et al. Theoretical Predictions of Size-Dependent Carrier Mobility and Polarity in Graphene [J]. J. Am. Chem. Soc.,2009, 131 (49):17728-17729.
    [51] (a) HOHENBERG P, KOHN W. Inhomogeneous Electron Gas[J]. Phys. Rev. B, 1964, 136:864-871. (b) KOHN W, SHAM L J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Phys. Rev. A, 1965, 140:1133-1138. (c) SLATER J C. Quantum Theory of Molecular and Solids, Vol. 4: The Self-Consistent Field for Molecular and Solids [M]. New York: McGraw-Hill, 1974.
    [52] (a) SALAHUB D E, ZERNER M C. The Challenge of d and f Electrons [M]. Washington, D.C.: ACS, 1989. (b) PARR R G, YANG W. Density-functional theory of atoms and molecule [J]. Oxford: Oxford Univ. Press, 1989. (c) POPLE J A, GILL P W M, JOHNSON B G. Kohn-Sham Density-functional theory within a finite basis set [J]. Chem. Phys. Letters., 1992, 199:557-560. (d) JOHNSON B G, FRISCH M J. An implementation of analytic second derivatives of the gradient-corrected density functional energy [J]. J. Chem. Phys., 1994, 100(10):7429-7422.
    [1] (a) HEITLER W, LONDON F. Z. Physik 1927,44:455. (b) PAULING L, WILSON E B. Introduction to Quantum Mechanics [M]. New York: McGraw-Hill Book Company, Inc, 1935:340–380.
    [2] (a) HUND F. Z. Physik 1928, 51:759; 1931, 73:1. (b) MULLIKEN R S. Phys. Rev. 1928, 32:186; 1928, 32:761; 1932, 41:49.
    [3] (a)唐敖庆,杨忠志,李前树,量子化学[M],北京:科学出版社, 1982. (b)林梦海量子化学计算方法与应用[M],北京:科学出版社,2004.
    [4] BORN M, OPPENHEIMER R, Zur Quantentheorie der Molekeln Ann. Phsik. Quantum Theory of the Molecules Ann. Phys. [M] 1927, 84:457.
    [5] HARTREE D. Calculations of Atomic Structure [M]. Wiley, 1957.
    [6] (a) FOCK V, Z. Physik 1930, 126, 61. (b) SLATER J C. Phys. Rev. 1930, 210, 35.
    [7] ROOTHAAN C C J. New developments in molecular orbital theory [J]. Rev. Mod. Phys, 1951, 23, 69-89.
    [8] LOWDIN P O. Correlation problem in many-electron quantum mechanics [J]. Adv. Chem. Phys. 1959, 2:207.
    [9] (a) RAGHAVACHARI K, POPLE J. A.Calculation of one-electron properties using limited configuration interaction techniques[J]. Int. J. Quant. Chem. 1981, 20, 1067-1071. (b) FORESMAN J B, HEAD-GORDON M, POPLE J A. Toward a systematic molecular orbital theory for excited states [J]. J. Phys. Chem. 1992, 96(1):135-149.
    [10] KRISHNAN R, SCHLEGEL H B, POPLE J A. Derivative studies in configuration-interaction theory [J]. J. Chem. Phys, 1980, 72(8):4654-4655.
    [11] BROOKS B R, LAIDIG W D, SAXE P, GODDARD J D, YAMAGUCHI Y, SCHAEFER III H F. Analytic gradients from correlated wave functions via the two-particle density matrix and the unitary group approach[J]. J. Chem. Phys., 1980, 72(8):4652-4653.
    [12] SALTER E A, TRUCKS G W, BARTLETT R J. Analytic energy derivatives inmany-body methods .I. First derivatives [J] J. Chem. Phys., 1989, 90:1752-1766.
    [13] RAGHAVACHARI K, POPLE J A. Specificity and molecular mechanism of abortificient action of prostaglandins [J]. Int. J. Quant. Chem. 1981, 20, 167-178.
    [14] POPLE J A, HEAD-GORDON M, RAGHAVACHARI K. Quadratic configuration interaction. A general technique for determining electron correlation energies [J] J. Chem. Phys. 1987, 87:5968-5967.
    [15] M?LLER C, PLESSET M S. Phys. Rev. 1934, 46:618.
    [16] HEAD-GORDON M, POPLE J A, FRISCH M J. Phys. Rev. Lett. 1988, 153:503.
    [17] POPLE J A, BINKLEY J S, SEEGER R. Reflection on the scientific on the scientific career of Jeremy Musher[J]. Int. J. Quant. Chem. Symp., 1976, 10:1-3.
    [18] KRISHNAN R, POPLE J A. Approximate fourth-order perturbation theory of the electron correlation energy[J] Int. J. Quant. Chem. 1978, 14:91-100.
    [19] RAGHAVACHARI K, POPLE J A, REPLOGLE E S, HEAD-GORDON M. Fifth order Moeller-Plesset perturbation theory: comparison of existing correlation methods and implementation of new methods correct to fifth order[J] J. Phys. Chem. 1990, 94, 5579-5586.
    [20] HOHENBERG P, KOHN W. Inhomogeneous Electron Gas[J]. Phys. Rev. B, 1964, 136:864-871.
    [21] KOHN W, SHAM L J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Phys. Rev. A, 1965, 140:1133-1138.
    [22] SLATER J C. Quantum Theory of Molecular and Solids, Vol. 4: The Self-Consistent Field for Molecular and Solids [M]. New York: McGraw-Hill, 1974.
    [23] SALAHUB D E, ZERNER M C. The Challenge of d and f Electrons [M]. Washington, D.C.: ACS, 1989.
    [24] PARR R G, YANG W. Density-functional theory of atoms and molecules [J]. Oxford: Oxford Univ. Press, 1989.
    [25] POPLE J A, GILL P W M, JOHNSON B G. Kohn-Sham Density-functional theory within a finite basis set [J]. Chem. Phys. Letters., 1992, 199:557-560.
    [26] JOHNSON B G, FRISCH M J. An implementation of analytic second derivatives of the gradient-corrected density functional energy [J]. J. Chem. Phys., 1994,100(10):7429-7422.
    [27] LABANOWSKI J K, ANDZELM J W. Density Functional Methods in Chemistry [M]. New York: Springer-Verlag, 1991.
    [28](a) BAUERNSCHMITT R, AHLRICHS R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory[J].Chem. Phys. Letters., 1996, 256:454-464. (b) CASIDA M E, JAMORSKI C, CASIDA K C, SALAHUB D R. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory :Chatacterzation and correction of the time-dependent local density approximation ionization threshold[J]. J. Chem. Phys., 1998, 108:4439-4449. (c) STATMANN R E, SCUSERIA G E. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules [J]. J. Chem. Phys., 1998, 109:8218-8224.
    [29] MATSUZAWA N N, ISHITANI A, DIXON D A, UDA T. Time-dependent density functional theory calculations of photoabsorption spectra in vacuum ultraviolet region [J] J. Phys. Chem. A., 2001, 105:4953-4962.
    [30] BOULET P, CHERMETTE H, DAUL C, GILARDONI F, ROGEMOND F, WEBER J, ZUBER G. Absorption spectra of several metal complexes revisited by the time-dependent density-functional Theory-response theory formalism[J]. J. Phys. Chem. A, 2001, 105:885-894.
    [31] JAMORSKI C, CASIDA M E, SALAHUB D R. Dynamic polarizabilities and excitation spectra from a molecular implementation of time-dependent density-functional response theory :N2 as a case study[J]. J. Chem. Phys., 1996, 104:5134-5147.
    [32] VAN GISBERGEN S J A, KOOTSTRA F, SCHIPPER P R T, GRITSENKO O V, SNIJDERS J G, BAERENDS E J, Density-functional-theory response-property calculations with accurate exchange-correlation potential[J]. Phys. Rev. A., 1998, 57, 2556-2571.
    [33]G.赫兹堡著,王鼎昌译,分子光谱与分子结构-双原子分子光谱[M],北京:科学出版社,1983.
    [34]周公度,段连运编著,结构化学基础[M],北京:北京大学出版社,1995.
    [35] CONDON E U, Nuclear Motions Associated with Electron Transitions in Diatomic Molecules [J]. Phys. Rev., 1928, 32(6):858-872.
    [36] FRANCK J. Elementary processes of photochemical reactions [J] Elementary processes of photochemical reactions[J] Trans. Faraday Soc., 1925, 21:536-542.
    [37] MIERTU? S, SCROCCO E, TOMASI J. Electrostatic interaction of a solution with a continuum. A direct utilization of AB intio molecular potentials for the prevision of solvent effects [J]. Chem. Phys., 1981, 55:117-129.
    [38] PULLMAN B, MIERTU? S, PERAHIA D. Hydration scheme of the purine and pyrimidine bases and base-pairs of the nucleic acids[J]. Theoret. Chim. Acta, 1979, 50:317-325.
    [39] GOLDBLUM A, PERAHIA D, PULLMAM A. Hydration scheme of the complementary base-pairs of DNA[J]. FEBS Letters, 1978, 91(2):213-215.
    [40] MIERTU? S, TOMASI J. Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes [J]. Chem. Phys., 1982, 65:239-245.
    [41] WONG M W, FRISCH M J, WIBERG K B. Solvent effects.1.The mediation of electrostatic effects by solvents[J]. J.Am. Chem.Soc., 1991, 113(13):4776-4782.
    [42] WONG M W, WIBERG K B, FRISCH M J. Solvent effects.2.Medium effect on the structure, energy, charge density, and vibrational frequencies of sulfamic acid [J]. J. Am. Chem.Soc., 1992, 114(2):523-529.
    [43] WONG M W, WIBERG K B, FRISCH M J. Solvent effects.3. Tautomeric equilibria of formamide and 2-pyridone in the gas phase and solution: an ab initio SCRF study [J]. J. Am. Chem. Soc., 1992, 114:1645-1652.
    [44] WONG M W, WIBERG K B. Hartree-Fock second derivatives and electric field properties in a solvent reaction field: Theory and application [J]. J. Chem. Phys., 1991, 95:8991-8998
    [45] COSSI M, BARONE V, CAMMI R, TOMASI J. Ab intio study of solvated molecules :a new implementation of the polarizable continuum[J]. Chem. Phys.Letters, 1996, 255:327-335.
    [46] COSSI M, BARONE V, MENNUCCI B, TOMASI J. Ab intio study of ionic solutions by a polarizable continuum dielectric model[J]. Chem. Phys. Letters, 1998, 286:253-260.
    [47] CANCèS E, MENNUCCI B, TOMASI J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics [J]. J. Chem. Phys., 1997, 107:3032-3041.
    [48] BARONE V, COSSI M, TOMASI J. A new definition of cavities for the computation of salvation free energies by the polarizable continuum mode l[J]. J. Chem. Phys., 1997, 107:3210-3221.
    [49] TUNON I, SILLA E, TOMASI J. Methylamines basicity calculations: in vacuo and in solution comparative analysis [J]. J. Phys. Chem., 1992, 96(22):9043-9048.
    [1] ARMSTRONG N R, WIGHTMAN R M, GROSS EM. Light-emitting electrochemical processes [J]. Annu. Rev. Phys. Chem. 2001, 52:391-422.
    [2] (a)RICHTER M M. Electrochemiluminescence (ECL) [J]. Chem. Rev. 2004, 104(6):3003-3036. (b) KWON T W, KULKARNI A P, JENEKHE S A. Synthesis of new light-emitting donor–acceptor materials: Isomers of phenothiazine–quinoline molecules [J]. Synthetic Metals 2008, 158:292–298.
    [3] DINI D. Electrochemiluminescence from Organic Emitters [J]. Chem. Mater. 2005, 17:1933-1945.
    [4] LAI R Y, FABRIZIO E F, LU L, JENEKHE S A, BARD A J. Synthesis, Cyclic Voltammetric Studies, and Electrogenerated Chemiluminescence of a New DonorsAcceptor Molecule: 3,7-[Bis[4-phenyl-2-quinolyl]]-10-methylphenothiazine [J]. J. Am. Chem.Soc., 2001, 123:9112-9118.
    [5] LAI R Y. KONG X X, A SAMSON, JENEKHE, BARD A J. Synthesis, Cyclic Voltammetric Studies, and Electrogenerated Chemiluminescence of a New Phenylquinoline-Biphenothiazine Donor-Acceptor Molecule [J]. J. Am. Chem. Soc. 2003, 125:12631-12639.
    [6](a)JENEKHE S A, LU L, ALAM M M. New Conjugated Polymers with Donor?Acceptor Architectures: Synthesis and Photophysics of Carbazole?Quinoline and Phenothiazine?Quinoline Copolymers and Oligomers Exhibiting Large Intramolecular Charge Transfer [J]. Macromolecules, 2001, 34:7315-7324. (b) KULKARNI A P, WU P T, KWON T W, JENEKHE S A. Phenothiazine-Phenylquinoline Donor?Acceptor Molecules: Effects of Structural Isomerism on Charge Transfer Photophysics and Electroluminescence[J] J. Phys. Chem. B. 2005,109(42):19584-19594.
    [7] ZHU Y, KULKARNI A P, JENEKHE S A. Phenoxazine-Based Emissive Donor?Acceptor Materials for Efficient Organic Light-Emitting Diodes [J]. Chem. Mater., 2005, 17:5225-5227.
    [8] SHIROTA Y, KINOSHITA M, NODA T, OKUMOTO K, OHARA T. A Novel Class of Emitting Amorphous Molecular Materials as Bipolar Radical Formants: 2-{4-[Bis(4-methylphenyl)amino]phenyl}-5-(dimesitylboryl)thiophene and 2-{4-[Bis(9,9-dimethylfluorenyl)amino]phenyl}-5-(dimesitylboryl)thiophene[J].J.Am. Chem. Soc. 2000, 122:11021-11022.
    [9] KELNHOFER K, KNORR A, TAK Y H, BASSLER H, DAUB J. Electroluminescent stilbenoids - electrochemically generated luminescence in solution and organic light emitting devices on a polymer blend basis [J]. Acta. Polym., 1997, 48:188-192.
    [10] CHIANG C L, WU M F, DAI D C, WEN Y S, WANG J K, CHEN C T. Red-emitting fluorenes as efficient emitting hosts for non-doped, organic red-light-emitting diodes. Adv. Funct. Mater., 2005, 15:231-238.
    [11] ANDERSON J D, MCDONALD E M, LEE P A, ANDERSON M L, RITCHIE E L, HALL H K, HOPKINS T, MASH E A, WANG J, PADIAS A, THAYUMANA-VAN S, BARLOW S, MARDER S R, JABBOUR G E, SHAHEEN S, KIPPELEN B, PEYGHAMBARIAN N, WIGHTMAN RM, ARMSTRONG N R. Electrochemistry and Electrogenerated Chemiluminescence Processes of the Components of Aluminum Quinolate/Triarylamine, and Related Organic Light-Emitting Diodes [J]. J. Am. Chem. Soc. 1998, 120:9646-9655.
    [12] PENG P, SUN S G, ZHAO Y X, WU W C, XIA H J, TIAN W J, LIU Q. Novel donor–acceptor materials for organic light-emitting diodes based onα-cinnamoyl cyclic ketene dithioacetals[J]. J. Lumin., 2007, 126:464-468.
    [13] KING C, WANG J C, KHAN M N I, FACKLER J P JR. Luminescence and metal-metal interactions in binuclear gold(I) compounds[J]. Inorg. Chem. 1989, 28:2145-2149.
    [14] SACKSTEDER L, BARALT E, DEGRAFF B A, LUKEHART C M, DEMAS J N. Site-selective spectroscopy of luminescent square-planar platinum(II) complexes[J]. Inorg. Chem. 1991, 30:2468-2476.
    [15] DUNLAP B I, R?SCH N. The Gaussian-Type Orbitals Density-Functional Approach to Finite Systems [J]. Adv. Quantum Chem. 1990, 21:317-339.
    [16] DUNLAP B I, CONNOLLY J W, SABIN J R. On first-row diatomic molecules and local density models [J]. J. Chem. Phys., 1979, 71:3396; 4993-4999.
    [17] LEE C, YANG W, PARR R G. Phys.Rev.B, 1998, 37:785-789.
    [18] (a) FOREMAN J B, HEAD-GORDON M, POPLE J A, FRISCH M J. Toward a Systematic Molecular Orbital Theory for Excited States [J]. J. Phys. Chem., 1992, 96:135-149. (b) FOREMAN J B, FRISCH M J. Exploring Chemistry with Electronic Structure Methods [M]. Pittsburgh: PA, 1996.
    [19] FRISCH M J, TRUCKS G W, SCHLEGEL H B, SCUSERIA G E, ROBB M A, CHEESEMAN J R, MONTGOMERY J A, JR, VREVEN T, KUDIN K N, BURANT J C, MILLAM J M, IYENGAR S S, TOMASI J, BARONE V, MENNUCCI B, COSSI M, SCALMANI G, REGA N, PETERSSON G A, NAKATSUJI H, HADA M, EHARA M, TOYOTA K, FUKUDA R, HASEGAWA J, ISHIDA M, NAKAJIMA T, HONDA Y, KITAO O, NAKAI H, KLENE M, LI X, KNOX J E, HRATCHIAN H P, CROSS J B, ADAMO C, JARAMILLO J, GOMPERTS R, STRATMANN R E, YAZYEV O, AUSTIN A J, CAMMI R, POMELLI C, OCHTERSKI J W, AYALA P Y, MOROKUMA K, VOTH G A, SALVADOR P, DANNENBERG J J, ZAKRZEWSKI, V G, DAPPRICH S, DANIELS A D, STRAIN M C, FARKAS O, MALICK D K, RABUCK A D, RAGHAVACHARI K, FORESMAN J B, ORTIZ J V, CUI Q, BABOUL A G, CLIFFORD S, CIOSLOWSKI J, STEFANOV B B, LIU G, LIASHENKO A, PISKORZ P, KOMAROMI I, MARTIN R L, FOX D J, KEITH T, AL-LAHAM M A, PENG C Y, NANAYAKKARA A, CHALLACOMBE M, GILL P M W, JOHNSON B, CHEN W, WONG M W, GONZALEZ C, POPLE J A. Gaussian 03, Revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.
    [20] WONG M W, FRISCH M J, WIBERG K B. Solvent effects.1.The mediation of electrostatic effects by solvents[J]. J.Am.Chem.Soc, 1991, 113(13):4776-4782.
    [21] WONG M W, WIBERG K B, FRISCH M J. Solvent effects.2.Medium effect on the structure, energy, charge density, and vibrational frequencies of sulfamic acid[J]. J.Am.Chem.Soc, 1992, 114(2):523-529.
    [22] COSSI M, BARONE V, CAMMI R, TOMASI J. Ab intio study of solvated molecules :a new implementation of the polarizable continuum[J]. Chem. Phys.Letters, 1996, 255:327-335.
    [23] COSSI M, BARONE V, MENNUCCI B, TOMASI J. Ab intio study of ionic solutions by a polarizable continuum dielectric model[J]. Chem. Phys. Letters, 1998, 286:253-260.
    [24] CANCèS E, MENNUCCI B, TOMASI J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics [J]. J. Chem. Phys., 1997, 107:3032-3041.
    [25] BARONE V, COSSI M, TOMASI J. A new definition of cavities for the computation of salvation free energies by the polarizable continuum model [J]. J. Chem. Phys., 1997, 107:3210-3221.
    [1] KARG S, SCOTT J C, SALEM J R, ANGELOPOULOS M. Increased brightness and lifttime of polymer light-emitting-diodes with polyaniline anode [J]. Synth. Met., 1996, 80:111–117.
    [2] TANG C W, VANSLYKE S A. Origanic electroluminescent diodes based on conjugated polymer [J]. Nature, 1990, 347:539-541.
    [3] BURROWS P E, BULOVIC V, GU G, ET AL. Light emitting devices using vacuum deposited organic thin films [J]. Thin Solid Films, 1998, 331(1-2):101-105.
    [4](a)KRAFT A, GRIMSDALE A C, HOLMES A B. Electroluminescent Conjugated Polymers-Seeing Polymers in a New Light [J]. Angew. Chem. Int. Ed. 1998, 37:402-408. (b) MITSCHKE U, BAUERLE P. The electroluminescence of organic materials [J]. J. Mater. Chem. 2000, 10:1471-1507.
    [5] HEEGER A J. Light emission from semiconducting polymers light-emitting diodes, light-emitting electrochemical cells, lasers and white light for the future [J]. Solid State Comm., 1998, 107(11):673-679.
    [6] KULKARNI A P, TONZOLA C J, BABEL A, JENEKHE S A. Electron Transport Materials for Organic Light-Emitting Diodes [J].Chem. Mater. 2004, 16(23):4556–4573.
    [7] JENEKHE S A, LU L, ALAM M M. New Conjugated Polymers with Donor?Acceptor Architectures: Synthesis and Photophysics of Carbazole?Quinoline and Phenothiazine?Quinoline Copolymers and Oligomers Exhibiting Large Intramolecular Charge Transfer [J]. Macromolecules, 2001, 34:7315-7324.
    [8] KULKARNI A P, WU P T, KWON T W, JENEKHE S A. Phenothiazine-Phenylquinoline Donor?Acceptor Molecules: Effects of Structural Isomerism on Charge Transfer Photophysics and Electroluminescence[J] J. Phys. Chem. B. 2005,109(42):19584-19594.
    [9] KATZ H E, HONG X M, DODABALAPUR A, SARPESHKAR R. Organic field-effect transistors with polarizable gate insulators[J]. J.Appl.Phys. 2002, 91(3):1572-1576.
    [10] YAMAO T, MIKI, T, AKAGAMI H, NISHIMOTO Y, OTA S, HOTTA S. Direct formation of thin single crystals of organic semiconductors onto a substrate[J]. Chem. Mater., 2007, 19:3748–3753.
    [11] TOSHINORI M, CHIHAYA A. Highly Efficient Organic Light-Emitting Diodes Doped with Thiophene/Phenylene Co-Oligomer [J]. Chem. Mater., 2008, 20:2881–2883.
    [12] EUNG G K, JEAN L B. Electronic Evolution of Poly (3, 4-ethylenedioxythiophene) (PEDOT): From the Isolated Chain to the Pristine and Heavily Doped Crystals [J]. J. Am. Chem. Soc. 2008, 130:16880–16889.
    [13] YAMADA H, OKUJIMAA T, ONO N. Organic semiconductors based on small molecules with thermally or photochemically removable groups [J]. Chem. Commun., 2008, 26:2957– 2974.
    [14] JANG J, KIM JW, PARK N, KIM JJ. Air stable C-60 based n-type organic field effect transistor using a perfluoropolymer insulator [J]. Organic Electronics, 2008, 9(4):481-486.
    [15] SETHURAMAN K, OCHIAI S, KOJIMA K, et al. Performance of poly (3-hexylthiophene) organic field-effect transistors on cross-linked poly (4-vinyl phenol) dielectric layer and solvent effects [J]. Appl. Phys. Lett. 2008, 92:183302-183304.
    [16] NAGASHIMA H, SAITO M, NAKAMURA H, et al.Organic field-effect transistors based on naphthyl end-capped divinylbenzene: Performance, stability and molecular packing[J]. Organic Electronics 2010, 11:658–663
    [17] KAJII H, KOIWAI K, HIROSE Y, et al. Top-gate-type ambipolar organic field-effect transistors with indium–tin oxide drain/source electrodes using polyfluorene derivatives [J]. Organic Electronics, 2010, 11:509–513.
    [18] ZHANG W W, MAO W L, HU Y X, TIAN Z Q, WANG Z L, MENG Q J. Phenothiazine-Anthraquinone Donor-Acceptor Molecules: Synthesis, Electronic Properties and DFT-TDDFT Computational Study[J]. J. Phys. Chem. A 2009, 113(37):9997-10004.
    [19] ZHANG Q L, CIRPAN A, RUSSELL T P, EMRICK T. Donor-Acceptor Poly(thiophene-block-perylene diimide) Copolymers: Synthesis and Solar Cell Fabrication [J]. Macromolecules, 2009, 42:1079-1082.
    [20] WU P T, BULL T, KIM F S, LUSCOMBE C K, JENEKHE S A. Organometallic Donor-Acceptor Conjugated Polymer Semiconductors: Tunable Optical, Electrochemical, Charge Transport, and Photovoltaic Properties[J]. Macromolecules 2009, 42:671-681.
    [21] LIU C L, TSAI J H, LEE W Y, CHEN W C, JENEKHE S A. New Didecyloxyphenylene-Acceptor Alternating Conjugated Copolymers: Synthesis, Properties, and Optoelectronic Device Applications [J]. Macromolecules 2008, 41:6952-6959.
    [22] LEE C, YANG W, PARR R G. Phys.Rev.B, 1998, 37:785-789.
    [23] RAGHAVACHARI K, POPLE J A. Calculation of one-electron properties using limited configuration interaction techniques [J]. Int. J. Quant. Chem, 1981, 20(5):1067-1071.
    [24] WONG M W, FRISCH M J, WIBERG K B. Solvent effects.1.The mediation of electrostatic effects by solvents[J]. J.Am.Chem.Soc, 1991, 113(13):4776-4782.
    [25] WONG M W, WIBERG K B, FRISCH M J. Solvent effects.2.Medium effect on the structure, energy, charge density, and vibrational frequencies of sulfamic acid[J]. J.Am.Chem.Soc, 1992, 114(2):523-529.
    [26] FRISCH M J, TRUCKS G W, SCHLEGEL H B, SCUSERIA G E, ROBB M A, CHEESEMAN J R, MONTGOMERY J A, JR, VREVEN T, KUDIN K N, BURANT J C, MILLAM J M, IYENGAR S S, TOMASI J, BARONE V, MENNUCCI B, COSSI M, SCALMANI G, REGA N, PETERSSON G A, NAKATSUJI H, HADA M, EHARA M, TOYOTA K, FUKUDA R, HASEGAWA J, ISHIDA M, NAKAJIMA T, HONDA Y, KITAO O, NAKAI H, KLENE M, LI X, KNOX J E, HRATCHIAN H P, CROSS J B, ADAMO C, JARAMILLO J, GOMPERTS R, STRATMANN R E, YAZYEV O, AUSTIN A J, CAMMI R, POMELLI C, OCHTERSKI J W, AYALA P Y, MOROKUMA K, VOTH G A, SALVADOR P, DANNENBERG J J, ZAKRZEWSKI, V G, DAPPRICH S, DANIELS A D, STRAIN M C, FARKAS O, MALICK D K, RABUCK A D, RAGHAVACHARI K, FORESMAN J B, ORTIZ J V, CUI Q,BABOUL A G, CLIFFORD S, CIOSLOWSKI J, STEFANOV B B, LIU G, LIASHENKO A, PISKORZ P, KOMAROMI I, MARTIN R L, FOX D J, KEITH T, AL-LAHAM M A, PENG C Y, NANAYAKKARA A, CHALLACOMBE M, GILL P M W, JOHNSON B, CHEN W, WONG M W, GONZALEZ C, POPLE J A. Gaussian 03, Revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700