用户名: 密码: 验证码:
类烟碱衍生物的合成及生物活性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新烟碱类杀虫剂是以天然烟碱为模型,经结构改进而发现的性能优异的化学杀虫剂,与天然烟碱具有相同的作用方式,即作用于昆虫的烟碱型乙酰胆碱受体(nAChR)。新烟碱类杀虫剂的成功开发是杀虫剂发展史上的一个重大突破,因其杀虫活性高、适当的田间稳定性和持效时间长等优点在虫害防治方面发挥了重要的作用。但是随着新烟碱类杀虫剂使用年限的增加,害虫对其抗药性也日渐增长。因此,开发新型的烟碱类杀虫剂就显得越来越重要。本文以硝基亚甲基(亚胺基)新烟碱类化合物为先导,合成了五类结构新颖的烟碱类化合物,并对其生物活性和构效关系进行了初步的分析。
     1.以硝基乙烯基新烟碱类化合物为先导,设计并通过还原的方法合成了20个用传统方法难以合成的不饱和烟碱类醛肟化合物。通过实验分析认为,制备此类醛肟的反应是通过还原硝基的酸式结构进行的,而不是通过通常所认为的硝式结构进行的。单晶分析结果显示,醛肟的羟基处于反式结构。此烟碱类醛肟化合物显示出生物活性的多样性,具有较高的除草活性和中等程度的杀虫活性。化合物Ⅱ-2b(1-(5-氯-2-噻唑甲基)-4,5-二氢咪唑-2-甲醛肟)在100 mg/L的浓度下对马唐和鲤肠地下部分的抑制率达到90%以上;化合物Ⅱ-2g(1-(2-噻吩甲基)-4,5-二氢咪唑-2-甲醛肟)在100 mg/L的浓度下对鲤肠地上/地下部分的抑制率均达到80%以上。化合物Ⅱ-2a(1-(6-氯-3-吡啶甲基)-4,5-二氢咪唑-2-甲醛肟)和Ⅱ-2b在50 mg/L的浓度下对孑孓的杀死率可达100%,在500 mg/L的浓度下对豆蚜的杀死率分别为100%和93%。
     2.以不饱和烟碱类醛肟为原料,设计并合成了5个含芳香杂环的反式烟碱类肟醚化合物。并利用该烟碱类醛肟与酰氯反应,通过反应中所产生的酸催化相应的肟酯发生分子内消除-重排反应,设计并合成了12个用传统方法难以合成的烟碱类咪唑醇酯化合物。两类烟碱衍生物显示出生物活性的多样性,具有接近中等程度的杀虫和除草活性。其中化合物Ⅲ-2a(2-氯-苯甲酸-1-(6-氯-3-吡啶甲基)-4,5-二氢咪唑基酯)在100 mg/L的浓度下对马唐地上部分的抑制率为50%,地下部分的抑制率为85%。
     3.以硝基乙烯基新烟碱类化合物为原料,设计并合成了37个利用共轭体系和双环结构固定硝基为顺式构型的新烟碱类化合物。所有化合物对孑孓表现出良好的杀灭活性,其中Ⅳ-1f(N-{2-[1-(6-氯-3-吡啶甲基)-咪唑啉基-乙烯基]-2-硝基-硫酰基}-4-氟-苯甲酰胺)和Ⅳ-2f(N-[1-(6-氯-3-吡啶甲基)-7-硝基-咪唑并异噻唑-乙烯基]-4-氟-苯甲酰胺)在1mg/L的浓度下对孑孓的杀死率为100%;部分化合物对豆蚜表现出中等程度的杀灭活性,其中含氟化合物Ⅳ-3d(N-{1-[N-(6-氯-3-吡啶甲基)-乙胺]-1’-甲胺-2-硝基-乙烯基-硫酰基}-2-氟-苯甲酰胺)和Ⅳ-3m(N-{1-[N-(6-氯-3-吡啶甲基)-乙胺]-1’-甲胺-2-硝基-乙烯基-硫酰基}-3,4-二氟-苯甲酰胺)在500 mg/L浓度下对豆蚜的杀死率为100%,其他大部分的含氟化合物在此浓度下对豆蚜的杀死率可达90%以上。
     4.以硝基乙烯基新烟碱类化合物为先导,通过引入第二个强吸电基团将硝基固定为反式构型,设计并合成了14个具有双吸电基团的烟碱类化合物,其中化合物Ⅴ-1a(2-氯-5-(2-硝基-2-腈基-乙烯基-1-咪唑基甲基)-吡啶)在500 mg/L的浓度下对豆蚜的杀死率为100%。
     5.根据新的烟碱类杀虫剂与受体的π-π堆积作用方式,设计并合成了31个不含强吸电基团但具有较大共轭体系的烟碱类化合物,并以其为配体把荧光染料中经常使用的强吸电性基团BF2通过配位键的形式引入,设计并合成了24个氟硼烟碱类配位化合物。生物活性测试结果表明,氟硼配合物比其配体具有更高的杀虫和杀菌活性。
As the milestone of the history of insecticides, neonicotinoid insecticides, derived from natural nicotine and shared the same action site as nicotine:nicotinic acetylcholine receptors (nAChR), played an important role in crop protection. Now the development of novel nicotinoid insecticides has been the focus of intense research today because of the resistance to neonicotinoids in some regions. In this thesis five series of novel structure neonicotinoid analogues were designed and synthesized with vinylnitro (iminonitro) neonicotinoid as lead compound. The structure and bioactivity relationships were also studied for seek of lead nicotinoid insecticides.
     1. Twenty unsaturated nicotinoid aldoxime compounds were designed and conveniently synthesized by reduction of the corresponding vinylnitro compounds with SnCl2-2H2O. Some evidences from a brief investigation suggest that these aldoximes be formed by reduction of the aci form of nitro, not the usually nitro form. X-ray crystallography analysis reveals that hydroxyl is arranged in trans configuration. Some compounds exhibited diversity of bioactivity with good herbicidal activity, moderate insecticidal activity and weak fungicidal activity.
     2. Five trans-nicotinoid aldoxime ether compounds were designed and synthesized with the nicotinoid aldoximes as materials. In addition twelve nicotinoid imidazolyl esters were designed and easily synthesized by internal elimination-rearrangement reaction of the corresponding aldoxime esters with the situ acid catalysis. Some compounds exhibited diversity of bioactivity with moderate herbicidal and insecticidal activity.
     3. With vinylnitro neonicotinoids as material, thirty-seven novel neonicotinoids, in which nitro were fixed in cis-configuration by bicycle structure or bulky conjugated system, were designed and synthesized. All the neonicotinoids exhibited excellent insecticidal activities against wiggler and some of them exhibited moderate activities against pea aphids. Compared to nitro-and chloride-containing compounds, fluorine-containing compounds were of higher insecticidal activity.
     4. With vinylnitro neonicotinoid as lead compound, fourteen vinylnitro-cyano neonicotinoid analogues were designed and synthesized. X-ray crystallography analysis reveals that nitro is arranged in trans configuration. One of the neonicotinoid analogues exhibited moderate activity against pea aphids.
     5. According to theπ-πstacking mode of action of neonicotinoids, thirty-one neonicotinoid analogues with extended conjugated system were designed and synthesized. Further with them as ligands, twenty-four BF2 nicotinoid complexes were designed and synthesized by complexing with BF2. The preliminary bioassay indicated that the BF2 complexes exhibited higher insecticidal and fungicidal activities than their corresponding ligands.
引文
[1]Glennon R A, Dukat M. Nicotinic Receptor Ligands [J]. Med Chem Res,1996,6:465-468.
    [2]Scheller I. Nicotine and other tobacco alkaloid [C]. In:Jacobson M, Grosby D G, ed. Naturally occurring insecticides. New York:Marcel Dekker,1971:99-136.
    [3]Pinner A. Nicotin U. Die constitution des alkaloids [J]. Ber Dtsch Chem Ges,1893,26: 292-305.
    [4]Brossi A, Pei X F. Biological activitiy of unnatural alkaloid enantiomers[C]. In: Cordell G A, ed. The alkaloids:chemistry and pharmacology. San Diego:Academic Press, 1998:109-139.
    [5]Bannon A W, Decker M W, Holladay M W. Broad-spectrum non-opioid analgesic activity by selective modulation of neuronal nicotinic acetylcholine receptors [J]. Science,1998, 279:77-81.
    [6]Obata T, Aomine M, Inada T. Nicotine suppresses MTTP-induced hydroxyl radial generation in rat striatum [J]. Neurosci Lett,2002,330 (1):122-124.
    [7]Krow G R, Yuan J, Huang Q. Synthesis of 5-and 6-(6-chloro-3-pyridyl)-2-azabicyclo [2.2.0] hexanes Epibatidine analogs [J]. Tetrahedron,2000,56 (25):9233-9239.
    [8]Lennarz W J, Lane M D. Nicotinic Acetylcholine Receptors [J]. Encyclopedia of Biological Biochemisty,2004,3:57-61.
    [9]Tomizawa M, Casisda J E. Selective Toxicity of Neonicotinoids Attribution to Specificity of Insect and Mammalian Nicotinic Receptors [J]. Ann Rev Entomol,2003,48:339-364.
    [10]Xu R, Bai D L. Chemistry and pharmacology of new potent analgesic epibatidine [J]. Prog Chem,1999,11 (3):313-326.
    [11]刘梅,杨胜利.乙酰胆碱及其受体的非神经递质作用和肿瘤[J].肿瘤,2006,26(1):98-101.
    [12]陈凯,汪海.血管内皮细胞非神经性乙酰胆碱系统的研究进展[J].中田临床药理学与治疗学,2005,10(3):254-258.
    [13]Phillis J W. Acetylcholine release from the central nervous system:A 50-year retrospective [J]. Critical Reviews in Neurobiology,2005,17 (3-4):161-217.
    [14]Sarter M, Parikh V. Choline transporters, cholinergic transmission and cognition [J]. Nature Reviews Neuroscience,2005,6 (1):48-56.
    [15]Changeux J P, Bertrand D, Corringer P J. Brain nicotinic receptors:structure and regulation role in learning and reinforcement [J]. Brain Res Rev,1998,26 (2-3): 198-216.
    [16]Gotti C, Clementi F. Neuronal nicotinic receptors:from structure to pathology [J]. Progress of Neurobiology,2004,74:363-367.
    [17]Karlin A. Emerging structure of the nicotinic acetylcholine receptors [J]. Nat Rev Neurosci,2002,3:102-109.
    [18]李健,巨修炼.烟碱乙酰胆碱受体及其激动剂的研究进展[J].世界农药,2007,29:1-5.
    [19]周国勇,胡森.烟碱型乙酰胆碱受体与临床疾病[J].基础医学与临床,2007,27(5):584-587.
    [20]Jones A K, Sattelle D B. Functional genomics of the nicotinic acetylcholine receptor gene family of the nematode [J]. BioEssays,2003,26:39-49.
    [21]Moaddel R, Jozwiak K, Whittington K. Conformational Mobility of Immobilized α 3 β 2, α 3 β 4, α 4 β 2and α 4 β 4 Nicotinic Acetylcholine Receptors [J]. Anal Chem,2005,77: 895-901.
    [22]郭晨云,李卓宇,袁井明.乙酰胆碱受体结构与功能的进展研究[J].中国生物工程杂志,2002,22(40):40-43.
    [23]Romanelli M N, Gualtieri F. Cholinergic Nicotinic Receptors:competitive ligands, allostericmodulators, and their potential applications medicinal research reviews [J]. Medicinal Research Reviews,2003,23:393-426.
    [24]Lukas R J, Changeux J P, Le N N et al. International union of pharmacology. XX. Current status of the nomenclature for nicotinic acetylcholine receptors and their subunits [J]. Pharmacol Rev,1999,51:397-401.
    [25]Wang H, Man Y, Ochani M et al. Nicotinic acetylcholine receptor α 7 subunit is an essential regulator of inflammation [J]. Nature,2003,421:384-388.
    [26]Tomizawa M, Lee D L, Casida J E. Neonicotinoid Insecticides:Molecular Features Conferring Selectivity for Insect versus Mammalian Nicotinic Receptors [J]. J Agric Food Chem,2000,48:6016-6024.
    [27]Honda H, Tomizawa M, Casida J E. Insect Nicotinic Acetylcholine Receptors: Neonicotinoid Binding Site Specificity Is Usually but Not Always Conserved with Varied Substituents and Species [J]. J Agric Food Chem,2006,54:3365-3371.
    [28]Lansdell S J, Millar N S. The influence of nicotinic receptor subunit composition upon agonist, α-bungarotoxin and insecticide (imidacloprid) binding affinity [J]. Neuropharmacol,2000,39:671-679.
    [29]Tomizawa M. Neonicotinoid Insecticide Receptors [J]. Pesticide Outlook,2000,12: 238-240.
    [30]唐振华.新烟碱类杀虫剂的结构与活性及其药效基团[J].现代农药,2002,1:1-6.
    [31]Jepson J E C, Brown L A, Sattele D B. The action of the neonicotinoids imidacloprid on cholinergic neurons of drosophila melanogaster [J]. Invert Neuronsci,2006,6: 33-40.
    [32]Kiriyama K, Itazu Y, Kagabu S. Insecticidal and neuroblocking activities of acetamiprid and related compounds [J]. J Pestic Sci,2003,28:8-17.
    [33]Lee S J, Caboni P, Tomizawa M et al. Cartap Hydrolysis Relative to Its Action at the Insect Nicotinic Channel [J]. J Agric Food Chem,2004,52:95-98.
    [34]Wei Z L, Xiao Y X, Yuan H B et al. Novel Pyridyl Ring C5 Substituted Analogues of Epibatidine and 3-(1-Methyl-2(S)-pyrrolidinylmethoxy) pyridine (A-84543) as Highly Selective Agents for Neuronal Nicotinic Acetylcholine Receptors Containing β2 Subunits [J]. J Med Chem,2005,48:1721-1724.
    [35]王秋雨,金莉莉.烟碱型乙酰胆碱受体及其亚单位的结构功能[J].细胞生物学杂志,2004,26(3):221-226.
    [36]刘钰霞,刘宁,廖家莉.烟碱乙酰胆碱受体显像化合物的研究进展[J].核技术,2001,27(10):763-769.
    [37]陈建鸿,白东鲁.作用于烟碱型胆碱受体激动剂的研究进展[J].药学学报,2002,37(4):309-315.
    [38]Fernandes C, Hoyle E, Dempster E. Performance deficit of a 7 nicotinic receptor knockout mice in a delayed matching-to-place task suggests a mild impairment of working/episodic-like memory [J]. Genes Brain Behav,2006,5(6):433-440.
    [39]Pocivavsek A, Icenogle L, Levin E D. Ventral hippocampal a 7 and α 4 β 2 nicotinic receptor blockade and clozapine effects on memory in female rats [J]. Psychopharmacology,2006,188(4):597-604.
    [40]Loscher W, Potschka H, Wlaz P. Are neuronal nicotinic receptors a target for antiepileptic drug development? Studies in different seizure models in mice an rats [J]. Eur J P harmacol,2003,466 (1/2):99-111.
    [41]Terry A V J, Buccafusco J J. The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits:recent challenges and their implications for novel drug development [J]. Pharmacol Exp Ther,2003,306 (3):821-827.
    [42]刘如玉,顾然,齐晓岚.β2淀粉样蛋白和胆固醇对大鼠大脑类似阿尔茨海默病病理学进程和尼古丁受体的影响[J].中华病理学杂志,2007,36(3):184-189.
    [43]Picciotto M R, Zoli M. Nicotinic receptors in aging and dementia [J]. Neurobiol,2002, 53 (4):641-655.
    [44]陈建鸿.中枢神经烟碱乙酰胆碱受体配体的药物化学研究(D).上海:中国科学院上海药物研究所,2002.
    [45]Lee P N. Smoking and Alzheimer's disease:a review of the epidemiological evidence [J]. Neuroepidemiology,1994,13:131-144.
    [46]Goff D C, Henderson D C, Amico E. Cigarette smoking in schizophrenia:relationship to psychopatholgy and medication side effects [J]. Am J Psychiatry,1992,149: 1189-1194.
    [47]Lioyd G K, Williams M. Neuronal nicotinic acetylcholine receptors as novel drug target [J]. J Pharmaco Exp Thera,2000,292:461-467.
    [48]Shytle R D, Silver A, Philip M K. Transdermalnicotine for Tourette's syndrome [J]. Drug Dev Res,1996,38:290-298.
    [49]Markley L D, Sparks L C, Dripps J E et al. Compounds useful as insecticides, Compounds useful as acaricides processes to use and make same:WO 218339 [P].2002.
    [50]Yujimune Y. Effects of oxygen on nicotine and tropane alkaloid production in cultured roots of Puboisia myoporides [J]. Biosci Biotech Biochem,1994,58:1824-1827.
    [51]Chapma R F. Sensory coding for feeding deterrence in the grasshopper schistocerca American [J]. Journal of Enperimental Biology,1991,158:241-259.
    [52]Negherbon W 0. Nicotine [C]. In:Compendium A, ed. Handbook of toxicology. Vol III: Insecticides. Philadelphia:WB Saunders,1959:508-519.
    [53]Yamamoto I, Tomizawa M. pesticide development:Molecular and biological approaches [C]. In:Mitsui T, Matsumura F, Yamaguchi I, ed. Molecular Design of Neonicotinods. Japan:Pesticide Sci Soc,1993:109-125.
    [54]Soloway S B, Henry A C, Kollmeyer W D et al. Nitromethylene heterocycles as insecticides [C]. In:Shankland D L, Hollingworth R M, Smyth T, Plenum J, ed. Pesticides and Venom Neuro-toxicity. New York:plenum press,1978:159-169.
    [55]Johnson E R, Reed W T, Tieman C H et al. Pyridine insectcidies:US 3830921[P].1974.
    [56]Tieman C H, Kollmeyer W D, Johnson R S A.2-(nitromethylene)-hexahydropyrimidines: US 3969354 [P].1976.
    [57]Powell J E. Terahydro-2-(nitromethylene)-2H-1,3-thiazine insect control agents:US 4065560 [P].1977.
    [58]Kollmeyer W D, Flattum R F, Foster J P et al. Discovery of the nitromethylene heterocycle insecticides [C]. In:Yamamoto I, Casisa J E, ed. Nicotinoid insecticides and the nicotinic acetylcholine receptor. Hong Kong:Printing & binding Best-set Typesetter Ltd,1999:71-90.
    [59]Shiokawa K, Tsuboi S, Kagabu S et al. Nitromethylene derivatives, intermediates, and their preparation as insecticides:EP 163855[P].1985.
    [60]Kagabu S, Medej S. Chloronicotinyl insecticides. Part VI. Stability comparison of imidacloprid and related compounds under simulated sunlight, hydrolysis conditions, and to oxygen [J]. Biosci Biotech Biochem,1995,59:980-985.
    [61]Shiokawa K, Tsuboi S, Kagabu S et al. Heterocyclic compounds:EP 192060 [P].1986.
    [62]Kagabu S. Discovery of Chloronicotinyl Insecticides [C]. In:Yamamoto I, Casida J E, ed. Nicotinoid insecticides and the nicotinic acetylcholine receptor. Hong Kong: Printing & binding Best-set Typesetter Ltd,1999:91-108.
    [63]Nauen R, Ebbinghaus K U, Elbert A et al. Acetylcholine receptors as sites for developing neonicotinoid insecticides [C]. In:Ishaaya I, ed. Biochemical Sites of Insecticide Action and Resistance. New York:Springer,2001:77-105.
    [64]Jeschke P, Nauen R. Neonicotinoid insecticides [C]. In:Gilbert L I, Iatrou L, Gill S S, ed. Comprehensive Molecular Insect Science. Oxford:Elsevier,2005:53-105.
    [65]Moriie K, Ootsu J, Hatsutori Y et al. Preparation of nitroiminotetrahydrooxadiazines as insecticides:JP 07224062 [P].1995.
    [66]Kurahashi Y, Tsuboi S. Synergistic insecticides and microbicides containing nitro compounds:JP 06329507 [P].1994.
    [67]Peter M, Max A, Franz B et al. Chemistry and biology of thiamethoxam:a second generation neonicotinoid [J]. Pest Manag Sci,2001,57:906-913.
    [68]Peter M, Laurenz G, Alfred R. Synthesis and insecticidal activity of CGA 293343. a novel broad-spectrum insecticide [J]. Pestic Sci,1999,55:343-389.
    [69]Minamida I, Iwanaga K, Tabuchi T et al. Synthesis and insecticidal activity of acyclic nitroethene compounds containing a 3-pyridylmethylamino group [J]. J Pestic Sci,1993, 18:31-40.
    [70]Shiokawa K, Tsuboi S, Sasaki S et al. Preparation of (cyano-and nitromethinyl)-and (cyano-and nitroimino)heterocyclic compounds as insecticides:EP 259738 [P].1988.
    [71]Tomizawa M, Zhang N, Casida J E et al. The neonicotinoid electronegative pharmacophore plays the crucial role in the high affinity and selectivity for the Drosophila nicotinic receptor:an anomaly for the nicotinoid cation-π interaction model[J]. Biochemistry,2003,42:7819-7827.
    [72]Tomizawa M, Yamamoto I. Structure activity relationships of nicotinoids and Imidacloprid analogs [J]. Nihon Noyaku Gakkaishi,1993,18:91-98.
    [73]Kagabu S, Matsuno H. Chloronicotinyl insecticides.8. crystal and molecular structures of imidacloprid and analogous compounds [J]. J Agric Food Chem,1997,45:276-281.
    [74]Zhang N, Tomizawa M, Casida J E. α-nitro ketone as an electrophile and nucleophile: synthesis of 3-substituted 2-nitromethylene tetrahydrothiophene and tetrahydrofuran as Drosophila nicotinic receptor probes [J]. J Org Chem,2004,69:876-881.
    [75]Glennon R A, Dukat M, Liao L. Musings on a 4 β 2 nicotinic acetylcholine (nACh) receptor pharmacophor model [J]. Curr Topics Med Chem,2004,4:631-644.
    [76]Matsuda K, Shimomura M, Sattelle, D B et al. Neonicotinoids Show Selective and Diverse Actions on Their Nicotinic Receptor Targets:Electrophysiology, Molecular Biology, and Receptor Modeling Studies [J]. Biosci Biotech Biochem,2005,69:1442-1452.
    [77]Shimomura M, Okuda H, Matsuda K et al. Effects of mutations of a glutamine residue in loop D of the a 7 nicotinic acetylcholine receptor on agonist profiles for neonicotinoid insecticides and related ligands [J]. Brit J Pharmacol,2002,137: 162-169.
    [78]Shimomura M, Yokata M, Okumura M et al. Combinatorial mutations in loops D and F strongly influence responses of the a 7 nicotinic acetylcholine receptor imidacloprid [J]. Brain Res,2003,991:71-77.
    [79]Ihara M, Shimomura M, Ishida C et al. hypothesis to account for the selective and diverse neonicotinoid insecticides at their molecular targets, nicotinic acetylcholine receptors:catch and release in hydrogen network [J]. Invert Neurosci,2007,7:47-51.
    [80]Wang Y L, Cheng J G, Qian X H et al. Actions Between Neonicotinoids and Key Residues of Insect nAChR Based on an ab initio Quantum Chemistry Study:Hydrogen Bonding and Cooperative π-π Interaction [J]. Bioorg Med Chem Lett,2007,15:2624-2630.
    [81]Talley T T, Harel M, Casida J E et al. Atomic interactions of neonicotinoids agonists with AChBP:Molecular recognition of the distinctive electronegative pharmacophore [J]. Proc Nat Acad Sci USA,2008,105:7606-7611.
    [82]Ihara M, Okajima T, Sattelle, D B et al. Crystal structures of Lymnaea stagnails AChBP in complex with neonicotinoids insecticides imidacloprid and clothianidin [J]. Invert Neurosci,2008,8:71-81.
    [83]Tomizawa M, Kagabu S, Casida J E et al. Potency and selectivity of trifluoroacetylimino and pyrazinoylimino nicotinic insecticides and their fit for a unique site niche [J]. J Med Chem,2008,51:4213-4218.
    [84]Ohno I, Tomizawa M, Durkin K A et al. Neonicotinoids substituents forming a water bridge at the nicotinic acetylcholine receptor [J]. J Agric Food Chem,2009,57: 2436-2440.
    [85]Matsuda K, Buckingham S D, Kleier D et al. Neonicotinoids:insecticides acting on insect nicotinic acetylcholine receptors [J]. Trends Pharmacol Sci,2001,22 (11): 573-580.
    [86]Tomizawa M, Casida J E. Structure and diversity of insect nicotinic acetylcholine receptors [J]. Pest Manag Sci,2001,57:914-922.
    [87]Ihara M. Super agonist actions of clothianidin and related compounds on the SAD P2 nicotinic acetylcholine receptor expressed in Xenopus laevis oocytes [J]. Biosci Biotech Biochem,2004,68:761-763.
    [88]Samaritoni J G, Demeter D A, Gifford J M. Dihydropiperazine Neonicotinoid Compounds. Synthesis and Insecticidal Activity [J]. J Agric Food Chem,2003,51:3035-3042.
    [89]Samaritoni J G, Preparation of Pesticidal Chloropyridinamino Derivatives:WO 2004056178 [P].2004.
    [90]Benko Z L, Deamicis C V, Demeter D A. Compounds Useful as Pesticides:WO 2004067960 [P].2004.
    [91]Zhu Y M, Rogers R B, Huang J X. Insecticidal N-substituted Sulfoximines:US 2005228027 [P].2005.
    [92]Loso M R, Nugent B M, Huang J X. Insecticidal N-substituted (heteroaryl) cycloalkyl sulfoximines:WO 2008027073 [P].2008.
    [93]Zhu Y M, Loso M R, Nugent B M et al. Multi-substituted pyridyl sulfoximines and their use as insecticides:WO 2008057129 [P].2008.
    [94]Loso M R, Nugent B.M, Zhu Y M et al. Heteroaryl (substituted) alkyl N-substituted sulfoximines as insecticides:WO 2008057131 [P].2008.
    [95]Huang J X, Rogers R B, Orr N et al. A method to control insects resistant to common insecticides:WO 2007149134 [P].2007.
    [96]Jeschke P, Bech M. E, Kraemer W. Preparation of 2-Iminothiazoles and 2-Iminoimidazoles as Pesticides:DE 10119423 [P].2002.
    [97]Fischer R, Jeschke P, Eraelen C. Preparation of Halogenated Nitrobutadienes as Insecticides:WO 2003040129 [P].2003.
    [98]Fischer R, Jeschke P, Eraelen C. Halogenated Nitrobutadienes for Controlling Animal Pests:US 2005080272 [P].2005.
    [99]Jeschke P, Losel P, Nauen R. Substituted Oxygyanidines:WO 2006056333 [P].2006.
    [100]郭丽琴,沙向阳,王凤云等.新烟碱杀虫剂JP-339的合成与生物活性[J].浙江化工,2000,31:22-23.
    [101]Urch C J, Salmon R, Lewis T et al. Preparation of 3-aryl-3-cyano-8-azabicyclo [3.2.1] octanes as insecticides and acaricides:WO 9637494 [P].1996.
    [102]Humbertdroz E. Pesticides:EP 0386565 [P].2000.
    [103]Ohno I, Hirata K, Ishida C et al. Proinsecticide Candidates N-(5-methyl-2-oxo-1, 3-dioxol-4-yl)methyl Derivatives of Imidacloprid and 1-Chlorothiazolylmethyl-2-nitro imino-imidazolidine [J]. Bioorg Med Chem Lett,2007, 17:4500-4503.
    [104]Kagabu S. Methyl, Trifluoromethyl and Methoxycarbonyl-Introduction to the Fifth Position on the Pyridine Ring of Chloronicotinyl Insecticide Imidacloprid [J]. Synth Commun,2006,36:1235-1245.
    [105]Kagabu S, Murase S, Imai R. Effect of Substituents at the 5-Position of the Pyridine ring of Imidacloprid on Insecticidal Activity against Periplaneta Americana [J]. Pest Manag Sci,2007,63:75-83.
    [106]Kagabu S, Nishimura K. Preparation of Alkylene-Tethered Bis-nitroiminoimidazolidines as Insecticides:EP 1348705 [P].2003.
    [107]Kagabu S, Iwaya K, Konishi H. Synthesis of Alkylene-Tethered Bis-Imidacloprid Derivatives as Highly Insecticidal and Nerve-exiting Agents with Potent Affinity to [3H]Imidacloprid-binding Sites on Nicotinic Acetylcholine Receptors [J]. Nippon Noyaku Gakkaishi,2002,27:249-256.
    [108]Kagabu S. Preparation of Heteroarylguanidine Derivatives and Insecticidal Containing Them:JP 2005060292 [J].2005.
    [109]Kagabu S, Kiriyama K, Nishiwaki H. 1-[1-(6-Chloro-3-Pyridyl)ethyl]-2-nitroimino-imidazolidine:Preparation, Resolution and Biological Activities toward Insects and their Nerve Preparation [J]. Biosci Biotech Biochem,2003,67:980-988.
    [110]Kagabu S, Murata N, Hibino R. Insecticidal and Neuroblocking Activities of Thiamethoxam-type Compounds in the American cockroach [J]. J Pestic Sci,2005,30: 111-115.
    [111]杨吉春,李淼,柴宝山等.新烟碱类杀虫剂最新研究进展[J].农药,2007,46(7):25-31.
    [112]Kagabu S. Preparation of 1,3-Diazacyclohexane Derivatives and their Intermediates and Insecticides Containing Them:JP 2005075818 [P].2005.
    [113]Brackmann F, Yufit D S, Howard J K. Synthesis of Spirocyclopropanated Analogues of Imidacloprid and Thiacloprid [J]. Eur J Org Chem,2005,45:712-715.
    [114]Mazen E S, Peter J, Pete L. Preparation of N-nitro-4,6-Diazaspiro [2.4] Hept-4-en-5-amines and Related Compounds as Pesticides:DE 102004013528 [P].2005.
    [115]Christof F S, Sparks T C, Donohue K V. Insecticidal Activity and Mode of Action of Novel Nicotinoids Synthesized by New Acylpyridinium Salt Chemistry and Directed Lithiation [J]. Pesticide Biochemistry and Physiology,2007,87:211-219.
    [116]Wang Q M, Li H, Huang R Q. Synthesis and Herbicidal Activity of 2-Cyano-3-(2-chlorothiazol-5-yl)methylaminoacrylates. J Agric Food Chem,2004,52:1918-1922.
    [117]Yu H, Qin Z, Dai H et al. Synthesis and insecticidal activity of N-substitued (1,3-thiazole)-alkyl sulfoximine derivatives[J]. J Agric Food Chem,2008,56:11356-11360.
    [118]Tian Z Z, Li Z, Huang Q C et al. Synthesis and bioactivities of novel neonicotinoids dioxolane compounds [J]. J Chem Res,2006,10:620-622.
    [119]Tian Z Z, Jiang Z X, Li Z et al. Synthesis and biological activities of octahydro-1H-cyclopenta[d]pyrimidine derivatives [J]. J Agric Food Chem,2007,55:143-147.
    [120]Tian Z Z, Shao X S, Li Z et al. Synthesis, insecticidal activity, and QSAR of novel nitromethylene neonicotinoids with tetrahydropyridine fixed cis configuration and exo-ring ether modification [J]. J Agric Food Chem,2007,55:2288-2292.
    [121]徐伟松,周利娟,胡美英.沙蚕毒素类杀虫剂作用机制及其抗性的研究进展[J].农药科学与管理,2001,22(2):30-32.
    [122]Nitta S. Uber Nereistoxin, einen giftigen Bestandteil von Lumbriconereis heteropoda Marenz (Eunicidae) [J]. Yakugaku Zasshi,1934,54:648-652.
    [123]Okaichi T, Hashimoto Y. The structure of nereistoxin [J]. Agric Biol Chem,1962, 26:224-227.
    [124]Sakai M. Nereistoxin and cartap:their mode of action as insecticides [J]. Rev Plant Prot Res,1969,2:17-28.
    [125]Konishi K. New insecticidally active derivatives of nereistoxin [J]. Agric Biol Chem, 1968,32:678-679.
    [126]Richter R, Otto D, Mengs H J. Insecticide compounds, acting on the acetylcholine receptor of the insect nervous system [C]. In Haug G, Hoffmann H, ed. Chemistry of Plant Protection 2:Degradation of Pesticides, Desiccation and Defoliation, ACh-Receptors as Targets. Berlin:Springer-Verlag,1989:157-195.
    [127]Lee S J, Tomizawa M, Casida J E. Nereistoxin and Cartap Neurotoxicity Attributable to Direct Block of the Insect Nicotinic Receptor/Channel [J]. J Agric Food Chem,2003, 51:2646-2652.
    [128]Sakai M, Nereixtoxin and its derivatives:their ganglionic blockingand insecticidal activity [C]. In:0'bien R D, Smyth T, ed. Biochemical Toxicology of Insecticide. Berlin:Springer-Verlag,1970:7-26.
    [129]Xie Y, Lane W V, Loring R H. Nereistoxin:a naturally occurring toxin with redox effect on neuronal nicotinic acetylcholine receptors in chick retina [J]. J Pharmacol Exp Ther,1993,264:689-694.
    [130]Karlin A. Explorations of the nicotinic acetylcholine receptor [J]. Harvey Lect, 1991,55:71-107.
    [131]Sherby S M, Amira T, Eldefrawi J A. Interaction of charatoxin and nereitoxin with nicotinic acetylcholine receptors of insect central nervous system and Torpedo electric organ[J]. Archieve of Insect Biochemistry and Physiology,1986,3(5): 431-446.
    [132]Xie Y, Mchugh T, Mckay J. Evidence that a nereistoxin metabolite, and not nereistoxin itself, reduces neuronal nicotinic receptors:Studies in the whole chick ciliary ganglion on isolated neurons and immunoprecipitated receptors [J]. J Parmal Exp Ther, 1996,276:169-177.
    [133]Thompson G, Hutchins S. Spinosad-a new class of fermentat ion-derived insect agents [J]. Pestic Outlook,1999,10 (1):78-82.
    [134]Mertz E, Yao R. Saccharopolsporspinosaspnov isolated from soil collected in a sugarrum still [J]. Int Sust Bacteriol,1990,40 (1):34-39.
    [135]Thompson G, Michel K. The discovery of Saccharopolysporsspinosa and a new class of insect products [J]. Down to Earth,1997,52 (1):125-128.
    [136]Kirst H, Michel K. Discovery, isolation and structure elucidation of a family of structurally unique fermentation-derived tetracyclic macrolides [C]. In:Baker D, Fenyes J, ed. Synthesis and Chemistry of Agrochemicals. Washington DC:American Chemical Society,1992:214-225.
    [137]王彦华,王鸣华.多杀菌素的作用机理及其抗药性的研究进展[J].农药科学与管理,2006,25(11):12-15.
    [138]伍一军,冷欣夫.杀虫药剂的神经毒理学研究进展[J].昆虫学报,2003,46(3):382-389.
    [139]Vincent L S. Studies on the mode of action of spinosad:insect symptoms and physiological correlates [J]. Pesticide biochemistry and physiology,1998,60: 91-102.
    [140]Gerald B W. Action of insecticidal spinosyns on gaminbutyric acid responses from small-diameter cockroach neurons [J]. Pesticide biochemistry and physiology,2001, 71:20-26.
    [141]唐振华.杀虫剂作用的分子行为[M].上海:上海远东出版社,2003.
    [142]Elbert A, Nauen R. Resistance of Bemisiatabaci (Homoptera:Aleyrodidae) to insecti-cides in southern Spain with special reference to neonicotinoids [J]. Pest Manag Sci, 2000,56:60-64.
    [143]Kato M, Nishino S, Ohno M et al. New agent for controlled release of nitric oxide. Structure and stability relationships [J]. Bioorg Med Chem Lett,1996,6:33-38.
    [144]Hartmann R W, Hector M, Haidar S et al. Synthesis and Evaluation of Novel Steroidal Oxime Inhibitors of P45017 and 5-Reductase Types 1 and 2 [J]. J Med Chem,2000,43: 4266-4277.
    [145]Bastiaan J V, Durk D, David W et al. Orally Active Oxime Derivatives of the Dopaminergic Prodrug 6-(N, N-Di-n-propylamino)-3,4,5,6,7,8-hexahydro-2H-naphthalen-1-one. Synthsis and Pharmacological Activity [J]. J Med Chem,2003,46: 4136-4140.
    [146]Pallavicini M, Moroni B, Bolchi C. Synthesis and a4 β 2 nicotinic affinity of 2-pyrrolidinylmethoxyimines and prolinal oxime ethers [J]. Bioorg Med Chem Lett,2004, 14:5827-5830.
    [147]D'Silva T D J, Durden J A, Sousa A A et al. Novel Insecticidal-Miticidal Cyclic Dithiacarbamoyloximes [J]. J Agric Food Chem,1985,33:110-115.
    [148]Hong D, Li Y Q, Du D et al. Synthesis and Biological Activities of Novel Pyrazole Oxime Derivatives Containing a 2-Chloro-5-thiazolyl Moiety [J]. J Agric Food Chem, 2008,56:10805-10810.
    [149]Nakayama A, Iwamura H, Niwa A et al. Development of Insect Juvenile Hormone Active Oxime 0-Ethers and Carbamates [J]. J Agric Food Chem,1985,33:1034-1041.
    [150]Gawley R E, Termine E J. The Oxime Rearrangement Cyclization. Synthesis of Alkylidene pyrrolines [J]. J Org Chem,1984,49:1946-1951.
    [151]Szwed B, Grochowski J, Obara A et al. Stereoselective Synthesis of Bridged Azepine Derivatives via Polyfunctionalized Spiroannulated Thiophene. Novel Rearrangement of Oxime Esters [J]. J Org Chem,2001,66:7205-7208.
    [152]Owston N A, Parker A J, Williams M J. Highly Efficient Ruthenium-Catalyzed Oxime to Amide Rearrangement [J]. Org Lett,2007,9:3599-3601.
    [153]Kudyba I, Jozwik J, Romanski J et al. The synthesis of oximes and nitroalkanes bearing a chiral auxiliary unit:convenient substrates for the preparation of enantiomerically pure nitrile oxides [J]. Tetrahedron:Asymmetry,2005,16: 2257-2262.
    [154]Grant B. J, Kramp C R, Knight J D et al. Preparation of spiro [Benzoisothiazole-Isoxazole] Dioxides from Dilithiated Oximes and Methyl 2-(Aminosulfonyl)benzoate [J]. J Heterocyclic Chem,2007,44:627-632.
    [155]Norman A L, Shurrush K A, Calleroz A T et al. A tandem oximation-cyclization route to isoxazolines [J]. Tetrahedron Lett,2007,48:6849-6851.
    [156]Roch F M, Tallec A, Tardivel R. Electrochemical onversion of α-nitrobenzylic compounds into the corresponding oximes [J]. Electrochimica Acta,1995,40:1877-1880.
    [157]Knifton J F. Homogeneous Catalyzed Reduction of Nitro Compounds. I. The Synthesis of Oximes [J]. J Org Chem,1973,38:3297-3301.
    [158]Erik D B, David L, Clark D et al. A Mechanistic Study of the Samarium(II)-Mediated Reduction of Aryl Nitro Compounds to the Corresponding Arylamines [J]. J Am Chem Soc, 2002,124:7007-7015.
    [159]Cavero M, Motherwell W B, Potier P. Studies on the intermolecular free radical addition of thionitritesto alkenes:a convenient method for the preparation of a -tritylthio oximes and related derivatives [J]. Tetrahedron Lett,2001,42: 4377-4379.
    [160]Zuman P, Shah B. Addition, Reduction, and Oxidation Reactions of Nitrosobenzene [J]. Chem Rev,1994,94:1621-1641.
    [161]Allegretti P, Cortizo S, Schiavoni M et al. Analysis of the nitrocompound-nitronic acid tautomerism:characterization of nitronic acid species by spectrometry and chemical reactivity [J]. Mol Med Chem,2007,12:5-8.
    [162]Rossello A, Bertini S, Lapucci A et al. Synthesis, Antifungal Activity, and Molecular Modeling Studies of New Inverted Oxime Ethers of Oxiconazole [J]. J Med Chem,2002, 45:4903-4912.
    [163]Gobbini M, Barassi P, Cerri A et al.17 a-O-(Aminoalkyl) oxime Derivatives of 3 β, 14 β-Dihydroxy-5 β-androstane and 3 β-Hydroxy-14-oxoseco-D-5 β-androstane as Inhibitors of Na+, K+ ATPase at the Digitalis Receptor [J]. J Med Chem,2001,44: 3821-3830.
    [164]Renaudet 0, Reymond J L. Iterative Oxime Bond Chemistry Leads to Protease Inhibitors [J]. Org Lett,2003,5:4693-4696.
    [165]Brown M A, Gammon D W, Casida J E. Oxime ether pyrethroids and hydroxylamine ether propyrethroids:photochemistry, biological activity, and metabolism [J]. J Agri Food Chem,1983,31:1091-1096.
    [166]Kurtz A P, Durden J A, Sousa A A et al. Novel insecticidal oxathiolane and oxathiane oxime carbamates [J]. J Agric Food Chem,1987,35:106-114.
    [167]Marek L J, Koskinen W C, Bresnahan G A. LC/MS Analysis of Cyclohexanedione Oxime Herbicides in Water [J]. J Agric Food Chem,2000,48:2797-2801.
    [168]Huang J X, Jia M Y, Liang X M et al. Synthesis and Fungicidal Activity of Macrolactams and Macrolactones with an Oxime Ether Side Chain [J]. J Agric Food Chem,2007,55: 10857-10863.
    [169]Tu S, Xu L H, Ye L Y et al. Synthesis and Fungicidal Activities of Novel Indene-Substituted Oxime Ether Strobilurins [J]. J Agric Food Chem,2008,56:5247-5253.
    [170]宋宝安,刘新华,杨松等.肟类衍生物的合成与农药生物活性的研究进展[J].有机化学,2005.25:507-525.
    [171]范磊,崔建国,韦英亮等.具有生物活性的肟醚类化合物的研究进展[J].现代农药,2008,7:6-11.
    [172]李锋,边庆花,乔振等.农药分子中的顺反异构现象[J].农药,2004,43:201-209.
    [173]Crombie K. Cis-trans isomerism was formerly called gemetricar isomerism [J]. Rev Chem Soc,1952,6:101-140.
    [174]刘天麟,谢建华.肟、肟醚(酯)类化合物的构型转化及其机理[J].化学通报,1997,60:18-24.
    [175]Cho B R, Chung H S, Cho N S. Elimination Reactions of (E)-and (Z)-Benzaldehyde 0-Benzoyloximes. Transition State Differences for the Syn-and Anti-Eliminations Forming Nitriles [J]. J Org Chem,1998,63:4685-4690.
    [176]Cho B R, Yoon C M, Song K S. Elimination Reactions of (E)-0-p-Nitrophenyl-2,4-dinitro-benzaldoxime Promoted by Triethylamine in MeCN-H20 [J]. Tetrahedron Lett,1995,36: 3193-3196.
    [177]Cho B R, Jang W J, Je J T. Elimination Reactions of (E)-O-Pivaloylbenzaldoximes [J]. J Org Chem,1993,58:3901-3904.
    [178]Kagabu S, Nishiwaki H, Sato K et al.Nicotinic Acetylcholine Receptor Binding of Imidacloprid-related Diaza Compounds with Various Ring Sizes and Their Insecticidal Activity against Musca Domestica [J]. Pest Manag Sci,2002,58:483-490.
    [179]Yamamoto I. Nicotine to Nicotinoids:1962 to 1997 [C]. In:Yamamoto I, Casida J E, ed. Nicotinoid insecticides and the nicotinic acetylcholine receptor. Tokyo: Springer-Verlag,1999:3-27.
    [180]王建军,韩召军,王荫长.新烟碱类杀虫剂毒理学研究进展[J].植物保护学报,2001,28:178-182.
    [181]Yamamoto I, Tomizawa M, Satio T et al. Structural factors contributing to insecticidal and selective actions of neonicotinoids [J]. Arch Insect Biochem Physiol,1998,37: 24-32.
    [182]van der Goot H.立体化学在农药上的应用[J].农药译丛,1990,12:11-15.
    [183]王文丽,毕富春,黄润秋.辛硫磷顺反异构体杀虫活性的立体选择性[J].农药,1998,37:20-21.
    [184]傅定一.烯唑醇的合成研究[J].农药,2002,41:10-12.
    [185]Kagabu S, Moriya K, Shibuya K et al. 1-(6-Halonicotinyl)-2-nitromethylene-imidazo-lidines as potential new insecticides [J]. Biosci Biotech Biochem,1992,56:362-363.
    [186]Homeyer B D R, Wolf H D R, Becker B D R et al.1,2,3,6-Tetra hydro-5-nitro-pyrimidine derivatives:EP 0247477 [P].1987.
    [187]Latli B, Tomizawa M, Casida J E. Synthesis of a Novel [125I] Neonicotinoid Photoaffinity Probe for the Drosophila Nicotinic Acetylcholine Receptor [J]. Bioconjugate Chem, 1997,8:7-14.
    [188]钱旭红,李忠,田忠贞等.硝基亚甲基衍生物及其用途[P].中国,CN 1631887.2005.
    [189]Moriya K, Shibuya K, Hattori Y et al. 1-(6-Chloronicotinyl)-2-nitroimino-imidazo-lidines and Related Compounds as Potential New Insecticides [J]. Biosci Biotech Biochem,1992,56 (2):364-365.
    [190]Matosiuk D, Fidecka S, Michaluk L A et al. Synthesis and pharmacological activity of new carbonyl derivatives of 1-aryl-2-iminoimidazolidine Part 3. Synthesis and pharmacological activity of 1-aryl-5,6(1H)dioxo-2,3-dihydroimidazo[1, 2]imidazoles [J]. Eur J Med Chem 2002,37:845-853.
    [191]Kagabu S. Molecular Design of Neonicotinoids:Past, present and Future [C]. In:Voss A, Romas G, ed. Chemistry of Crop Protection. Weinhein:WILEY-VCH verlag Gmbh & Co., 2002:193-212.
    [192]Schweizer E H, Maerki F, Lehmann C et al. Sulfonyliminoimidazolidines. A new class of oral hypoglycemic agents.1. 1-[[p-[2-(Acylamino)ethyl]phenyl]sulfonyl]-2-iminoimi-dazolidines [J]. J Med Chem, 1983,26:964-970.
    [193]Rodriguez F, Rozas I, Ortega J E et al. Guanidine and 2-Aminoimidazoline Aromatic Derivatives as 2-Adrenoceptor Antagonists.2. Exploring Alkyl Linkers for New Anti-depressants [J]. J Med Chem,2008,51:3304-3312.
    [194]Dort M V, Neubig R, Counsell R E. Radioiodinated p-lodoclonidine:A High-Affinity Probe for the a 2-Adrenergic Receptor [J]. J Med Chem,1987,30:1241-1244.
    [195]Dardonville C, Goya P, Rozas I et al. New Aromatic Iminoimidazolidine Derivatives as a 1-Adrenoceptor Antagonists:A Novel Synthetic Approach and Pharmacological Activity [J]. Bioorg Med Chem,2000,8:1567-1577.
    [196]Servi S, Genc M, Gur S et al. The synthesis and antimicrobial activity of some new methyl N-arylthiocarbamates, dimethyl N-aryldithiocarbonimidates and 2-arylamino-2-imi-dazolines [J]. Eur J Med Chem,2005,40:687-693.
    [197]Ptock A, Sauter H, Kirstgen R. Preparation of 2-Pyrazolyloxypyridine-3-ylacetic acids as Pesticides and Fungicides:WO 9940082 [P].1999.
    [198]Cliff G R, Richards I C. Preparation of 3-methoxy-2-(substituted phenyl)-2-pro-penoates as agrochemical fungicides:EP 378308 Al [P].1990.
    [199]Nemoto H, Cai J P, Asao N. Synthesis and Biological Properties of Water-Soluble p-Boronophenylalanine Derivatives. Relationship between Water Solubility, Cytotoxicity, and Cellular Uptake [J]. J Med Chem,1995,3:1673-1678.
    [200]Phillip R, Jefferies P J, Gengo M J et al. Ryanodine Action at Calcium Release Channels. 2. Relation to Substituents of the Cyclohexane Ring [J]. J Med Chem,1996,39: 2339-2346.
    [201]Matt A, Ehrhardt C, Burkhard P et al. Selective Boron-Containing Thrombin Inhibitors-X-ray Analysis Reveals Surprising Binding Mode. Bioorg Med Chem,2000,8:2291-2303.
    [202]Settepani J A, Stokes J B, Borkovec A B. Insect Chemosterilabts. VI. Boron compounds [J]. J Med Chem,1970,13:128-131.
    [203]Lewer P, Chapin E L, Graupner P R et al. Tartrolone C:A Novel Insecticidal Macrodiolide Produced by Streptomyces CP1130 [J]. J Nat Prod,2003,66:143-145.
    [204]Dembitsky V M, Srebnik M. Synthesis and Biological Activity of R-Aminoboronic Acids. Amine-Carboxyboranes and Their Derivatives [J]. Tetrahedron,2003,59:579-593.
    [205]Surolia N, Ramachandra S P, Surolia A. Paradigm Shifts in Malaria Parasite Bio-chemistry and Anti-Malarial Chemotherapy [J]. BioEssays,2002,24:192-196.
    [206]Dembitsky V M, Smoum R, Aquntar A A et al. Natural Occurrence of Boron-Containing Compounds in Plants, Algae and Microorganisms [J]. Plant Sci,2002,163:931-942.
    [207]Chen X, Schauder S, Potier N et al. Structural Identification of a Bacterial Quorum-Sensing Signal Containing Boron [J]. Nature,2002,415:545-549.
    [208]Liljemark W F, Bloomquist C. Human Oral Microbial Ecology and Dental Caries and Periodontal Diseases [J]. Crit Rev Oral Biol Med,1996,7:180-198.
    [209]Bowden G H, Hamilton I R. Survival of Oral Bacteria. Crit Rev Oral Biol Med.1998, 9:54-85.
    [210]Adel J, Doron S, Valery M et al. Synthesis and Evaluation of Oxazaborolidines for Antibacterial Activity against Streptococcus Mutants [J]. J Med Chem,2004,47: 2409-2410.
    [211]Baldock C, Boer G J, Rafferty J B et al. Mechanism of Action of Diazaborines [J]. Biochem Pharmacol,1998,55:1541-1549.
    [212]Shealy Y F, Struck R. Some Organoboron Compounds Containing a Bis (2-chloroethyl)amino Group Joined to Boron [J]. J Med Chem,1969,12:907-911.
    [213]Chen T, Chien R H, Jan M S et al. Synthesis and structures of new luminescent B(III) complexes:BPh2(2-(2-pyridyl)naphtho[b]imidazole) and BF2(2-(2-pyridyl)naphtho[b]imi-dazole) [J]. J Organomet Chem,2006,691:799-804.
    [214]Moreno I G, Costela A, Campo L.8-Phenyl-Substituted Dipyrromethene. BF2 Complexes as Highly Efficient and Photostable Laser Dyes [J]. J Phys Chem A,2004,108: 3315-3323.
    [215]Maeda H, Haketa Y, Nakanishi T. Aryl-Substituted C3-Bridged Oligopyrroles as Anion Receptors for Formation of Supramolecular Organogels [J]. J Am Chem Soc,2007,129: 13661-13674.
    [216]Saxean C, Singh R V, Josh S C. Spectroscopic Characterization and in vitro and in vivo Screening of Difluoro-Boron Complexes of NO and NS Donor Ligands [J]. Bull Chem Soc Jpn,1994,67:1007-1012.
    [217]Nauten R, Ebbinghaus K U, Schmuck R. Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera [J]. Pest Manag Sci,2001,57:577-586.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700