用户名: 密码: 验证码:
类风湿性关节炎滑膜成纤维细胞的比较蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
类风湿关节炎(rheumatoid arthritis,RA)是一种复杂的自身免疫性疾病,以慢性滑膜炎为特点,逐渐导致关节软骨甚至骨的破坏及关节功能的障碍,该病表现出进展性及破坏性,极大影响患者的生活质量。尽管RA的病因仍不清楚,近年来研究显示活化的成纤维样滑膜细胞(FLS),作为复杂细胞调控网络中的一员,在RA的疾病发生、发展中发挥着重要作用,从而引起了人们的重视。但鉴于类风湿性关节炎在中晚期病变的发病机制具有复杂性的特点,单一信号转导通路的研究恐怕很难详尽地阐述其发病机制,因此急需对RA滑膜细胞内复杂的信号转导网络关系进行深入探讨。
     蛋白质组学作为一种分析表达蛋白质的主要技术,在过去的二十年里已经成为一项重要的发展领域。临床蛋白质组学的主要目的是在不同生理情况下,通过比较正常和疾病情况下的蛋白质组学资料,来鉴定该疾病的生物标志物,借此达到诊断或者治疗的目的。不断发展的高通量和基于敏感质谱分析的技术为检验各种生物样本的生理学和病理生理学提供了新机会。
     本课题的研究目的是用蛋白质组学的分析方法比较RA病人和正常人滑膜成纤维样细胞中的蛋白质表达差异来阐明类风湿性关节炎(RA)的发病机制。
     主要研究内容如下:
     1.采用shot-gun法lable-free方式进行类风湿性关节炎滑膜成纤维细胞的比较蛋白质组学研究:原代培养滑膜成纤维细胞,裂解后采用自动化2D-Nano-LC-ESI-MS/MS分析肽段,每组重复三次实验,根据大于一个unique peptide和p>0.05,在RA样品中鉴定到1060种蛋白质,在正常对照样品中鉴定到1292种蛋白质。
     2.差异蛋白质筛选:利用两样本t检验和蛋白质差异倍数方法筛选差异表达蛋白质。p<0.05,倍数>1.5的差异表达蛋白质有100个。RA中上调的蛋白质有46个,RA中下调的蛋白质有54个。
     3.随后进行系统的差异蛋白质的生物信息学分析
     GO分析结果:对筛选到的差异蛋白进行GO分析,GO数据库包含了基因参与的生物过程,所处的细胞位置,发挥的分子功能三方面信息,结果提示在RA滑膜成纤维细胞中血管生成相关蛋白质表达上调,氧化还原相关蛋白质表达下调。
     Pathway分析:对差异表达蛋白质进行KEGG pathway分析,搜索KEGG数据库。共找到65个相关的pathway,其中ECM-受体相互作用、三羧酸循环、乙醛酸二羧酸代谢、心肌收缩、色氨酸代谢、氨基酰- tRNA生物合成、膀胱癌、脂肪酸代谢、谷胱甘肽代谢、粘着斑、烟酸及烟酰胺代谢、磷酸戊糖途径、PPAR信号通路共14个pathway明显呈现蛋白质富集(p<0.05)。
     基因网络分析:同时整合3种不同的相互作用关系:1)KEGG数据库中基因之间的蛋白质相互作用、基因调控、蛋白质修饰等关系;2)已有的高通量实验,如酵母双杂交等证实的蛋白质-蛋白质相互作用;3)已有文献报道中提到的基因之间的相互作用,整合上述信息绘制基因网络图,网络中连接度高的基因,称为Hub基因。Hub基因往往对网络的稳定性起到重要作用,共找到与RA关系最为密切的四个Hub基因,它们是CTGF、THBS1、FN1和SOD2。
     4.在RA和正常滑膜组织中进行差异蛋白质的mRNA和蛋白质水平验证,结果与质谱鉴定结果一致,即THY-1、CTGF和THBS1表达上调,而SOD2表达下调。
     5.为了进一步确认血管形成相关因子THY-1, THBS1和CTGF的相互作用关系,我们进行了CTGF和THY-1的RNA干扰实验。结果显示在THY-1干扰下调之后,VEGF、CTGF和THBS1的mRNA和蛋白质水平表达都下调了。同时在CTGF干扰下调之后,VEGF的表达也下调了。然而,对照组的THBS1和THY-1的表达变化没有显著性差异。这些结果暗示在RA疾病发展进程中血管生成是一项重大事件,而THY-1是促进血管生成的一个上游调控分子。THY-1可以调控THBS1和CTGF的表达,进而影响VEGF的表达水平。
     6.个体验证RA滑液和血清中的四种Hub基因,发现CTGF、THBS1和FN1表达都有所上调,而SOD2含量有所下调,有望成为新的临床诊断指标。
     综上所述,在本次RA患者与正常人滑膜原代培养细胞的高通量比较蛋白质组学研究中,我们发现在RA患者中血管形成相关蛋白质表达上调,而氧化还原相关蛋白质的表达下调。这可能是血管翳形成的直接原因。血管形成的调节通路包括THY-1/ THBS1 /CTGF/ VEGF轴,该通路可能是促进RA患者的成纤维样滑膜细胞中血管形成的主要原因。
Rheumatoid arthritis (rheumatoid arthritis, RA) is a complex autoimmune disease characterized by chronic synovitis, and gradually leads to the destruction of articular cartilage even the corruption of bone and the impairment of joints. The disease is often progressive and destructive; greatly affect the quality of life of patients. Although the etiology of RA remains unclear, recent studies have shown that activation of fibroblast-like synoviocytes (FLS), a complex network of cell regulation, play an important role in the pathological process of rheumatoid arthritis. These cells have been studied intensively, and significant progress has been made in elucidating the specific features of these fibroblasts. For it’s complex pathogenesis in advanced, a single signal transduction pathway will be difficult to elaborate in detail the pathogenesis, So we urgently need investigation into the complex signal transduction network in RA FLS.
     Proteomics, as a main technique for analysis of expressed proteins, has become an important developing area of research over the past two decades 1. A primary aim of clinical proteomics is the identification of biomarkers for diagnosis and therapeutic intervention of disease, by comparing proteomic profiles in normal and diseased conditions, and between different physiological states. The development of increasingly high-throughput and sensitive mass spectroscopy-based proteomic techniques provides new opportunities to examine the physiology and pathophysiology of many biological samples.
     To clarify the pathogenesis of rheumatoid arthritis (RA) by comparing protein expression in fibroblast-like synoviocytes (FLS) of RA patients and normal subjects using proteomics analysis.
     1. Using shot-gun method lable-free approach to do the Comparative Proteomics Analysis in rheumatoid arthritis synovial fibroblasts: Proteins extracted from primary cultured FLS of 50 RA patients and 10 normal subjects were analyzed by automated 2D-Nano-LC-ESI-MS/MS. According to the stringent criteria of having more than one unique peptide per protein present and a false discovery rate≤5%, 1060 proteins were identified from RA and 1292 proteins from normal subjects.
     2. Differentially expressed proteins were screened by 2-sample t-test (p<0.05) and fold change (fold>1.5), 100 differential proteins were screened out in RA. Of them, 46 proteins were up-regulated and the remaining 54 proteins were down-regulated.
     3. Followed by a systematic difference bioinformatics analysis of proteins GO analysis: GO database contains genes involved in biological processes, cellular location, molecular function of three aspects of play information, results suggest that RA synovial fibroblasts in angiogenesis upregulation, redox-related protein was decreased.
     Pathway analysis: Searching KEGG database. We Found 65 related pathway, in which ECM-receptor interaction, the citric acid cycle, glyoxylate dicarboxylate metabolism, myocardial contraction, tryptophan metabolism, aminoacyl - tRNA biosynthesis, bladder cancer, fatty acid metabolism, Glutathione metabolism, focal adhesions, nicotinic acid and nicotinamide metabolism, pentose phosphate pathway, PPAR signaling pathway was presented (p <0.05).
     Gene network analysis: integration of information mapping the gene network diagrams, high network connective gene, known as the Hub genes, which often play an important role in the stability of the network, and the four Hub genes related to RA were found, which are CTGF, THBS1, FN1 and SOD2.
     4. Different proteins were validated in mRNA and protein levels of synovial tissue in RA and normal, the results were consistent with mass spectrometry, the expression of THY-1, CTGF, and THBS1 were increased, while SOD2 were downregulation.
     5. In order to further confirm the interaction between angiogenesis-related factor THY-1, THBS1 and CTGF, we downregulated CTGF and THY-1 by RNA interference experiments. The results showed that THY-1, VEGF, CTGF and THBS1 were downregulated after THY-1 knockdown, and VEGF and CTGF were downregulated after CTGF knockdown, and THY-1 is an upstream regulatory molecule in angiogenesis, which can regulate the expression of THBS1 and CTGF, thereby affecting the expression of VEGF.
     6. Individual verification of four Hub genes in synovial fluid and serum of RA, we found that the expression of CTGF, THBS1, and FN1 are increased, while SOD2 levels decreased.
     In concusion upregulation of vasculature development-related protein expression and downregulation of oxidation reduction-related protein expression in FLS are predominant factors contributing to the progression of RA.
引文
1. Anderson NG, Anderson NL. Twenty years of two-dimensional electrophoresis: past, present and future. Electrophoresis. Mar 1996;17(3):443-453.
    2. Miller MC, Manning HB, Jain A, et al. Membrane type 1 matrix metalloproteinase is a crucial promoter of synovial invasion in human rheumatoid arthritis. Arthritis Rheum. Mar 2009;60(3):686-697.
    3. Firestein GS. Invasive fibroblast-like synoviocytes in rheumatoid arthritis. Passive responders or transformed aggressors? Arthritis Rheum. Nov 1996;39(11):1781-1790.
    4. Pap T, Muller-Ladner U, Gay RE, Gay S. Fibroblast biology. Role of synovial fibroblasts in the pathogenesis of rheumatoid arthritis. Arthritis Res. 2000;2(5):361-367.
    5. Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol. Mar 1999;19(3):1720-1730.
    6. Dasuri K, Antonovici M, Chen K, et al. The synovial proteome: analysis of fibroblast-like synoviocytes. Arthritis Res Ther. 2004;6(2):R161-168.
    7. Chang X, Cui Y, Zong M, et al. Identification of proteins with increased expression in rheumatoid arthritis synovial tissues. J Rheumatol. May 2009;36(5):872-880.
    8. Bo GP, Zhou LN, He WF, et al. Analyses of differential proteome of human synovial fibroblasts obtained from arthritis. Clin Rheumatol. Feb 2009;28(2):191-199.
    9. Arnett FC, Edworthy SM, Bloch DA, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. Mar 1988;31(3):315-324.
    10. Taniguchi K, Kohsaka H, Inoue N, et al. Induction of the p16INK4a senescence gene as a new therapeutic strategy for the treatment of rheumatoid arthritis. Nat Med. Jul 1999;5(7):760-767.
    11. Burmester GR, Dimitriu-Bona A, Waters SJ, Winchester RJ. Identification of three major synovial lining cell populations by monoclonal antibodies directed to Ia antigens and antigens associated with monocytes/macrophages and fibroblasts. Scand J Immunol. Jan 1983;17(1):69-82.
    12. Lu P, Vogel C, Wang R, Yao X, Marcotte EM. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotechnol. Jan 2007;25(1):117-124.
    13. Vogel C, Marcotte EM. Calculating absolute and relative protein abundance from mass spectrometry-based protein expression data. Nat Protoc. 2008;3(9):1444-1451.
    14. Braisted JC, Kuntumalla S, Vogel C, et al. The APEX Quantitative Proteomics Tool: generating protein quantitation estimates from LC-MS/MS proteomics results. BMC Bioinformatics. 2008;9:529.
    15. Hosack DA, Dennis G, Jr., Sherman BT, Lane HC, Lempicki RA. Identifying biological themes within lists of genes with EASE. Genome Biol. 2003;4(10):R70.
    16. Matyska-Piekarska E, Luszczewski A, Lacki J, Wawer I. [The role of oxidative stress in the etiopathogenesis of rheumatoid arthritis]. Postepy Hig Med Dosw (Online). 2006;60:617-623.
    17. Zelko IN, Mariani TJ, Folz RJ. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med. Aug 1 2002;33(3):337-349.
    18. Koch AE. Angiogenesis as a target in rheumatoid arthritis. Ann Rheum Dis. Nov 2003;62 Suppl 2:ii60-67.
    19. Bradham DM, Igarashi A, Potter RL, Grotendorst GR. Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol. Sep 1991;114(6):1285-1294.
    20. Manns JM, Uknis AB, Rico MC, et al. A peptide from thrombospondin 1 modulates experimental erosive arthritis by regulating connective tissue growth factor. Arthritis Rheum. Aug 2006;54(8):2415-2422.
    21. Leask A, Abraham DJ. The role of connective tissue growth factor, a multifunctional matricellular protein, in fibroblast biology. Biochem Cell Biol. Dec 2003;81(6):355-363.
    22. Baenziger NL, Brodie GN, Majerus PW. Isolation and properties of a thrombin-sensitive protein of human platelets. J Biol Chem. May 10 1972;247(9):2723-2731.
    23. Gotis-Graham I, Hogg PJ, McNeil HP. Significant correlation between thrombospondin 1 and serine proteinase expression in rheumatoid synovium. Arthritis Rheum. Oct 1997;40(10):1780-1787.
    24. Stuhlmuller B, Ungethum U, Scholze S, et al. Identification of known and novel genes in activated monocytes from patients with rheumatoid arthritis. Arthritis Rheum. Apr 2000;43(4):775-790.
    25. Reif AE, Allen JM. The Akr Thymic Antigen and Its Distribution in Leukemias and Nervous Tissues. J Exp Med. Sep 1 1964;120:413-433.
    26. Ades EW, Zwerner RK, Acton RT, Balch CM. Isolation and partial characterization of the human homologue of Thy-1. J Exp Med. Feb 1 1980;151(2):400-406.
    27. Lee WS, Jain MK, Arkonac BM, et al. Thy-1, a novel marker for angiogenesis upregulated by inflammatory cytokines. Circ Res. May 4 1998;82(8):845-851.
    28. Rosengren S, Boyle DL, Firestein GS. Acquisition, culture, and phenotyping of synovial fibroblasts. Methods Mol Med. 2007;135:365-375.
    29. Abeysinghe HR, Li LQ, Guckert NL, Reeder J, Wang N. THY-1 induction is associated with up-regulation of fibronectin and thrombospondin-1 in human ovarian cancer. Cancer Genet Cytogenet. Sep 2005;161(2):151-158.
    30. Paleolog EM. Angiogenesis in rheumatoid arthritis. Arthritis Res. 2002;4 Suppl 3:S81-90.
    31. Shibuya M. Structure and dual function of vascular endothelial growth factor receptor-1 (Flt-1). Int J Biochem Cell Biol. Apr 2001;33(4):409-420.
    32. Ferrara N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol. Jun 2001;280(6):C1358-1366.
    33. Scola MP, Imagawa T, Boivin GP, et al. Expression of angiogenic factors in juvenile rheumatoid arthritis: correlation with revascularization of human synovium engrafted into SCID mice. Arthritis Rheum. Apr 2001;44(4):794-801.
    34. Lopez-Larrea C, Sujirachato K, Mehra NK, et al. HLA-B27 subtypes in Asian patients with ankylosing spondylitis. Evidence for new associations. Tissue Antigens. Mar 1995;45(3):169-176.
    35. Garcia-Fernandez S, Gonzalez S, Mina Blanco A, et al. New insights regarding HLA-B27 diversity in the Asian population. Tissue Antigens. Oct 2001;58(4):259-262.
    36. Robinson WP, van der Linden SM, Khan MA, et al. HLA-Bw60 increases susceptibility to ankylosing spondylitis in HLA-B27+ patients. Arthritis Rheum. Sep 1989;32(9):1135-1141.
    37. Maurice MM, Nakamura H, van der Voort EAM, et al. Increased expression of thioredoxin in rheumatoid arthritis. Arthritis and Rheumatism. Sep 1998;41(9):S319-S319.
    38. Bashir S, Harris G, Denman MA, Blake DR, Winyard PG. Oxidative DNA-Damage and Cellular-Sensitivity to Oxidative Stress in Human Autoimmune-Diseases. Annals of the Rheumatic Diseases. Sep 1993;52(9):659-666.
    39. Sakurai H, Kohsaka H, Liu MF, et al. Nitric oxide production and inducible nitric oxide synthase expression in inflammatory arthritides. J Clin Invest. Nov 1995;96(5):2357-2363.
    40. Farrell AJ, Blake DR, Palmer RM, Moncada S. Increased concentrations of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic diseases. Ann Rheum Dis. Nov 1992;51(11):1219-1222.
    41. Peacock DJ, Banquerigo ML, Brahn E. Angiogenesis inhibition suppresses collagen arthritis. J Exp Med. Apr 1 1992;175(4):1135-1138.
    42. Clavel G, Bessis N, Boissier MC. Recent data on the role for angiogenesis in rheumatoid arthritis. Joint Bone Spine. Sep 2003;70(5):321-326.
    43. Stevens CR, Blake DR, Merry P, Revell PA, Levick JR. A comparative study by morphometry of the microvasculature in normal and rheumatoid synovium. Arthritis Rheum. Dec 1991;34(12):1508-1513.
    44. Taylor PC, Sivakumar B. Hypoxia and angiogenesis in rheumatoid arthritis. Curr Opin Rheumatol. May 2005;17(3):293-298.
    45. Wallis WJ, Simkin PA, Nelp WB. Low synovial clearance of iodide provides evidence of hypoperfusion in chronic rheumatoid synovitis. Arthritis Rheum. Oct 1985;28(10):1096-1104.
    46. Dingle JT, Thomas DP. In vitro studies on human synovial membrane; a metabolic comparison of normal and rheumatoid tissue. Br J Exp Pathol. Aug 1956;37(4):318-323.
    47. Scott BB, Zaratin PF, Colombo A, Hansbury MJ, Winkler JD, Jackson JR. Constitutive expression of angiopoietin-1 and -2 and modulation of their expression by inflammatory cytokines in rheumatoid arthritis synovial fibroblasts. J Rheumatol. Feb 2002;29(2):230-239.
    48. Koch AE, Halloran MM, Haskell CJ, Shah MR, Polverini PJ. Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1. Nature. Aug 10 1995;376(6540):517-519.
    49. Koch AE, Friedman J, Burrows JC, Haines GK, Bouck NP. Localization of the angiogenesis inhibitor thrombospondin in human synovial tissues. Pathobiology. 1993;61(1):1-6.
    50. Bussolino F, Mantovani A, Persico G. Molecular mechanisms of blood vessel formation. Trends Biochem Sci. Jul 1997;22(7):251-256.
    51. Roy H, Bhardwaj S, Yla-Herttuala S. Biology of vascular endothelial growth factors. FEBS Lett. May 22 2006;580(12):2879-2887.
    52.钱朝南,闵华庆.血管内皮生长因子的研究进展.中国病理生理杂志. 1999;15(9):855-859.
    53. Shibuya M, Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res. Mar 10 2006;312(5):549-560.
    54. Murakami M, Iwai S, Hiratsuka S, et al. Signaling of vascular endothelial growth factor receptor-1 tyrosine kinase promotes rheumatoid arthritis through activation of monocytes/macrophages. Blood. Sep 15 2006;108(6):1849-1856.
    55.姚中强,于孟学. Vegf3种受体在胶原性关节炎大鼠关节的表达与软骨破坏的相关性分析.基础医学与临床. 2003;23(2):170-173.
    56. Butt C, Lim S, Greenwood C, Rahman P. VEGF, FGF1, FGF2 and EGF gene polymorphisms and psoriatic arthritis. BMC Musculoskelet Disord. 2007;8:1.
    57.吴丽,魏伟.类风湿关节炎中血管生成的分子机制.中国药理学通报. 2004;20(10):1098-1101.
    58. Nor JE, Christensen J, Mooney DJ, Polverini PJ. Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression. Am J Pathol. Feb 1999;154(2):375-384.
    59. O'Connor DS, Schechner JS, Adida C, et al. Control of apoptosis during angiogenesis by survivin expression in endothelial cells. American Journal of Pathology. Feb 2000;156(2):393-398.
    60. Takahara K, Iioka T, Furukawa K, et al. Autocrine/paracrine role of the angiopoietin-1 and -2/Tie2 system in cell proliferation and chemotaxis of cultured fibroblastic synoviocytes in rheumatoid arthritis. Hum Pathol. Feb 2004;35(2):150-158.
    61. Cheung AH, Stewart RJ, Marsden PA. Endothelial Tie2/Tek ligands angiopoietin-1 (ANGPT1) and angiopoietin-2 (ANGPT2): regional localization of the human genes to 8q22.3-q23 and 8p23. Genomics. Mar 15 1998;48(3):389-391.
    62. Suri C, Jones PF, Patan S, et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell. Dec 27 1996;87(7):1171-1180.
    63. Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science. Jul 4 1997;277(5322):55-60.
    64. Witzenbichler B, Maisonpierre PC, Jones P, Yancopoulos GD, Isner JM. Chemotactic properties of angiopoietin-1 and -2, ligands for the endothelial-specific receptor tyrosine kinase Tie2. J Biol Chem. Jul 17 1998;273(29):18514-18521.
    65. Zhang HG, Hyde K, Page GP, et al. Novel tumor necrosis factor alpha-regulated genes in rheumatoid arthritis. Arthritis Rheum. Feb 2004;50(2):420-431.
    66. Van Doornum S, McColl G, Wicks IP. Tumour necrosis factor antagonists improve disease activity but not arterial stiffness in rheumatoid arthritis. Rheumatology (Oxford). Nov 2005;44(11):1428-1432.
    67. Clauss M, Sunderkotter C, Sveinbjornsson B, et al. A permissive role for tumor necrosis factor in vascular endothelial growth factor-induced vascular permeability. Blood. Mar 1 2001;97(5):1321-1329.
    68. Strunk J, Bundke E, Lange U. Anti-TNF-alpha antibody Infliximab and glucocorticoids reduce serum vascular endothelial growth factor levels in patients with rheumatoid arthritis: a pilot study. Rheumatol Int. Jan 2006;26(3):252-256.
    69. Chang J, Kavanaugh A. Novel therapies for rheumatoid arthritis. Pathophysiology. Oct 2005;12(3):217-225.
    70. Sakuma M, Hatsushika K, Koyama K, et al. TGF-beta type I receptor kinase inhibitor down-regulates rheumatoid synoviocytes and prevents the arthritis induced by type II collagen antibody. Int Immunol. Feb 2007;19(2):117-126.
    71. Shiozawa S, Shiozawa K, Tanaka Y, et al. Human epidermal growth factor for the stratification of synovial lining layer and neovascularisation in rheumatoid arthritis. Ann Rheum Dis. Oct 1989;48(10):820-828.
    72. Duff GW. Cytokines and acute phase proteins in rheumatoid arthritis. Scand J Rheumatol Suppl. 1994;100:9-19.
    73. Gerlag DM, Borges E, Tak PP, et al. Suppression of murine collagen-induced arthritis by targeted apoptosis of synovial neovasculature. Arthritis Res. 2001;3(6):357-361.
    74. Sato N, Nariuchi H, Tsuruoka N, et al. Actions of TNF and IFN-gamma on angiogenesis in vitro. J Invest Dermatol. Dec 1990;95(6 Suppl):85S-89S.
    75. Weber AJ, De Bandt M. Angiogenesis: general mechanisms and implications for rheumatoid arthritis. Joint Bone Spine. 2000;67(5):366-383.
    76. Latour F, Zabraniecki L, Dromer C, Brouchet A, Durroux R, Fournie B. Does vascular endothelial growth factor in the rheumatoid synovium predict joint destruction? A clinical, radiological, and pathological study in 12 patients monitored for 10 years. Joint Bone Spine. Dec 2001;68(6):493-498.
    77.刘湘源,于清宏.新生血管形成与类风湿关节炎.国外医学:生理病理科学与临床分册. 1998;18(3):273-276.
    78. Maione TE, Gray GS, Petro J, et al. Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science. Jan 5 1990;247(4938):77-79.
    79. Pandya NM, Dhalla NS, Santani DD. Angiogenesis--a new target for future therapy. Vascul Pharmacol. May 2006;44(5):265-274.
    80. Lorenz P, Bantscheff M, Ibrahim SM, Thiesen HJ, Glocker MO. Proteome analysis of diseased joints from mice suffering from collagen-induced arthritis. Clin Chem Lab Med. Dec 2003;41(12):1622-1632.
    81. Wang X, Phelan SA, Forsman-Semb K, et al. Mice with targeted mutation of peroxiredoxin 6 develop normally but are susceptible to oxidative stress. J Biol Chem. Jul 4 2003;278(27):25179-25190.
    82. Schett G, Tohidast-Akrad M, Steiner G, Smolen J. The stressed synovium. Arthritis Res. 2001;3(2):80-86.
    83. Maurice MM, Nakamura H, Gringhuis S, et al. Expression of the thioredoxin-thioredoxin reductase system in the inflamed joints of patients with rheumatoid arthritis. Arthritis Rheum. Nov 1999;42(11):2430-2439.
    84. Behrens J, von Kries JP, Kuhl M, et al. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature. Aug 15 1996;382(6592):638-642.
    85. Sen M, Reifert J, Lauterbach K, et al. Regulation of fibronectin and metalloproteinase expression by Wnt signaling in rheumatoid arthritis synoviocytes. Arthritis Rheum. Nov 2002;46(11):2867-2877.
    86. Kumon Y, Suehiro T, Nishiya K, Hashimoto K, Nakatani K, Sipe JD. Ferritin correlates with C-reactive protein and acute phase serum amyloid A in synovial fluid, but not in serum. Amyloid. Jun 1999;6(2):130-135.
    87. Dotzlaw H, Schulz M, Eggert M, Neeck G. A pattern of protein expression in peripheral blood mononuclear cells distinguishes rheumatoid arthritis patients from healthy individuals. Biochim Biophys Acta. Jan 14 2004;1696(1):121-129.
    88. Liu X, Piela-Smith TH. Fibrin(ogen)-induced expression of ICAM-1 and chemokines in human synovial fibroblasts. J Immunol. Nov 1 2000;165(9):5255-5261.
    89. Da Silva N, Bharti A, Shelley CS. hnRNP-K and Pur(alpha) act together to repress the transcriptional activity of the CD43 gene promoter. Blood. Nov 15 2002;100(10):3536-3544.
    90. Rosenstein Y, Santana A, Pedraza-Alva G. CD43, a molecule with multiple functions. Immunol Res. 1999;20(2):89-99.
    91. Ostberg JR, Barth RK, Frelinger JG. The Roman god Janus: a paradigm for the function of CD43.Immunol Today. Dec 1998;19(12):546-550.
    92. Dasuri K, Antonovici M, Chen KD, et al. The synovial proteome: analysis of fibroblast-like synoviocytes. Arthritis Research & Therapy. 2004;6(2):R161-R168.
    93. Sinz A, Bantscheff M, Mikkat S, et al. Mass spectrometric proteome analyses of synovial fluids and plasmas from patients suffering from rheumatoid arthritis and comparison to reactive arthritis or osteoarthritis. Electrophoresis. Sep 2002;23(19):3445-3456.
    94. Hessian PA, Edgeworth J, Hogg N. Mrp-8 and Mrp-14, 2 Abundant Ca-2+-Binding Proteins of Neutrophils and Monocytes. J Leukocyte Biol. Feb 1993;53(2):197-204.
    95. Goebeler M, Roth J, Burwinkel F, Vollmer E, Bocker W, Sorg C. Expression and complex formation of S100-like proteins MRP8 and MRP14 by macrophages during renal allograft rejection. Transplantation. Aug 15 1994;58(3):355-361.
    96. Rugtveit J, Brandtzaeg P, Halstensen TS, Fausa O, Scott H. Increased Macrophage Subset in Inflammatory Bowel-Disease - Apparent Recruitment from Peripheral-Blood Monocytes. Gut. May 1994;35(5):669-674.
    97. Yavin EJ, Preciado-Patt L, Rosen O, et al. Serum amyloid A-derived peptides, present in human rheumatic synovial fluids, induce the secretion of interferon-gamma by human CD(4)(+) T-lymphocytes. FEBS Lett. Apr 28 2000;472(2-3):259-262.
    98. Liao H, Wu J, Kuhn E, et al. Use of mass spectrometry to identify protein biomarkers of disease severity in the synovial fluid and serum of patients with rheumatoid arthritis. Arthritis Rheum. Dec 2004;50(12):3792-3803.
    99. Tilleman K, Van Beneden K, Dhondt A, et al. Chronically inflamed synovium from spondyloarthropathy and rheumatoid arthritis investigated by protein expression profiling followed by tandem mass spectrometry. Proteomics. May 2005;5(8):2247-2257.
    100. Lorenz P, Ruschpler P, Koczan D, Stiehl P, Thiesen HJ. From transcriptome to proteome: Differentially expressed proteins identified in synovial tissue of patients suffering from rheumatoid arthritis and osteoarthritis by an initial screen with a panel of 791 antibodies. Proteomics. Jun 2003;3(6):991-1002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700