用户名: 密码: 验证码:
绿原酸对铜绿假单胞菌生物膜抑制作用及其机制的体内外研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜绿假单胞菌(Pseudomonas aeruginosa,P.a)是一种常见的条件致病菌,是引起免疫力低下患者的慢性感染的常见病原体,该菌对多种常见抗生素耐药,感染易反复发作,难以清除。与其慢性感染密切相关的是P.a可以形成生物膜(biofilm,BF),并能分泌多种毒力因子(virulence factors)。BF的形成和维持、毒力因子的合成释放主要由密度感应系统(quorum sensing, QS)调控。我课题组经体外实验研究证明金银花水煎液可抑制P.a的BF形成,并对已形成的P.a的BF有明显的破坏作用[58];金银花的主要活性成分为绿原酸(Chlorogenic acid, CA)。因此,本研究采用体外BF模型的方法,探讨亚抑菌浓度的CA对P.a的BF形成的抑制作用;然后研究亚抑菌浓度的CA对P.a毒力因子(藻酸盐、弹性蛋白酶、蛋白水解酶、过氧化物酶、绿脓菌素、鼠李糖脂)释放的抑制作用;进而采用质谱方法检测亚抑菌浓度的CA对P.a的QS系统信号分子的影响,探讨其干预P.a生物膜和毒力因子的分子机制;再以大鼠腹腔感染模型为基础,研究QS系统在体内BF感染中的作用,以及CA对体内P.a的BF的抑制作用。
     第一部分绿原酸对铜绿假单胞菌生物膜的抑制作用及其机制的体外研究
     第一节绿原酸对铜绿假单胞菌体外生物膜形成的抑制作用
     目的:观察CA对P.a体外BF形成的抑制作用。
     方法:(1)检测CA、红霉素(erythromycin,EM)对PAO1的最低抑菌浓度(minimal inhibitory concentration, MIC)。(2)采用体外静置BF模型,分为空白对照组、EM组和CA组。开始建模时就加入EM(1/8MIC)和CA(1/4MIC)。建模第3天和第7天,采用SEM观察载体表面BF形态、结晶紫染色法半定量载体表面BF。
     结果:(1)CA对P.a的MIC是3000ug/ml,EM对P.a的MIC是128ug/ml。(2)建模3天,SEM观察,空白对照组载体表面可形成早期BF,CA组和EM组载体表面形成的BF规模明显小于空白对照组;建模7天,空白对照组载体表面可见浓厚黏液样物质, BF呈立体结构,而CA组和EM组仅见薄层BF。不论是建模3天,还是建模7天,结晶紫染色法BF半定量,CA组不仅少于空白对照组(P<0.01),而且少于EM组(P<0.05)。
     结论:CA可抑制P.a体外BF的形成,且其抑制作用强于EM。
     第二节绿原酸对铜绿假单胞菌毒力因子的抑制作用
     目的:观察CA对P.a毒力因子的抑制作用。
     方法:(1)建立体外静置BF模型,分为空白对照组、EM组和CA组,加入EM(1/8MIC)和CA(1/4MIC)。(2)检测培养液藻酸盐含量;弹性蛋白-刚果红法测定菌液中弹性蛋白酶活性;偶氮酪蛋白法测定建模3、7天的菌液中蛋白水解酶活性;氯仿萃取法测定建模1、3、5、7天菌液的绿脓菌素的相对浓度;测定CA作用后游离菌及BF细菌对H2O2的敏感性;苔黑酚—浓硫酸法测定EM、CA作用后,菌液的鼠李糖脂含量。
     结果:(1)培养液中藻酸盐含量检测,CA组不仅少于空白对照组(P<0.01),而且少于EM组(P<0.05)。(2)与空白对照组相比,EM组、CA组的弹性蛋白酶活性明显较低(P<0.01),而CA组弹性蛋白酶活性与EM组相当(P>0.05)。(3)无论是3天,还是7天,与空白对照组相比,EM组、CA组的蛋白水解酶活性明显较低(P<0.01),但是CA组高于EM组(P<0.05)。(4)在BF形成的各个时期,菌液绿脓菌素相对浓度测定,EM组和CA组绿脓菌素相对浓度均低于空白对照组(P<0.01),CA组绿脓菌素相对浓度高于EM组(P<0.05);(5)在进入对数生长期(4-6h)前, CA组游离P.a与空白组对H2O2敏感性相当(P>0.05),进入对数生长期后,CA组铜绿假单胞菌对H2O2敏感性强于PAO1空白组(P<0.05);3天和7天的H2O2敏感性测定, EM组和CA组均高于空白对照组(P<0.05)。早期生物膜细菌CA组对H2O2敏感性高于EM组(P<0.05),而成熟期,CA组对H2O2敏感性则低于EM组(P<0.05)。(6)在作用后48h或72h, EM组及CA组的鼠李糖脂均少于空白对照组(P<0.01),作用48h时CA组鼠李糖脂含量高于EM组(P<0.05),作用72h时CA组鼠李糖脂含量与EM组相当(P>0.05)。
     结论:CA可以抑制P.a的多种毒力因子的释放,对蛋白水解酶活性、各时期绿脓菌素,48h鼠李糖脂及成熟期的氧化应激的抑制作用弱于EM;对弹性蛋白酶活性及72h鼠李糖脂抑制作用与EM相当;但对藻酸盐和早期生物膜细菌的氧化应激的抑制作用高于EM组。
     第三节绿原酸对铜绿假单胞菌QS系统信号分子的抑制作用
     目的:探讨CA对P.a QS系统信号分子的抑制作用。
     方法:(1)乙酸乙酯萃取法提取EM,CA作用后菌液的信号分子。(2)HPLC–MS鉴定PAO1产生的AHLs信号分子的种类,并检测其信号分子3-oxo-C12-HSL,C4-HSL的含量。
     结果:(1)PAO1产生的AHLs信号分子中3-oxo-C12-HSL和C4-HSL含量最高,且在胞外中,C4-HSL的含量高于3-oxo-C12-HSL(P<0.05)。(2)EM组和CA组的C4-HSL, 3-oxo-C12-HSL含量都明显少于空白对照组(P<0.05),CA对3-oxo-C12-HSL的抑制作用弱于EM(P<0.05), EM组和CA组中,C4-HSL含量无差别(P>0.05)。
     结论:PAO1产生的AHLs信号分子主要是3-oxo-C12-HSL和C4-HSL;胞外AHLs信号分子中,C4-HSL含量高于3-oxo-C12-HSL;CA可以抑制QS系统AHLs信号分子的产生,其对3-oxo-C12-HSL的抑制作用比EM弱,而对于C4-HSL,二者效应一致。
     第二部分绿原酸对铜绿假单胞菌生物膜的抑制作用的体内研究
     第一节QS系统在铜绿假单胞菌体内生物膜形成中的作用
     目的:构建大鼠腹腔P.a BF感染模型,初步探讨QS系统在BF形成中的作用。
     方法:(1)体外准备:以PVC导管为载体,铜绿假单胞菌PAO1野生株和PAO1 ?lasR rhlR缺陷株(PA-JP3)在体外培养20h,使其在黏附在载体表面。(2)构建大鼠腹腔P.a BF感染模型: 48只Wistar大鼠,随机分为PAO1组和PA-JP3组,将上述载体植入Wistar大鼠腹腔,建立P.a BF感染模型。建模后分别在第3天,7天和第14天,病理学观察腹腔局部组织炎症变化,SEM观察载体表面BF变化,连续稀释法载体表面菌落计数。
     结果:PAO1组腹腔局部组织炎症反应明显较PA-JP3组严重。第3天、第7天和第14天SEM观察,载体表面细菌粘附量均较PA-JP3组多,形成的BF多且稠厚;载体表面菌落计数明显高于PA-JP3组(P<0.05);与PA-JP3组相比,机体对PAO1组载体细菌清除缓慢,在第7天后有增多趋势(P<0.05)。
     结论:PVC材料可以在大鼠腹膜腔成功构建PAO1体内BF模型; QS系统在体内BF形成中起重要作用。
     第二节绿原酸对铜绿假单胞菌体内生物膜形成的抑制作用
     目的:探讨CA对P.a体内BF形成的抑制作用。
     方法:以铜绿假单胞菌PAO1野生株为实验菌株,32只大鼠随机分为对照组和CA组,建立腹腔感染模型后,腹腔注射CA溶液40mg/kg·d,每12小时一次,移植物置入后就开始腹腔注射,连续用3d、7d。对照组用等量的无菌生理盐水腹腔注射。建模后分别在第3天和第7天,病理学观察腹腔局部组织炎症变化,SEM观察载体表面BF变化,连续稀释法载体表面菌落计数。
     结果:CA干预后,PAO1野生株组SEM观察载体表面细菌粘附数量较对照组明显减少,BF少而且稀薄,局部组织炎症反应明显较生理盐水对照组明显减轻,第3天和第7天载体表面菌落计数均明显少于对照组(P<0.05)。
     结论:CA可以抑制P.a体内BF的形成。
Pseudomonas aeruginosa (P.a) is a common opportunistic pathogen, often causes chronic infection in immunocompromised patients. Resistant to many kinds of common antibiotics, so P.a infections can repeat easily, and it is difficult to be removed. P.a can form and maintain biofilms (BF), synthesize and release a variety of virulence factors. The BF formation and virulence synthesis are under the regulation of P.a quorum sensing (QS) system. There is possible relationship between chronic P.a infections and its QS system. Then, inhibition of QS system may be one of the key points to control BF infections. The preliminary studies of my group show that honeysuckle aqueous extracts can inhibit BF formation by P.a in vitro and destruct the BF of P.a in vitro effectively[58]. Chlorogenic acid (CA) is the main active ingredient of honeysuckle. Therefore, in this study, the inhibitory effect of sub-inhibitory concentration of CA on P.a BF in vitro was detected firstly; then, the inhibitory effect of sub-inhibitory concentration CA on the P.a virulence factors (including alginate, elastase, protease, pyoverdine, peroxidase and rhamnolipids) was studied. To understand the mechanism of CA on P.a BF and virulence factors, the level of the AHLs signaling molecule synthesized by P.a were detected after the intervention of sub-inhibitory concentration CA. Lastly, the BF model of intraperitoneal infection in rats was constructed to explore the role of QS system and the inhibitory effect of CA on the P.a BF in vivo.
     PART I THE INHIBITORY EFFECT AND MECHANISM OF CHLOROGENIC ACID ON BIOFILM OF PSEUDOMONAS AERUGINOSA IN VITRO
     Section I THE INHIBITORY EFFECT OF CHLOROGENIC ACID ON BIOFILM FORMATION OF PSEUDOMONAS AERUGINOSA IN VITRO
     OBJECTIVES: To observe the inhibitory effect of CA on the BF formation of P.a.
     METHODS: (1) Detect the minimal inhibitory concentration (MIC) of CA and erythromycin (EM) against PAO1. (2) Constructed the static BF model in vitro, and divided them into control group, EM group and CA group. EM (1/8MIC) or CA (1/4MIC) was added at the beginning of making BF models. After cultivated for 3 days and 7 days, SEM was used to observe the form of BF and crystal violet staining was used for semi-quantitative analysis of the P.a BF.
     RESULTS: (1) The MIC of CA to P.a is 3000ug/ml, EM is 128ug/ml.(2)After cultivated for 3 days, yong BF can be seen in the control group under SEM. The scale of the BF both in the CA group and EM group formed are smaller than the control group. After cultivated for 7 days, there is a large number of mature BF in the control group, but a few of thin BF can be seen both in the CA group and EM group. Whether it is cultivated for 3 days or 7 days, the semi-quantitative BF by crystal violet staining in CA group is less than the control group (P<0.01) and EM group (P<0.05).
     CONCLUSIONS: CA can inhibit P.a to form BF in vitro,and is more effective than EM.
     Section II THE INHIBITORY EFFECT OF CHLOROGENIC ACID ON PSEUDOMONAS AERUGINOSA VIRULENCE FACTORS
     OBJECTIVES: To observe the inhibitory effect of CA on P.a virulence factors.
     METHODS: (1) Set up the static BF formation model of P.a in vitro. There are three groups: control group, EM group with 1/8 MIC EM and CA group with 1/4 MIC CA in final concentration. (2)Detect the alginate concentration in culture medium after treatment with EM or CA. The LasB elastolytic activity in the EM or CA treated bacterium was determined by using Elastin-Congo red. The protease activity in the bacterium on 3d and 7d of the static BF formation model were determined by using Azo-casein. Chloroform extraction method was used for assaying pyoverdine level in the bacterium of BF formation model in different periods. The H2O2 sensitivity of planktonic bacteria and BF bacteria were determined after EM or CA intervention. The orcinol-sulfuric acid method was used to directly assess the amount of rhamnolipids.
     RESULTS: The alginate contents in culture medium in the CA group is not only less than the control group (P<0.01), but also less than the EM group (P<0.05). Compared with the control group, the elastase activity of EM group and CA group were significantly lower (P <0.01), CA group were even reduced to the same as with the EM group (P>0.05). In different periods, the protease activity of EM group and CA group, while comparing with the control group, were significantly lower (P<0.01), on 3d and 7d, the protease activity of CA group was higher than that of the EM group (P <0.05). In various periods of BF formation, the pyoverdine level in culture medium were detected, the EM group and CA group were lower than that of the control group (P<0.01), compared with the EM group, the CA group is higher (P<0.05). Before the logarithmic growth phase (4-6h), the planktonic bacteria H2O2 sensitivity was not different between CA group and control group (P>0.05), but after entering the logarithmic growth phase, the bacteria of the CA group was more sensitive to H2O2 than the control group (P<0.05 ); Both young and mature BF bacteria in EM group and CA group were more sensitive to H2O2 than the control group (P<0.05), the young BF bacteria in CA group were more sensitive to H2O2 than EM group (P<0.05), while the maturity, CA group was lower than that of the EM group (P<0.05). After the intervention of EM or CA for 48h and 72, the rhamnolipids in this two group were less than the control group (P<0.01), in 48h the inhibitory effect of EM was better than CA, while in 72h, they had the same effect.
     CONCLUSIONS: Sub-inhibitory concentration of CA can inhibit the release of a variety of virulence factors of P.a, weak the functions of the QS system. On the inhibition of protease activity, 48h rhamnolipids, pyocyanin and the mature BF bacteria H2O2 sensitivity, CA was weaker than EM, about the elastase, 72h rhamnolipids, CA and EM had the same effect, while to alginate and the young BF bacteria H2O2 sensitivity, CA was more effective than EM.
     Section III THE INHIBITORY EFFECT OF CHLOROGENIC ACID ON PSEUDOMONAS AERUGINOSA QS SIGNALING MOLECULES
     OBJECTIVES: To explore the inhibitory effect of CA on p.a QS signaling molecules.
     METHODS: (1)The QS signaling molecules in the bacteria intervented by EM or CA were extracted by acidified ethyl acetate. (2) AHLs produced by PAO1 were detected by High performance liquid chromatography - mass spectrometry (HPLC-MS), and the signal molecule 3-oxo-C12-HSL, C4-HSL levels were further tested.
     RESULTS:(1)PAO1 produced two main AHLs signaling molecules: 3-oxo-C12-HSL and C4-HSL, In addition, the content of C4-HSL is higher than in 3-oxo-C12-HSL (P<0.05) in extracellular AHLs. (2) For C4-HSL and 3-oxo-C12-HSL detected, both EM group and CA group were significantly less than the control group (P <0.05), about the 3-oxo-C12-HSL, the inhibitory effect of EM was stronger than CA (P<0.05), while the concentration of C4-HSL, EM group and the CA group had no difference (P> 0.05).
     CONCLUSIONS: PAO1 can produced two main AHLs signaling molecules: 3-oxo-C12-HSL and C4-HSL; about the extracellular AHLs, the content of C4-HSL is higher than 3-oxo-C12-HSL, the C4-HSL is easier to diffusion through the cell membrane to the extracellular; CA can inhibit the QS system signaling molecule AHLs production, its inhibitory effect of 3-oxo-C12-HSL was weaker than EM, but for the C4-HSL, EM and CA has the same effect.
     PART II THE INHIBITORY EFFECT OF CHLOROGENIC ACID ON PSEUDOMONAS AERUGINOSA BIOFILM FORMATION IN VIVO
     Section I THE EFFECT OF QS SYSTEM OF PSEUDOMONAS AERUGINOSA ON BIOFILM FORMATION IN VIVO
     OBJECTIVE: Construction of peritoneal P.a infection model to explore the role of QS system played on BF formation.
     METHODS: (1) Preparation: The PAO1 wild strains andΔlasR rhlR deficient strains (PA-JP3) were cultivated in vitro for 20h to make them adhere to the PVC tube carriers’surface. (2) Construction of peritoneal P.a BF infection model: divide 48 wistar female rats randomly into two groups: the PAO1 group and the PA-JP3 group, then implant the carriers into the wistar rats’intra-abdominal to establish the P.a BF infection model. Histopathological observation of local peritoneal tissues inflamation, SEM observation of the BF on the carriers’surface and the viable bacteria counts on the carriers’surface were carried out on the 3rd, 7th and 14th day respectively.
     RESULTS: The inflammation response of the local peritoneal tissue in PAO1 wild strains group was more serious than the PA-JP3 group. On the day 3, 7 and 14, the BF formation of PAO1 on the carriers’surface were thicker than the PA-JP3 on the SEM. The viable colony count of PAO1 on the carriers’surface was significantly higher than the PA-JP3 (P<0.05), the colonies of PAO1 on the carriers’surface were cleared more slowly than the PA-JP3 group, and even rebounded on day 7(P<0.05).
     CONCLUSION: With the PVC tube carrier, the peritoneal PAO1 BF infection model was constructed successfully; the QS system plays an important role on the formation of BF in vivo.
     Section II THE INHIBITORY EFFECT OF CHLOROGENIC ACID ON PSEUDOMONAS AERUGINOSA BIOFILM FORMATION IN VIVO
     OBJECTIVE: Explore the role of CA played on P.a BF in rat peritoneal infection.
     METHODS: Choosing the PAO1 wild strains as the experimental strains, 32 female rats were randomly divided into 2 groups: the control group and the CA group. The rats were given CA 40mg/kg ? d (intraperitoneal injections) for 3 or 7 days, starting just after implantation of the PVC tube carrier. The control group was injected with the same amount of sterile saline. Histopathological observation of local peritoneal tissues inflamation, SEM observation of the BF on the carriers’surface and the viable bacteria counts on the carriers’surface were carried out on the 3rd and 7th day respectively.
     RESULTS: After CA administration, the adhesion of PAO1 on the carriers’surface reduced more significantly than the control group, and got fewer and thinner BF by SEM. Compared with the control group, the local inflammatory reactions of the CA treatment group were significantly reduced. On day 3 and 7, the viable colony counts on the carriers’surface were significantly less than the control group (P <0.05).
     CONCLUSION: CA can inhibit the P.a BF formation in vivo.
引文
1. Cystic Fibrosis Foundation. Patient registry 2004 annual report. Cystic Fibrosis Foundation, Bethesda, 2005. MD.
    2. Hoiby, N. Diffuse panbronchiolitis and cystic fibrosis:East meets West. Thorax. 1994, 49: 531–532
    3. Lieberman, D. Pseudomonal infections in patients with COPD: epidemiology and management. Am.J.Respir.Med. 2003, 2: 459–468.
    4. Centers for Disease Control and Prevention, Health In spections Program. National Nosocomial Infections Surveillance (NNIS) report, data summary from January 1992–June 2004, issued October 2004: a report from the NNIS System. Am. J. Infect. Control 2004, 32:470–485.
    5. Costerton J, P Stewart and E Greenberg. Bacterial biofilms: a common cause of persistent infections. Science. 1999, 284: 1318–1322.
    6. Nickel JC, I Ruseska, JB Wright, et al. Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob. Agents Chemother. 1985, 27: 619–624.
    7. Heck LW, K Morihara and DR Abrahamson. Degradation of soluble laminin and depletion of tissue-associated basement membrane laminin by Pseudomonas aeruginosa elastase and alkaline protease. Infect Immun, 1986, 54: 619-153.
    8. JM Meyer, A Neely, A Stintzi, et al. Pyoverdin Is Essential for Virulence of Pseudomonas aeruginosa. Infect Immu, 1996, 64(2): 518–523.
    9. Nicky CC, Robert MQ Shanks and GA O’Toole. Rhamnolipids Modulate Swarming Motility Patterns of Pseudomonas aeruginosa. J Bacteriol, 2005, 187(21): 7351–7361.
    10. Mary ED, Nicky CC and GA O’Toole. Rhamnolipid Surfactant Production Affects Biofilm Architecture in Pseudomonas aeruginosa PAO1. J Bacteriol. 2003, 185(3): 1027–1036.
    11. P? Jensen, T Bjarnsholt, R Phipps, et al Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing- controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology, 2007, 153: 1329–1338.
    12. Gambello MJ, Iglewski BH. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J Bacteriol.1991, 173: 3000-9.
    13. Passador L, Cook JM, Gambello MJ, et al. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science. 1993, 260: 1127-30.
    14. Pearson JP, Gray KM. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci USA. 1994, 91(1): 197-201.
    15. James PP, Delden CV, HiglewskiI B. Active efflux and diffusion are involved in transport of pseudomonas aeruginosa cell to cell signals. J.Bacteriol. 1999, 181(4):1203-10.
    16. Lyczak JB, CL Cannon and GB Pier. Lung infections associated with cystic fibrosis. Clin. Microbiol. 2002, 15:194–222.
    17. Pesci EC, JBJ Milbank, JP Pearson, et al. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 1999, 96:11229–11234.
    18. Nguyen T, Louis SG, Beringer PM, et al. Potential role of macrolide antibiotics in the management of cystic fibrosis lung disease. 2002, 8(6): 521-28.
    19. Kondoh K, Hashiba M. Inhibitory effect of macrolide antibiotics on biofilm formation by Pseudomonas aeruginosa. Nippon Jibiinkoka Gakkai Kaiho. 1998 Jan, 101(1): 25-36.
    20. Dall L, Barnes WG, Lane JW,et al. Enzymatic modification of glycocalyx in the treatment of experimental endocarditis due to viridans streptococci. J. Infect.Dis.1987, 156(5): 736-740.
    21. Equi A, Balfour-Lynn IM, Bush A, et al. Long term azithromycin in children with cystic fibrosis: a randomised, placebo-controlled crossover trial. Lancet. 2002, 360: 978-984.
    22. Wolter J, Seeney S, Bell S, et al. Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomised trial. Thorax. 2002, 57: 212-216.
    23. Saiman L, Marshall BC, Mayer-Hamblett N, et al. Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA 2003, 290: 1749-1756.
    24. Clement A, Tamalet A, Leroux E, et al. Long term effects of azithromycin in patients with cystic fibrosis: a double blind, placebo controlled trial. Thorax. 2006, 61:895-902.
    25. Southern KW, Barker PM, Solis-Moya A. Macrolide antibiotics for cystic fibrosis. Cochrane Database of Systematic Reviews 2004, Issue2. Art. No. CD002203. DOI:10.1002/14651858.CD002203.pub2.
    26. Tramper-Stranders GA, Wolfs TF , et al. Maintenance azithromycin treatment in pediatric patients with cystic fibrosis: long-term outcomesrelated to macrolide resistance and pulmonary function. Pediatr Infect Dis J.2007, 26(1): 8-12.
    27. Hansen CR, Pressler T, Hoiby N, et al. Long-term, low-dose azithromycin treatment reduces the incidence but increases macrolide resistance in Staphylococcus aureus in Danish CF patients. J Cyst Fibros. 2009, 8(1): 58-62.
    28. Yasuda H, Ajiki Y, Koga T, et al. Interaction between biofilms formed by Pseudomonas aeruginosa and clarithromycin. Antimicrobial Agents and Chemotherapy. 1993, 37(9): 1749-1755.
    29.徐叔云.药理实验方法学(第三版).北京:人民卫生出版社.1982, 1647-1661.
    30. Ewa O?dak and Elzbieta A.Trafny. Secretion of Proteases by Pseudomonas aeruginosa Biofilms Exposed To Cipro?oxacin Antimicrobial Agentsand Chemotherapy. 2005, 49(8): 3281–3288.
    31. Ishida H, Ishida Y, Kurosaka Y, et al. In vitro and in vivo activities of levofloxacin against biofilm-producing Pseudomonas aeruginosa.Antimicrob Agents Chemother. 1998, 42(7): 1641-1645.
    32. Chandrasekan EV and Bemiller JN. Constituent analyses of glycosaminoglycans. Methods Carbohydr Chem.1980, 8: 89–96.
    33. Finck-Barbancon V, J Goranson, L Zhu, et al. ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol. Microbiol. 1997, 25: 547–557.
    34. Fleiszig SM, TS Zaidi, MJ Preston, et al. Relationship between cytotoxicity and corneal epithelial cell invasion by clinical isolates of Pseudomonas aeruginosa. Infect.Immun. 1996, 64: 2288–2294.
    35. Nicas, TI and BH Iglewski. The contribution of exoproducts to virulenceof Pseudomonas aeruginosa. Can.J.Microbiol. 1985, 31: 387–392.
    36. Wretlind B and OR Pavlovskis. Pseudomonas aeruginosa elastase and its role in pseudomonas infections. Rev. Infect. Dis. 1983, 5: S998–S1004.
    37. Passador L, JM Cook, MJ Gambello, et al. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science.1993, 260: 1127–1130.
    38. Schuster M, CP Lostroh, T Ogi, et al. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J.Bacteriol. 2003, 185: 2066–2079.
    39. Wagner VE, D Bushnell, L Passador, et al. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J.Bacteriol. 2003, 185: 2080–2095.
    40. Yahr, TL, J Goranson and DW Frank. Exoenzyme S of Pseudomonas aeruginosa is secreted by a type III pathway. Mol. Microbiol. 1996, 22: 991–1003.
    41. Rumbaugh KP, Griswold JA, Hamood AN, et al. The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosa. Microbes Infect. 2000, 2: 1721–31.
    42. McKnight, SL, BH Iglewski, and EC Pesci. The Pseudomonas Quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 2000, 182: 2702–2708.
    43. Miller, J. 1972. Experiments in molecular genetics, p. 352–355. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
    44. de Nys R, Wright AD, Konig GM, et al. New halogenated furanones from the marine alg a Delisea pulchra. Tetrahedron. 1993, 49: 11213–11220.
    45. Givskov M, deNys R, Manefield M, et al. Eukaryotic interference withhomoserine lactone-mediated prokaryotic signalling. J. Bacteriol. 1996, 178: 6618–6622.
    46. Kjelleberg S, Steinberg P, Givskov M, et al. Do marine natural products interfere with prokaryotic AHL regulatory systems? Aquat. Microb. Ecol. 1997, 13: 85–93.
    47. Manefield M &Turner SL. Quorum sensing in context: out of molecular biology and into microbial ecology. Microbiology . 2002, 148: 3762–3764.
    48. Manefield M, Rasmussen TB, Henzter M, et al. Halogenated furanones inhibit quorum sensing through accelerated LuxR turn over. Microbiology. 2002, 148: 1119–1127.
    49. Hentzer M. et al. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology. 2002, 148: 87–102.
    50. Hentzer M. et al. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBOJ. 2003, 22: 3803–3815.
    51. Tateda K, Comte R, Pechere JC, et al. Azithromyc in inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2001, 45: 1930–1933.
    52. Bjarnsholt T, et al. Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology. 2005, 151: 3873–3880.
    53. Assariello C, Berlutti F, Selan L, et al. A rapid staining procedure to demonstrate glycocalyx production and bacterial biofilms. New Microbiol. 1994, 17(3): 225-230.
    54. Dong Y H, Wang L H, Xu J L, et al. Quenching quorum-sensing dependent bacterial infection by an N-acyl homoserine lactonase. Nature. 2001, 411:813-817.
    55. Alliso Adonizio, Kok-FaniKong, and Kalai Mathee. Inhibition of Quorum Sensing-Controlled Virulence Factor Production in Pseudomonas aeruginosa by South Florida Plant Extracts. Antimicrobial agents and chemotherapy. 2008, 52: 198–203
    56.王瑞,唐荣银,刘进,等.五倍子水提取物对菌斑生物膜形成过程中表面形态的影响.牙体牙髓牙周病学杂志. 2007,17:383-386
    57.孔晋亮,刘晓岚,陈一强,等.黄芩水煎液对生物被膜的抑制作用及对左氧氟沙星的增效作用.中华微生物学和免疫学杂志. 2007,27:241-241
    58.陈一强,覃雪军,朱莲娜,等。金银花水煎液及联合头孢他啶对铜绿假单胞菌生物膜的体外影响.中华微生物学和免疫学杂志. 2004,24:738-742
    59. Parmely MJ. 1993. Pseudomonas metallo proteases and the host-microbe relationship, p.79–94. In R.Fick (ed.), Pseudomonas aeruginosa the opportunist: pathogenesis and disease. CRC Press, BocaRaton, Fla.
    60. Doring G, HJ Obernesser, and K Botzenhart. Extracellular toxins of Pseudomonas aeruginosa II Effect of two proteases on human immunoglobulins IgG, IgA and secretory IgA. Zentbl. Bakteriol. Hyg.1. Abt. Orig. A. 1981, 249: 89–98.
    61. Hong Y and B Ghebrehiwet. Effect of Pseudomonas aeruginosa elastase and alkaline protease on serum complement and isolated components C1q and C3. Clin. Immunol. Immuno pathol. 1992, 62: 133–138.
    62. Twining SS, SE Kirschner, LA Mahnke, et al. Effect of Pseudomonas aeruginosa elastase, alkaline protease, and exotoxin A on corneal proteinases and proteins. Investig. Ophthalmol.Vis.Sci. 1993, 34: 2699–2712.
    63. J Tommassen, A Filloux, M Bally. et al. Protein secretion in Pseudomonasaeruginosa. FEMS Microbiol Rev. 1992; 9(1): 73-90.
    64. Friedheim E, and L Michaelis. Potentiometric study of pyocyanine. J. Biol. Chem. 1931, 91: 355-368.
    65. Frost G, and H Rosenberg. The inducible citrate-dependent iron transport system in Escherichia coli K12. Biochim. Biophys. 1973, 330: 90-101.
    66. Hassan HM, and I Fridovich. Mechanism of the antibiotic action of pyocyanine. J. Bacteriol. 1980, 141: 156-163.
    67. Cox CD. Iron uptake with ferripyochelin and ferric citrate by Pseudomonas aeruginosa. J. Bacteriol. 1980, 142: 581-587.
    68. Brown KA, and C Ratledge. Iron transport in Myco-bacterium smegmatis: ferrimycobactin reductase (NADP) H-ferri mycobactin oxido reductase), the enzyme releasing iron from its carrier. FEBS Lett. 1975, 53: 262-266.
    69. Friedheim, EAH. Pyocyanin, an accessory respiratory enzyme. J. Exp. Med. 1931, 54: 207-221.
    70. Gessard, C. On the blue and green coloration that appears on bandages. C. R. Seances Acad. Sci. Paris.1882, 94: 536-538.
    71. Gee W Lau, Huimin Ran, Fansheng Kong, et al. Pseudomonas aeruginosa Pyocyanin Is Critical forLung Infection in Mice. Infection and immunity. 2004, 72: 4275–4278.
    72. DES Stewart-tull and Ann V Armstrongj. The effect of 1-hydroxy phenazine and pyocyanin from pseudomonas aeruginosa on mammalian cell respiration. Med. Microbiol. 1972, 5: 67-73
    73. Miller RA, and BE Britigan. Role of oxidants in microbial pathophysiology. Clin. Microbiol. Rev. 1997, 10: 1–18.
    74. Bals R, DJWeiner, and JM Wilson. The innate immune system in cystic fibrosis lung disease. J.Clin. Investig. 1999, 103: 303–307.
    75. Jamesg Elkins, Danielj Hassett, Philips Stewart, et al. Protective Role of Catalasein Pseudomonas aeruginosa Biofilm Resistance to Hydrogen Peroxide. Applied and Environmental Microbiology. 1999, 65: 4594–4600
    76. Deziel E, F Lepine, S Milot, et al. RhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy) alkanoicacids (HAAs), the precursors of rhamnolipids. Microbiology. 2003, 149: 2005–2013.
    77. Rahim R, UA Ochsner, C Olvera, et al. Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyl transferase, an enzyme responsible for dirhamnolipid biosynthesis. Mol.Microbiol. 2001, 40: 708–718.
    78. Stewart PS. Mechanisms of antibiotic resistence in bacterial biofilms. International Journal of Medical Microbiology. 2002, 292: 107-113.
    79. Ty A Gould, Jake Herman, Jessica Krank, et al. Specificity of Acyl-Homoserine Lactone Synthases Examined by Mass Spectrometry. Journal of Bacteriology. 2006, 188(2): 773–783.
    80. Swift S, Throup JP, Williams, et al. Quorum sensing: a population- density component in the determination of bacterial phenotype. Journal of Bacteriology.1996, 21(6): 214-19.
    81. Williams P, Winzer K, Chan W, et al. Look who’s talking: communication and quorum sensing in the bacterial world. Phil.Trans.R.Soc.B,2007, 362: 1119–1134.
    82. Marketon, MM, MRGronquist, A.Eberhard, et al. Characterization of the Sinorhizo biummeliloti sinR/sinI locus and the production of novel N-acyl homoserine lactones. J.Bacteriol. 2002, 184: 5686–5695.
    83. Henke JM, and BLBassler. Bacterial social engagements. Trends Cell Biol.2004, 14: 648–656.
    84. Paul Williams, Miguel Camara, Andrea Hardman, et al. Quorum Sensing and the Population-Dependent Control of Virulence. Phil. Trans. R.Soc. Lond. 2000, 355: 667-680.
    85. Aendekerk S, Ghysels B, Cornelis P, et al. Characterization of a new ef?ux pump, MexGHI–OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium. Microbiology. 2002, 148: 2371–2381.
    86. Yi-Hu Dong, Lian-Hui Wang and Lian-Hui Zhang. Quorum-quenching microbial infections: mechanisms and implications. Phil. Trans. R. Soc. B. 2007, 362: 1201-1211.
    87. Thilo Kohler, Jean-Luc Dumas, and Christian Van Delden. Ribosome Protection Prevents Azithromycin-Mediated Quorum-Sensing Modulation and Stationary-Phase Killing of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy. 2007, 51: 4243–4248.
    88. Xavier Mulet, María D. Macia, Ana Mena, et al. Azithromycin in Pseudomonas aeruginosa Biofilms: Bactericidal Activity and Selection of nfxB Mutants. Antimicrobial Agents and Chemotherapy. 2009, 53: 1552–1560.
    89. Mette E.Skindersoe, Morten Alhede, Richard Phipps, et al. Effects of Antibioticson Quorum Sensing in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy. 2008, 52: 3648–3663.
    90. Nadine Hoffmann, Baoleri Lee, Morten Hentzer, et al. Azithromycin Blocks Quorum Sensing and Alginate Polymer Formation And Increases the Sensitivity to Serum and Stationary-Growth-Phase Killing of Pseudomonas aeruginosa and Attenuates Chronic P.aeruginosa Lung Infectionin Cftr-/- Mice. Antimicrobial Agents and Chemotherapy. 2007, 51: 3677–3687.
    91. Richard J.Gillis, Kimberly G.White, Kyoung-Hee Choi, et al. Molecular Basis of Azithromycin-Resistant Pseudomonas aeruginosa Biofilms. Antimicrobial Agents and Chemotherapy. 2005, 49: 3858–3867.
    92. Rasmussen, T.B., Bjarnsholt, T., Skindersoe, M.E., et al. Screening for quorum-sensing inhibitors (QSI) by use of A novel genetic system, the QSI selector. J Bacteriol. 2005, 187:1799–1814.
    93. D. Mavrodi, R. Bonsall, S. Delaney, et al. Functional Analysis of Genes for Biosynthesis of Pyocyanin and Phenazine-1-Carboxamide from Pseudomonas aeruginosa PAO1. Journal of Bacteriology. 2001, 183(21): 6454–6465.
    94. Kohler, T., L.K. Curty, F. Barja, et al. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires ?agella and pili. J.Bacteriol. 2000, 182:5990–5996.
    95. T. S. Murray, B. Kazmierczak. Pseudomonas aeruginosa Exhibits Sliding Motility in the Absence of Type IV Pili and Flagella. Journal of Bacteriology. 2008, 190(8): 2700–2708.
    96. Megan J. Wilson and Iain L. Lamont. Mutational Analysis of an extra cytoplasmic-Function Sigma Factor to InvestigateIts Interactions with RNA Polymerase and DNA. Journal of Bacteriology. 2006, 188(5): 1935–1942.
    97. Morten Hentzer, Gailm. Teitzel, Grantj. Balzer, et al. Alginate over production Affects Pseudomonas aeruginosa Biofilm Structure and Function. Journal of Bacteriology. 2001, 183(18): 5395–5401.
    98.张涛,张爽,胡格,等.盐酸小檗碱CA和黄芩苷对大肠杆菌的体外抑菌作用.中国兽医杂志. 2009,1 (45): 42-43.
    99.童珊珊,金花,徐亚萍,等.绵茵陈提取液中绿原酸的测定及其抗氧化活性研究.江苏中医药. 2009, 4: 57-59.
    100.杨斌,丘岳,王柳萍,等.广西山银花绿原酸体外抗炎作用及分子机制研究.中国药理学通报. 2009, 4:542-545.
    101. Thomas Bjarnsholt, Peter ?strup Jensen, Mette Burm?lle, et al. Pseudomonas aeruginosa tolerance to tobramycin, Hydrogen peroxide and polymorphonuclear leukocytesis quorum-sensing dependent. Microbiology. 2005, 151: 373–383
    102. Stover CK, Pham XQ, Erwin AL,et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen [J]. Nature. 2000, 406(6799): 959-964.
    103. Hassett DJ, Ma JF, Elkins JG, et al. Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol.Microbiol. 1999, 34: 1082–1093.
    104. Bandyk DF,Bergamini TM,Kinney EV,et a1.In situ replacement of vascular proth infected by bacterial biofilm. Vasc Surg. 1991, 13: 575.
    105. Donlan RM.Biofilms and device—associated infections.Emerg infect Dis. 200l, 7 (2): 277-281.
    106. Neut, D., Hendriks, J.G., van Horn, J.R., et al. Pseudomonas aeruginosa biofilm formation and slime excretion on antibiotic-loaded bone cement. Acta Orthop. 2005, 76: 109–114.
    107. Jacobsen F, Baraniskin A, Mertens J, et al. Activity of histone H1.2 in infected burn wounds. Journal of Antimicrobial Chemotherapy. 2005, 55: 735–741.
    108. Dunkley ML, Rajyaguru S, Mc Cue A, et al. Pseudomonas aeruginosa- specific IgG1 and IgG2 subclasses in enhance ment of pulmonary clearance following passive immunisation in the rat. FEMS Immunology and Medical Microbiology. 2003, 39: 37–44.
    109. Szliter EA, Barrett RP, Gabriel MM, et al. Pseudomonas aeruginosa-induced in?ammation in the rat extended-wear contact lens model. Eye and Contact Lens: Science and Clinical Practice. 2006, 32: 12–18.
    110. Cohn LA, Weber A, Phillips T,et al. Pseudomonas aeruginosa infection of respiratory epithelium in a cystic fibrosis xenograft model. Journal of Infectious Diseases. 2001, 183: 919–27.
    111. Hazlett LD, Rosen DD, Berk RS. Pseudomonas eye infections in cyclophosphamide-treated mice. Investigative Ophthalmology and Visual Science. 1977, 16: 649–52
    112. PrestonMJ, FleiszigSM, ZaidiTS, etal. Rapid and sensitive method for evaluating Pseudomonas aeruginosa virulence factors during corneal infections in mice. Infection and Immunity. 1995, 63: 3497–501
    113. Stieritz DD, Holder IA. Experimental studies of the pathogenesis of infections due to Pseudomonas aeruginosa: description of a burned mouse model. Journal of Infectious Diseases.1975, 131: 688–91
    114. Turkay C, Saba R, Sahin N, et al.Effect of chronic Pseudomonas aeruginosa infection on the development of atherosclerosis in a rat model. Clinical Microbiology and Infection.2004, 10: 705–8
    115. van Heeckeren A, Scaria A, Schluchter MD, et al. Delivery of CFTR by a denoviral vector to cystic fibrosis mouse lung in a model of chronic Pseudomonas aeruginosa lung infection. American Journal of Physiology. Lung Cellular and Molecular Physiology. 2004, 286: L717–26.
    116. Van Heeckeren A, Schluchter MD, Xue W, et al. Response to acute lung infection with mucoid Pseudomonas aeruginosa in cystic fibrosis mice. American Journal of Respiratory and Critical Care Medicine. 2006, 173: 288–96.
    117. Yu H, Nasr SZ, Deretic V. Innate lung defences and compromised Pseudomonas aeruginosa clearance in the malnourished mouse model of respiratory infections in cystic fibrosis. Infection and Immunity. 2000, 68: 2142–7
    118. Zaidi TS, Lyczak J, Preston M, et al. Cystic fibrosis trans membrane conductance regulator-mediated corneal epithelial cell Ingestion of Pseudomonas aeruginosa is a key component in the pathogenesis of experimental Murine keratitis. Infection and Immunity. 1999, 67: 1481–92
    119. Emerson, R.J. & Camesano, T.A. Nanoscale investigation of pathogenic microbial adhesion to abiomaterial. Appl Environ Microbiol. 2004, 70: 6012–6022.
    120. Buret, A., Ward, K.H., Olson, M.E. et al. An in vivo model to study the pathobiology of infectious biofilms on biomaterial surfaces. J Biomed Mater Res. 1991, 25: 865–874.
    121. G Ramage, MM Tunney, S Patrick, et al. Formation of propioni bacterium acnes biofilms on orthopaedic biomaterials and their susceptibility to antimicrobials. Biomaterials. 2003, 24(19): 3221-7
    122. K Adachi, T Tsurumoto, A Yonekura, et al. New quantitative image analysis of staphylococcal biofilms on the surfaces of nontranslucent metallic biomaterials. J Orthop Sci. 2007, 12(2): 178-84.
    123. M.R Nejadnik, A F. Engelsman, I.C. Saldarriaga Fernandez, et al. Bacterial colonization of polymer brush-coated and pristine silicone rubber implanted in infected pockets in mice. J. Antimicrob. Chemother. 2008, 62: 1323 - 1325.
    124. Allesen-Holm, M., Barken,K.B.,Yang, L.,et al. A characterization of DNA releasein Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol. 2006, 59: 1114–1128.
    125. Davies, D.G., Parsek, M.R., Pearson, J.P., et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science. 1998, 280: 295–298.
    126. Matz, C., Bergfeld, T., Rice, S.A. et al. Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoangrazing. Environ Microbiol. 2004, 6: 218–226.
    127. IKukavica-Ibrulj and RC Levesque. Animal models of chronic lung infection with Pseudomonas aeruginosa: useful tools for cystic fibrosis studies. Laboratory Animals. 2008, 42: 389–412.
    128. Goldsby, R.A., Osborne, B.A., Kindt, T.J. & Kuby, J. 2003. Immunology, 5th edn. NewYork: W.H. Freeman.
    129. David P. Nicolau, Maryan Nebanevicius, Charlesh. Nightingale, et al. Beneficial Effect of Adjunctive Azithromycinin Treatment of Mucoid Pseudomonas aeruginosa Pneumonia in the Murine Model. Antimicrobial Agents and Chemotherapy.1999, 43: 3033–3035.
    130. L.D. Christensen, C Moser, Peter?. Jensen. et al. Impact of Pseudomonas aeruginosa quorum sensing on biofilm persistence in an in vivo intraperitoneal foreign-body infection model. Microbiology. 2007, 153: 2312–2320
    131. S. S. Pedersen, A. Kharazmi, F. Espersen, et al. Pseudomonas aeruginosa Alginate in Cystic Fibrosis Sputum and the Inflammatory Response. Infection and Immunity. 1990, 58(11): 3363-3368.
    132. A. S. Bayer, D. P. Speert, S. Park, et al. Functional Role of Mucoid Exopolysaccharide (Alginate) in Antibiotic-Induced and Polymorphonuclear Leukocyte-Mediated Killing of Pseudomonas aeruginosa. Infection and Immunity. 1991, 59(1): 302-308.
    133. G. T. Mai, W. K. Seow, G. B. Pier, et al. Suppression of Lymphocyte and Neutrophil Functions by Pseudomonas aeruginosa Mucoid Exopolysaccharide (Alginate): Reversal by Physicochemical, Alginase, and Specific Monoclonal Antibody Treatments. Infection and Immunity. 1993, 61(2): 559-564
    134. L.M.Cobb, J. C.Mychaleckyj, D. J. Wozniak, et al. Pseudomonas aeruginosa Flagellin and Alginate Elicit Very distinct Gene Expression Patterns in Airway Epithelial Cells: Implications for Cystic Fibrosis Disease. The Journal of Immunology. 2004, 173: 5659–5670
    135. J.G. Leid, C.J. Willson, M.E.Shirtliff, et al. The Exopolysaccharide Alginate Protects Pseudomonas aeruginosa Biofilm Bacteria from IFN-γ-Mediated Macrophage Killing. The Journal of Immunology. 2005, 175: 7512–7518.
    136. Z. Song, H. Wu, O Ciofu, et al. Pseudomonas aeruginosa alginate is refractory to Th1 immune response and impedes host immune clearance in a mouse model of acute lung infection. Journal of Medical Microbiology. 2003, 52: 731–740.
    137. Carol D. McClure and Neal L. Schiller. Effects of Pseudomonas aeruginosa rhamnohpIds on human monocyte-derived macrophages. J. Lcukoc. Biol. 1992, 51: 97-102;
    138. Gary Telford, D.Wheeler, Paul Williams, et al. The Pseudomonas aeruginosa Quorum-Sensing Signal Molecule N-(3-Oxododecanoyl)- L-Homoserine Lactone Has Immunomodulatory Activity. Infection and Immunity. 1998, 66(1): 36–42.
    139. Smith RS, Harris SG, Phipps R, et al.The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl) homoserine lactone contributes to virulence and induces inflammation in vivo, J Bacteriol. 2002,184(4): 1132-39.
    140. Pei-Ching Shih and Ching Tsan Huang. Effects of QS deficiency on pseudomonas aerginosa biofilm formation and antibiotic resistance. Jounal of antimicrobial chemotherapy. 2002, 49: 309-314.
    141. Thomas Bjarnsholt and Michael Givskov. Quorum-sensing blockade as a strategy for enhancing host defences against bacterial pathogens. Phil.Trans.R.Soc.B. 2007, 362: 1213–1222.
    142. O’Toole, G. A., and R. Kolter. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol. 1998, 30: 295-304.
    143. O’Tooh G,Kaplan H B,Kolter R. Biofilm formation as microbial development[J].Annu Rev Microbiol. 2000, 54: l 49-79.
    144. Towako N, Hiroshi M, Junichi K. Effect of Erythromycin on Chronic Respiratory Infection Caused by Pseudomonas aeruginosa with Biofilm Formation in an Experimental Murine Model. Antimicrobial agents and chemotherapy. 2004, 48(6): 2251-2259.
    145. Katsunori Y,Kazunori T,Yoshifumi I.et al.Effect of clarithromycin on chronic respiratory infection caused by Pseudomonas aeruginosa with biofilm formation in an experimental murine model. Antimicrobial chemotherapy. 2002, 49: 867-870.
    146. Kievit D, Gillis R, Marx S.et al.Quorum-sensing genes in Pseudomonas aeruginosa biofilm: their role and expression patterns. Appl Environ Microbiol. 2001, 67(4): 1865-1873.
    147. Genevieve Carfartan, Patrick Gerardin, Dominique Turck.et al. Effect of subinhibitory concentrations of azithromycin on adherence of Pseudomonas aeruginosa to bronchial mucins collected from cystic fibrosis patients.Antimicrobial Chemotherapy. 2004, 686-688.
    148. Andres Plata Stapper, Giri Narasimhan, DennisE. Ohman, et al. Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation. Journal of Medical Microbiology.2004, 53: 679–690
    149. J. A. Simpson, S. E. Smith and R.T. Dean. Alginate Inhibition of the Uptake of Pseudomonas aeruginosa by Macrophages. Journal of General Microbiology. 1988, 134: 29-36.
    150. Favre-Bonte, Kohler T, Delden C V. Biofilm formation by Pseudomonas aeruginosa: role of the C4-HSL cell-to-cell signal and inhibition by azithromycin. Antimicrob Chemother. 2003, 52: 598-604.
    151. Ichimiya T, Takeoka K, Hiramatsu K, et al. The influence of azithromycin on the biofilm formation of Pseudomonas aeruginosa in vitro. Chemotherapy. 1996, 42: 186-191.
    152. Moskowitz S M, Foster J M, Emerson J, et al. Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. Clin Microbiol. 2004, 42: 1915-1922.
    153. Tateda K, Standiford TJ, Pechere JC, Yamaguchi K. Regulatory effects of macrolides on bacterial virulence: potential role as quorum-sensing inhibitors. Curr Pharm Des. 2004, 10: 3055-65.
    154. WF Elkhatib, VL Haynes, and AM Noreddin. Microbiological appraisal of levofloxacin activity against Pseudomonas aeruginosa biofilm in combination with different calcium chanel blockers in vitro. J Chemother. 2009, 21(2): 135-43.
    155. T Goto, Y Nakame, M Nishida, and Y Ohi. In vitro bactericidal activities of beta-lactamases, amikacin, and fluoroquinolones against Pseudomonasaeruginosa biofilm in artificial urine. Urology. 1999, 53(5): 1058-62.
    156. Hiroko Ishida, Yoshihisa Ishida, Yuichi Kurosaka, et al. In Vitro and In Vivo Activities of Levofloxacin against Biofilm-Producing Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 1998, 42: 1641 - 1645.
    157. M Shigeta, G Tanaka, H Komatsuzawa, et al. Permeation of antimicrobial agents through Pseudomonas aeruginosa biofilms: a simple method. Chemotherapy. 1997, 43(5): 340-5.
    1. K. Riedel, M. Hentzer, O. Geisenberger, et al. N-Acyl homoserine- lactone-mediated communication between Pseudomonas aeruginosa and Burkholderiacepacia in mixed biofilms. Microbiology. 2001, 147: 3249–3262
    2. Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol. 2001, 55: 165-99.
    3. Schauder S, Bassler BL. The languages of bacteria. Genes. 2001, 15(12): 1468-80.
    4. McKnight, S.L., B.H.Iglewski, and E.C.Pesci. The Pseudomonas quinolone signal regulates rhl quorum sensingin Pseudomonas aeruginosa. J. Bacteriol. 2000, 182: 2702–2708.
    5. Pesci, E.C, J.B.Milbank, J.P.Pearson, et al. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA. 1999, 96: 11229–11234.
    6. Valerie Dekimpe and Eric Deziel. Revisiting the quorum-sensing hierarchy in Pseudomonas aeruginosa: the transcriptional regulator RhlR regulates LasR-specific factors. Microbiology. 2009, 155: 712–723.
    7. M.Worth Calfee, JohnG.Shelton, James A.McCubrey, et al. Solubility and Bioactivity of the Pseudomonas Quinolone Signal Are Increased by a Pseudomonas aeruginosa-Produced Surfactant. Infection and Immunity, 2005, 73(2): 878–882.
    8. Passador L, Cook JM, Gambello MJ, et al. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science. 1993, 260: 1127-30.
    9. Pearson JP, Gray KM. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci. USA. 1994, 91(1): 197-201
    10. Ochsner, U.A., A. Fiechter, and J. Reiser. Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyl transferase involved in rhamnolipid biosurfactant synthesis. J.Biol.Chem. 1994, 269: 19787–19795.
    11. Deziel, E., Lepine, F., Milot, S., et al. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkyl quinolines (HAQs) reveals a role for 4-hydroxy-2-heptyl quinoline in cell-to-cell communication. Proc Natl AcadSci USA. 2004, 101: 1339–1344.
    12. James PP, Delden CV, Higlews kiI B. Active efflux and diffusion are involved intransport of pseu- domonas aeruginosa cell to cell signals. J.Bacteriol. 1999, 181(4): 1203-10.
    13. de Kievit TR, Iglewski BH. Bacterial quorum sensing in pathogenic relationships. Infect Immun. 2000, 68(9): 4839-49.
    14. David L. Erickson, Ryan Endersby, Amanda Kirkham, et al. Pseudomonas aeruginosa Quorum-Sensing Systems May Control Virulence Factor Expression in the Lungs of Patients with Cystic Fibrosis. Infection and Immunity. 2002, 70: 1783–1790.
    15. Rumbaugh KP, Griswold JA, Iglewski BH,et al. Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infection and Immunity. 1999, 67 (11): 5854-62.
    16. Hong Wu, Zhijun Song, Morten Hentzer, et al. Detection of N-acyl homoserinelactones in lung tissues of mice infected with Pseudomonas aeruginosa. Microbiology .2000, 146: 2481–2493.
    17. H.zhu, S. Thuruthyil and M.P.Willcox. Determination of quorum- sensing signal molecules and virulence factors of Pseudomonas aeruginosa isolates from contact lens-induced microbial keratitis. J.Med. Microbiol. 2002, 51: 1063–1070.
    18. Swift, S., Isherwood, k.E., Atkinson, S., et al. Quorum sensing in Aeromonas and Yersinia. In Microbial signaling and communication. 1999. PP 85-104. Cambridge University Press.
    19. Swift S, Throup JP, Williams, et al. Quorum sensing: a population- density component in the determination of bacterial phenotype. 1996, 21: 214-19.
    20. Di Mango E, Zar HJ, Bryan R,et al. Direrse Pseudomonas aeruginosa gene products stimulate respiratory epithelial cells to produce interleukin-8. J Clin Invest.1995, 96(5): 2204-2210.
    21. Smith RS, Eedyk Er, Springer TA, et al. IL-8 production in human lung fibroblasts and epithelial cells activated by the Pseudomonas autoinducer N-3-oxododecanoyl homoserine lactone is transcriptionally regulated by NF-kappa B and activator protein-2. J Immunol. 2001, 167: 366-74.
    22. Chun CK, Ozer EA, Welsh MJ, et al. Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. PNAS, 2000, 10: 3587-90.
    23. Gary Telford, D.Wheeler, Paul Williams, et al. The Pseudomonas aeruginosa Quorum-Sensing Signal Molecule N-(3-Oxododecanoyl)- L-Homoserine Lactone Has Immunomodulatory Activity. Infection and Immunity.1998, 66(1): 36–42.
    24. Smith RS, Harris SG, Phipps R, et al.The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl) homoserine lactonecontributes to virulence and induces inflammation in vivo. J Bacteriol. 2002, 184(4): 1132-39.
    25. D.S.W. Hooi, B. W. Bycroft, S.R. Chhabra, et al. Differential Immune Modulatory Activity of Pseudomonas aeruginosa Quorum-Sensing Signal Molecules. Infection and Immunity. 2004, 72(11): 6463–6470
    26. Zimmermann S, Wagner C, Muller W, et al. Induction of neutrophil chemotaxis by the quorum-sensing molechle N-3Oxo dodecanoyl- l-homoserinelactone. Infection and Immunity. 2006, 74 (10): 5687-92.
    27. Wagner C, Zimmmermann S, Brenner-Weiss G, et al. The quorum- sensing molecule N-3-oxododecanoyl homoserine lactone (3-O-C12-HSL) enhances the host defence by activating human polymorphonuclear neutrophils (PMN). 2007; 387: 481-487.
    28. Reiling SA, Jansen JA, Henley BJ, et al. Prc protease promotes mucoidy in mucA mutants of Pseudomonas aeruginosa. J. Microbiology. 2005, 151: 2251- 2261.
    29. J. A. Simpson, S. E. Smith and R.T. Dean. Alginate Inhibition of the Uptake of Pseudomonas aeruginosa by Macrophages. Journal of General Microbiology. 1988, 134: 29-36.
    30. S. S. Pedersen, A. Kharazmi, F. Espersen, et al. Pseudomonas aeruginosa Alginate in Cystic Fibrosis Sputum and the Inflammatory Response. Infection and Immunity. 1990, 58(11): 3363-3368.
    31. A. S. Bayer, D. P. Speert, S. Park, et al. Functional Role of Mucoid Exopolysaccharide (Alginate) in Antibiotic-Induced and Polymorphonuclear Leukocyte-Mediated Killing of Pseudomonas aeruginosa. Infection and Immunity. 1991, 59(1): 302-308.
    32. G. T. Mai, W. K. Seow, G. B. Pier, et al. Suppression of Lymphocyteand Neutrophil Functions by Pseudomonas aeruginosa Mucoid Exopolysaccharide (Alginate): Reversal by Physicochemical, Alginase, and Specific Monoclonal Antibody Treatments. Infection and Immunity. 1993, 61(2): 559-564
    33. L.M.Cobb, J. C.Mychaleckyj, D. J. Wozniak, et al. Pseudomonas aeruginosa Flagellin and Alginate Elicit Very distinct Gene Expression Patterns in Airway Epithelial Cells: Implications for Cystic Fibrosis Disease. The Journal of Immunology. 2004, 173: 5659–5670
    34. J.G. Leid, C.J. Willson, M.E.Shirtliff, et al. The Exopolysaccharide Alginate Protects Pseudomonas aeruginosa Biofilm Bacteria from IFN-γ-Mediated Macrophage Killing. The Journal of Immunology. 2005, 175: 7512–7518.
    35. Z. Song, H. Wu, O Ciofu,et al. Pseudomonas aeruginosa alginate is refractory to Th1 immune response and impedes host immune clearance in a mouse model of acute lung infection. Journal of Medical Microbiology. 2003, 52: 731–740.
    36. Parmely, M.J. 1993. Pseudomonas metallo proteases and the host-microbe relationship, p.79–94. In R.Fick (ed.), Pseudomonas aeruginosa the opportunist: pathogenesis and disease. CRC Press, Boca Raton, Fla.
    37. Hong, Y. and B. Ghebrehiwet. Effect of Pseudomonas aeruginosa elastase and alkaline protease on serum complement and isolated components C1q and C3. Clin.Immunol. Immuno pathol. 1992, 62: 133–138.
    38. Duane R. Schultz and Kent D. Miller. Elastase of Pseudomonas aeruginosa: Inactivation of Complement Components and Complement-Derived Chemotactic and Phagocytic Factors. Infection and Immunity. 1974, 10: 128-135.
    39. Twining, S.S., S.E. Kirschner, L.A. Mahnke, et al. Effect of Pseudomonas aeruginosa elastase, alkaline protease, and exotoxin A on corneal proteinases and proteins. Investig. Ophthalmol.Vis.Sci. 1993, 34: 2699–2712.
    40. Freya Senf, Jan Tommassen and Margot Koster. Polar secretion of proteins via the Xcp type II Secretion systemin Pseudomonas aeruginosa. Microbiology. 2008, 154: 3025–3032.
    41. L.G. Doring, W. Goldstein, A. Roll, et al. Role of Pseudomonas aeruginosa Exoenzymes in Lung Infections of Patients with Cystic Fibrosis. Infection and Immunity. 1985, 49 (3): 557-562.
    42. A. Kharazmi, L Gerd Doring, N. H0iby, et al. Interaction of Pseudomonas aeruginosa Alkaline Protease and Elastase with Human Polymorphonuclear Leukocytes in Vitro. Infection and Immunity. 1984, 43(1): 161-165
    43. Bente K. Pedersen and Arsalan Kharazmi. Inhibition of Human Natural Killer Cell Activity by Pseudomonas aeruginosa Alkaline Protease and Elastase. Infection and Immunity. 1987, 55 (4): 986-989.
    44. Olgerts R. Pavlovskis and Bengt Wretlind. Assessment of protease (Elastase) as a Pseudomonas aeruginosa Virulence Factor in Experimental Mouse Burn Infection. Infection and Immunity. 1979, 24 (1): 181-187
    45. D. E. Woods, S. J. Cryz, T. R. L. Friedman, et al. Contribution of Toxin A and Elastase to Virulence of Pseudomonas aeruginosa in Chronic Lung Infections of Rats. Infection and Immunity. 1982, 36 (3):1223-1228.
    46. D.Mavrodi, R.Bonsall, S.Delaney, et al. Functional Analysis of Genes for Biosynthesis of Pyocyanin and Phenazine-1-Carboxamide from Pseudomonas aeruginosa PAO1. Journal of Bacteriology. 2001, 183 (21): 6454–6465.
    47. Budzikiewicz, H. Secondary metabolites from ?uorescent pseudomonads. FEMS Microbiol. 1993, 104: 209–228.
    48. Friedheim, E., and L. Michaelis. Potentiometric study of pyocyanine. J. Biol. Chem. 1931, 91: 355-368.
    49. Frost, G., and H. Rosenberg. The inducible citrate-dependent iron transport system in Escherichia coli K12. Biochim. Biophys. Acta. 1973, 330: 90-101.
    50. Hassan, H. M., and I. Fridovich. Mechanism of the antibiotic action of pyocyanine. J. Bacteriol. 1980, 141: 156-163.
    51. Cox, C. D. Iron uptake with ferripyochelin and ferric citrate by Pseudomonas aeruginosa. J. Bacteriol. 1980, 142: 581-587.
    52. Yunxia Q. O’Malley, Krzysztof J.Reszka, GeorgeT. Rasmussen,et al. The Pseudomonas secretory product pyocyan in inhibits Catalase activity in human lung epithelial cells. AmJ Physiol Lung Cell Mol Physiol. 2003, 285: L1077–L1086.
    53. Christian Schwarzer, Zhu Fu, Horst Fischer, et al. Redox-independent Activation of NF-γB by Pseudomonas aeruginosa Pyocyanin in a Cystic Fibrosis Airway Epithelial Cell Line. The journal of biological chemistry. 2008, 283(40): 27144–27153.
    54. LynneR.Usher, RoderickA. Lawson, Ian Geary, et al. Induction of Neutrophil Apoptosis by the Pseudomonas aeruginosa ExotoxinPyocyanin: A Potential Mechanism of Persistent Infection. The Journal of Immunology. 2002, 168: 1861–1868.
    55. Gee W. Lau, Huimin Ran, Fansheng Kong, et al. Pseudomonas aeruginosa Pyocyanin is Critical for Lung Infection in Mice. Infectionand immunity. 2004, 72: 4275–4278.
    56. D.C. Look, L.L. Stoll, S.A. Romig, et al. Pyocyanin and Its Precursor Phenazine-1-Carboxylic Acid Increase IL-8 and Intercellular Adhesion Molecule-1 Expression in Human Airway Epithelial Cells by Oxidant-Dependent Mechanisms. The Journal of Immunology. 2005, 175: 4017–4023.
    57. Miller, R.A., and B.E. Britigan. Role of oxidants in microbial patho-physiology. Clin. Microbiol. 1997, 10: 1–18.
    58. Bals, R., D.J. Weiner, and J.M. Wilson. The innate immune system in cystic fibrosis lung disease. J.Clin. Investig. 1999, 103: 303–307.
    59. Jamesg. Elkins, Danielj. Hassett, Philips. Stewart, et al. Protective Role of Catalasein Pseudomonas aeruginosa Biofilm Resistance to Hydrogen Peroxide. Applied and Environmental Microbiology. 1999, 65: 4594–4600
    60. Thomas Bjarnsholt, Peter?strup Jensen, Mette Burm?lle, et al. Pseudomonas aeruginosa tolerance to tobramycin, Hydrogen peroxide and polymorphonuclear leukocytesis quorum-sensing dependent. Microbiology. 2005, 151: 373–383
    61. Deziel. E., F. Lepine, S. Milot, et al. RhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy) alkanoicacids (HAAs), the precursors of rhamnolipids. Microbiology. 2003, 149: 2005–2013.
    62. Rahim, R., U.A.Ochsner, C.Olvera, et al. Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyl transferase, an enzyme responsible for dirhamnolipid biosynthesis. Mol.Microbiol. 2001, 40:708–718.
    63. Kohler, T., L.K.Curty, F.Barja, et al. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires ?agella and pili. J.Bacteriol. 2000, 182:5990–5996.
    64. Mary E.D, Nicky C.C, and G.A. O’Toole. Rhamnolipid Surfactant Production Affects Biofilm Architecture in Pseudomonas aeruginosa PAO1. J Bacteriol. 2003, 185(3): 1027–1036.
    65. Carol D. McClure and Neal L. Schiller. Effects of Pseudomonas aeruginosa rhamnohpIds on human monocyte-derived macrophages. J. Lcukoc. Biol.1992, 51: 97-102;
    66. Peter?. Jensen, Thomas Bjarnsholt, Richard Phipps, et al. Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology. 2007, 153: 1329–1338.
    67. L. Zulianello, C. Canard, T. Kohler, et al. Rhamnolipids Are Virulence Factors That Promote Early In filtration of Primary Human Airway Epithelia by Pseudomonas aeruginosa. Infection and Immunity. 2006, 74 (6): 3134–3147.
    68. Azghani, A.O., T.Bedinghaus and R.Klein. Detection of elastase from Pseudomonas aeruginosa in sputum and its potential role in epithelial cell permeability. Lung. 2000, 178: 181–189.
    69. Hedstrom R C, Funk C R, Kaper J B, et al. Cloning of a gene involved in regulation of exotoxin A expression in Pseudomonas aeruginosa.Infect Immun.1986, 51: 37–42.
    70. WestS EH, Sample AK, Runyen-Janecky LJ.The vfr gene product, required for Pseudomonas aeruginosa exotoxin A and protease production, belongs to the cyclic AMP receptor protein family. J.Bacteriol. 1994, 176: 7532–7542.
    71. Gambello MJ, Kaye S, Iglewski BH. LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene and an enhancer of exotoxin A expression. Infect Immun. 1993, 61 : 1180–1184.
    72. Ogata, M., V. K. Chaudhary, I. Pastan, et al. 1990. Processing of Pseudomonas exotoxin by a cellular protease results in the generation of a 37,000 Da toxin fragment that is translocated to the cytosol. J.Biol. Chem. 1990, 265: 20678–20685.
    73. J Schumann, S Angermuller, R Bang, et al. Acute Hepatotoxicity of Pseudomonas aeruginosa Exotoxin A in Mice Depends on T Cells and TNF. The Journal of Immunology. 1998, 161: 5745–5754.
    74. S. Miyazaki, T. Matsumoto, K. Tateda, et al. Role of exotoxin A in inducing severe Pseudornonas aeruginosa infections in mice. J. Med. Microbiol. 1995, 43: 169-175
    75. M.J. Schultz, A. W. Rijneveld,S. Florquin, et al. Impairment of host defence by exotoxin A in Pseudornonas aeruginosa pneumonia in mice. J. med. Microbial. 2001, 50: 822-827.
    76. C.V.Gallant, T.L. Raivio, J.C.Olson, et al. Pseudomonas aeruginosa cystic fibros is clinical Isolates produce exotoxin A with altered ADP-ribosyl transferase activity and cytotoxicity. Microbiology. 2000, 146: 1891–1899.
    77. Storey, D.G., Ujack, E.E. & Rabin, H.R. Population transcriptaccumulation of Pseudomonas aeruginosa exotoxin A and elastase in sputa from patients with cystic brosis. Infect Immun. 1992, 60: 4687-4694.
    78. Raivio, T.L., Ujack, E.E., Rabin, H.R. & Storey, D.G. Association between transcript levels of the Pseudomonas aeruginosa regA, regB, and toxA genes in sputa of cystic brosis patients. Infect Immun. 1994, 62: 3506-3514.
    79. Jaffar-Bandjee, M.C., Lazdunski, A., Bally, M. et al. Production of elastase, exotoxinA, and alkaline protease in sputa during pulmonary exacerbation of cystic brosis in patients chronically infected by Pseudomonas aeruginosa. J Clin Microbiol.1995, 33: 924-929.
    80. Moss, R.B., Hsu, Y.-P., Lewiston, N.J., et al. Association of systemic immune complexes, complement activation and antibodies to Pseudomonas aeruginosa lipopolysaccharide and exotoxin A With mortality in cystic brosis. AmRevRespirDis .1986, 133: 648-652.
    81. Zoeller, R.A., P.D. Weightman, M.S. Anderson, et al. Accumulation of lysophosphatidylinositol in RAW264.7 macrophage tumor cells stimulated by lipid A precursors. J. Biol. Chem. 1987, 262: 17212–17220.
    82. Beutler, B., and A.Cerami. Cachectin and tumour necrosis factoras two sides of the same biological coin. Nature. 1986, 320: 584–588.
    83. Koide, S., and R.M. Steinman. Induction of murine interleukin 1: stimuli and responsive primary cells. Proc.Natl.Acad.Sci.USA. 1987, 84: 3802–3806.
    84. Kurland, J.I., and R. Bockman. Prostagland in Eproduction by human blood monocytes and mouse peritoneal macrophages. J.Exp.Med. 1978,147:952–957.
    85. Wright, S.D., and R.N. Kolesnick. Does endotoxin stimulate cells by mimicking ceramide? Immunol. Today 1995, 16: 297–302.
    86. Zaidi, T.S., S.M.J. Fleiszig, M.J. Preston. Lipopolysaccharide outer core is a ligand for corneal cell binding and Ingestion of Pseudomonas aeruginosa. Invest. Ophthalmol.VisualSci.1996. 37: 976–986.
    87. T.S. Murray, B. Kazmierczak. Pseudomonas aeruginosa Exhibits Sliding Motility in the Absence of Type IV Pili and Flagella. Journal of Bacteriology. 2008, 190(8): 2700–2708.
    88. TC. Montie, D. Doyle-Huntzinger, R.C. Craven, et al. Loss of Virulence Associated with Absence of Flagellum in an Isogenic Mutant of Pseudomonas aeruginosa in the Burned-Mouse Model. Infection and Immunity. 1982, 38: 1296-1298.
    89. D. Draket and T.C. Montie. Flagella, Motility and Invasive Virulence of Pseudomonas aeruginosa. Journal of General Microbiology. 1988, 134: 43-52.
    90. Hazan R, He J, Xiao G, etal. HomeostaticInter play between Bacterial Cell-Cell Signaling and Iron in Virulence. 2010, PLoS Pathog 6(3): e1000810.doi:10.1371/journal.ppat.1000810
    91. Glenn M. Patriquin, Ehud Banin, Christie Gilmour, et al. In?uence of Quorum Sensing and Iron onTwitching Motility and Biofilm Formationin Pseudomonas aeruginosa. Journal of Bacteriology. 2008, 190:662–671
    92. VincentT. Lee, RogerS. Smith, Burkhard Tummler, et al. Activities of Pseudomonas aeruginosa Effectors Secreted by the Type III Secretion System in Vitro and during Infection. Infection and Immunity. 2005, 73:1695–1705.
    93. Anja Krick, Stefan Kehraus, Leo Eberl, et al. A Marine Mesorhizobium sp. Produces Structurally Novel Long-Chain N-Acyl-L-Homoserine Lactones. Applied and Environmental Microbiology. 2007, 73: 3587–3594
    94. Melanie George, George Pierce, Manal Gabriel, et al. Effects of Quorum Sensing Molecules of Pseudomonas aeruginosa on Organism Growth, ElastaseB Production,and Primary Adhesion to Hydrogel Contact Lenses. Eye & Contact Len. 2005, 31(2):54–61.
    95. LisaA. Morici, AlexanderJ. Carterson, VictoriaE. Wagner, et al. Pseudomonas aeruginosa AlgR Represses the Rhl Quorum-Sensing System in a Biofilm-Specific Manner. Journal of Bacteriology. 2007, 189: 7752–7764.
    96. Alessandra Bragonzi, Lutz Wiehlmann, Jens Klockgether, et al. Sequence diversity of the mucABD locus in Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Microbiology. 2006, 152: 3261–3269.
    97. Lynn F. Wood and Dennis E. Ohman. Independent Regulation of MucD, an HtrA-Like Protease in Pseudomonas aeruginosa, and the Role of Its Proteolytic Motif in Alginate Gene Regulation. Journal of Bacteriology. 2006, 188: 3134–3137.
    98. Aaron M. Firoved, J.Cliff Boucher and Vojo Deretic. Global Genomic Analysis of AlgU-Dependent Promoters (Sigmulon) in Pseudomonas aeruginosa and Implications for In?ammatory Processesin Cystic Fibrosis. Journal of Bacteriology. 2002, 184(4): 1057–1064.
    99. AnneH. Tart, Michael J.Blanks, and Daniel J.Wozniak. The AlgT-Dependent Transcriptional Regulator AmrZ (AlgZ) Inhibits Flagellum Biosynthesis in Mucoid, Nonmotile Pseudomonas aeruginosa Cystic Fibrosis Isolates. Journal of Bacteriology. 2006,188 (18): 6483–6489.
    100. Uwe Remminghorst and Bernd H.A. Rehm. In Vitro Alginate Polymerization and the Functional Role of Alg8 in Alginate Production by Pseudomonas aeruginosa. Applied and Environmental Microbiology. 2006, 72: 298–305.
    101. KerianK. Grande, JeanK. Gustin, Efrat Kessler,et al. Identification of Critical Residues in the Propeptide of LasA Protease of Pseudomonas aeruginosa Involved in the Formation of a Stable Mature Protease. Journal of Bacteriology. 2007, 189: 3960–3968.
    102. Brigitte A. Cowell, Sally S.Twining, Jeffrey A. Hobden, et al. Mutation of lasA and lasB reduces Pseudomonas aeruginosa invasion of epithelial cells. Microbiology. 2003, 149: 2291–2299 .
    103. James J. Mun, Connie Tam, David Kowbel, et al. Clearance of Pseudomonas aeruginosa from a Healthy Ocular Surface Involves Surfactant ProteinD and Is Compromised by Bacterial Elastaseina Murine Null-Infection Mode. Infection and Immunity. 2009, 77: 2392–2398.
    104. Man H. Choy, Fiona Stapleton, Mark D.P. Willcox, et al. Comparison of virulence factors in Pseudomonas aeruginosa strains isolated from contact lens-and non-contactlens-related keratitis.Journal of Medical Microbiology. 2008, 57:1539–1546.
    105. Hua zhu, Sophyj. Thuruthyil and Mark D.P.Willcox, et al. Determination of quorum-sensingsignalmolecules and virulence factors of Pseudomonas aeruginosa isolates from contact lens-induced microbialkeratitis. J. Med. Microbiol. 2002, 51: 1063– 1070.
    106. S.Sarkisova, M.A. Patrauchan, D.Berglund, et al. Calcium-Induced Virulence Factors Associated with the Extracellular Matrix of Mucoid Pseudomonas aeruginosa Biofilms. Journal of Bacteriology. 2005, 187: 4327–4337.
    107. Balazs Rada, Kristen Lekstrom, Sorin Damian, et al. The Pseudomonas Toxin Pyocyan in Inhibits the Dual Oxidase-Based Antimicrobial System as It Imposes Oxidative Stresson Airway Epithelial Cells. The Journal of Immunology. 2008, 181:4883–4893.
    108. Alexa Price-Whelan, Lars E. P. Dietrich, and Dianne K. Newman. Pyocyanin Alters Redox Homeostasis and Carbon Flux through Central Metabolic Pathways in Pseudomonas aeruginosa PA14. Journal of Bacteriology. 2007, 189: 6372–6381.
    109. Darcie J. Miller, Yong-Mei Zhang, CharlesO. Rock. Structure of RhlG, an Essential Ketoacyl Reductase in the Rhamnolipid Biosynthetic Pathway of Pseudomonas aeruginosa. The journal of biological chemistry. 2006, 281 (26):18025–18032.
    110. Kun Zhu and Charles O. Rock RhlA Convertsβ-Hydroxyacyl-Acyl Carrier Protein Intermediates in Fatty Acid Synthesis to the Hydroxy decanoyl-β-Hydroxy decanoate Component of Rhamnolipids in Pseudomonas aeruginosa. Journal of Bacteriology. 2008, 190(9): 3147–3154.
    111. KatrinA. Muhlen, Jens Schumann, Frederick Wittke, et al. NK Cells, but Not NKT Cells, Are Involved in Pseudomonas aeruginosa Exotoxin A-Induced Hepatotoxicity in Mice. The Journal of Immunology. 2004, 172: 3034–3041.
    112. Christopher E. Jenkins, Ania Swiatoniowski, Andrew C. Issekutz, et al. Pseudomonas aeruginosa Exotoxin A Induces Human Mast Cell apoptosis by a Caspase-8 and -3-dependent Mechanism. The Journal of Biological Chemistry. 2004279(35): 37201–37207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700