用户名: 密码: 验证码:
基于高光谱遥感的盐土棉田棉花叶片含水量和土壤电导率监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐渍化是限制作物生长和产量形成的主要环境胁迫因子之一,我国盐渍土总面积约1亿公顷,占全国可利用土地面积的4.88%,开发利用这部分土地对我国农业生产具有极其重要的意义。本研究采用盆栽和土柱栽培方法,以耐盐品种中棉所44和盐敏感品种苏棉12号为材料,于2007-2008年在江苏南京(118°50'E,32°02'N)南京农业大学牌楼试验站进行盐分水平(0%,非盐渍土壤;0.35%,轻盐渍土壤;0.60%,中盐渍土壤;0.85%,重盐渍土壤;1.00%,盐土)试验,研究了:(1)盐渍胁迫对棉花功能叶其它交换参数和叶绿素荧光参数的影响;(2)基于高光谱参数的盐渍土中棉花功能叶含水量监测模型;(3)基于棉花高光谱参数的棉田土壤电导率监测模型。
     主要研究结果如下:
     1.盐渍胁迫对棉花功能叶气体交换参数和叶绿素荧光参数的影响
     较低的土壤盐分含量(<0.35%),对棉花功能叶的气体交换参数和叶绿素荧光参数的影响较小;当土壤盐分含量高于0.35%时,不同生育期棉花功能叶最大光化学效率、量子产量和光化学猝灭系数均降低,最终导致净光合速率下降、不利于生物量的累积。耐盐品种中棉所44与盐敏感品种苏棉12号相比,土壤盐分含量低于0.35%时,受盐分影响差异不大,随土壤盐分含量进一步升高,耐盐品种中棉所44受盐分影响较盐敏感品种苏棉12号小。
     2.基于高光谱参数的盐渍土中棉花功能叶含水量监测模型研究
     在分析棉花功能叶等效水厚度与功能叶光谱反射率的相关关系基础上,筛选出适宜监测盐渍土中棉花功能叶EWT的敏感波段,并进一步综合各敏感波段提出了新的光谱参数(1-R759nm+R451nm)/R451nm,构建了棉花功能叶EWT监测模型:EWT=0.0019x (1-R759nm+R451nm)/R451nm+0.0096.同时分析棉花功能叶相对含水量与功能叶光谱反射率的相关关系发现,盐渍条件下单波段420、543、768、1164 nm是棉花功能叶相对含水量的敏感波段,差值植被指数DVI(768nm,543nm)与棉花功能叶RWC的相关性较好,进一步构建了棉花功能叶相对含水量监测模型:RWC=-16.083×DVI(768nm,543nm)+14.683,经检验两监测模型预测精度均较高。
     3.基于棉花高光谱参数的棉田土壤电导率监测模型研究
     综合2个棉花品种在不同生育期的土壤电导率和功能叶光谱反射率试验数据,发现单波段747 nm光谱反射率与土壤电导率的相关性最好,进而构建了以单波段74nm光谱反射率为自变量的土壤电导率线性监测模型EC=-5.4655 R747nm+3.6203.同时利用微分光谱技术,发现土壤电导率敏感波段主要存在于“三边”区域,筛选出棉田土壤电导率相关性较好的光谱参数红边面积SDr,并构建了基于SDr的棉田土壤电导率监测模型EC=-15.764SDr2+5.9843SDr+1.3416.对模型检验的结果表明,利用R747nm、SDr两个光谱参数均可以较好地监测棉田土壤电导率。
Soil salinization is a key environmental stress factor that limits crop growth and population development, there are about one hundred million hectare saline soil in China, it is very important to exploit and utilize this soil. Two cotton cultivars with difference salt-tolerance (CCRI-44, Sumian 12) were used, and five salinity rates (0%,0.35%,0.60%, 0.80%,1.00%), standing for five levels respectively were applied. The study focused on:(1) Effects of soil salinity on the gas exchange and chlorophyll fluorescence parameters in cotton functional leaves at different growth stage; (2) Monitoring model study on water status of cotton functional leaves in saline soil with hyperspectral remote sensing; (3) Monitoring model study on soil electrical conductivity in cotton field based on cotton hyperspectral parameter. The main results were as follows:
     1. Effects of soil salinity on the gas exchange and chlorophyll fluorescence parameters in cotton functional leaves at different growth stage
     The influence of low-salt treatment (<0.35%) to the gas exchange parameters and chlorophyll fluorescence parameters of cotton functional leaves was little, when soil salt content higher than 0.35 percent, the maximum photochemical efficiency of open photosystem (Fv/Fm), the quantum yield of electron transport (ΦPSII) and the photochemical quenching (qP) were decreased at different development stage, eventually leading to decline in net photosynthetic rate, so it is not conducive to the accumulation of cotton biomass. CCRI-44 compared to Sumian 12 was less affected by soil salinity when soil salinity higher than 0.35 percent.
     2. Monitoring model study on water status of cotton functional leaves in saline soil with hyperspectral remote sensing
     Based on correlationship of equivalent water thickness and the spectral of cotton functional leaves, the sensitivity bands of EWT were selected, and a new spectral parameter (1-R759nm+R451nm)/R451nm was found, the monitoring model on EWT as follows:EWT =0.0019×(1-R759nm+R451nm)/R451nm+0.0096. Correlationship between relative water content and the spectral of cotton functional leaves was revealed simultaneously, the sensitivity bands of RWC of functional leaves occurred at 420,543,768,1164 nm, and vegetation index DVI(768nm,543nm) correlated to RWC well, so the RWC monitoring model was RWC=-16.083 X DVI(768nm,543nm)+14.683, with vegetation index DVI(768nm,543nm) as independent variable. After practical testing, the predicted values of EWT and RWC by the models were very consistent with the observed values.
     3. Monitoring model study on soil electrical conductivity in cotton field based on cotton hyperspectral parameter
     Correlationship between soil electrical conductivity and the spectral reflectance of cotton functional leaves under different cultivars and growth stages was revealed in this study. Results show that the spectral reflectance at 747 nm correlated to soil electrical conductivity well, soil EC monitoring model was constructed as EC=-5.4655×R747nm +3.6203, with vegetation index R747nm as independent variable. The sensitivity of soil EC mainly occurs at "three edge" region, vegetation index SDr was most correlation to soil EC during all derivative spectral parameters, so soil EC monitoring model was constructed as EC=-15.764SDr2+5.9843SDr+1.3416, with vegetation index SDr as independent variable. After practical testing, the predicted values of soil EC by the two models were very consistent with the observed values. The experiment shows that soil EC in saline cotton field can be effectively monitored by two hyperspectral parameters of R747nm and SDr.
引文
[1]房朋,任丽丽,张立涛,等.盐胁迫对杂交酸模叶片光合活性的抑制作用[J].应用生态学报,2008,19(10):2137-2142
    [2]Munns R. Comparative physiology of salt and water stress [J]. Plant, Cell and Environment,2002,25, 239-250
    [3]朱义,谭贵娥,何池全,等.盐胁迫对高羊茅(Festuca arundinacea)幼苗生长和离子分布的影响[J].生态学报,2008,27(12):5447-5453
    [4]Wang Y, Nil N. Changes in chlorophyll, ribulose biphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress [J]. The Journal of Horticultural Science and Biotechnology,2000,75,623-627
    [5]弋良朋,马健,李彦.盐胁迫对3种荒漠盐生植物苗期根系特征及活力的影响[J].中国科学D辑,2006,36(增刊11):86-94
    [6]郑青松,刘兆普,刘友良.渗的盐分和水分胁迫对芦荟幼苗生长和离子分布的效应[J].植物生态学报,2004,28(6):823-827
    [7]Zheng Y H, Wang Z L, Sun X Z, et al. Higher salinity tolerance cultivars of winter wheat relieved senescence at reproductive stage [J]. Environmental and Experimental Botany,2008,62:129-138
    [8]Tuna A L, Kayab C, Ashraf M, et al. The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress [J]. Environmental and Experimental Botany,2007,59:173-178
    [9]Meloni D A, Oliva M A, Ruiz H A, et al. Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress [J]. Journal of Plant Nutrition,2001,24:599-612
    [10]Drihem K, Pilibeam D J. Effect of salinity on accumulation of mineral nutrients in wheat grown with nitrate-nitrogen or mixed ammonium:nitrate-nitrogen [J]. Journal of Plant Nutrition,2002,25: 2091-2113
    [11]陈国安.钠对棉花生长及钾钠吸收的影响[J].土壤,1992,24(4):201-204
    [12]贾玉珍,朱僖月,唐予迪,等.棉花出苗及苗期耐盐性指标的研究[J].河南农业大学学报,1987,21(1):30-41
    [13]沈法富.棉花耐盐碱生理指标研究[J].中国棉花,1991,18(4):9-10
    [14]辛承松,唐薇,王洪征,等.鲁棉14幼苗生长对氯化钠胁迫的反应及微量元素、激素处理的效应[J].棉花学报,2002,14(2):108-112
    [15]杨晓英,杨劲松,李冬顺.盐胁迫条件下不同栽培措施对棉花生长的调控作用研究[J].土壤,2005,37(1):65-68
    [16]Razzouk S. Effects of salinity on cotton yield and quality [J]. Field Crop Research,1991,26: 305-314
    [17]Leonova T G, Goncharova E A, Khodorenko A V, et al. Characteristics of salt-tolerant and salt-susceptible cultivars of barley [J]. Russian Journal of Plant Physiology,2005,52:774-778
    [18]Ashraf M, Ali Q. Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.) [J]. Environmental and Experimental Botany,2008,63:266-273
    [19]Alon B G, Hamutal B H, Uri Y. Is osmotic potential a more appropriate property than electrical conductivity for evaluating whole-plant response to salinity? Environmental and Experimental Botany,2009,65:232-237
    [20]史跃林.Ca2+对盐胁迫下黄瓜幼苗MDA含量和质膜透性的影响[J].植物生理学通讯,1995,31(5):347-349
    [21]张恩平,张淑红,司龙亭,等.NaCl胁迫对黄瓜幼苗子叶膜脂过氧化的影响[J].沈阳农业大学学报,2001,32(6):446-448
    [22]肖浪涛,王三根.植物生理学[M].中国农业出版社,2004,352-353
    [23]Hernandez J A, Campillo A, Jimenez A, et al. Response of antioxidant systems and leaf water relations to NaCl stress in pea plants [J]. New Phytologist,1999,141:241-51
    [24]Gadallah MAA. Effects of proline and glycinebetaine on vicia faba response to salt stress [J]. Biologia Plantarum,1999,42:249-257
    [25]Agastian P, Kingsley S J, Vivehanandan M. Effect of salinity on Photosynthesis and biochemical charaeteristics in mulberry genotypes [J]. Photosynthetica,2000,38:287-290
    [26]Parida A, Das A B, Das P. NaCl stress causes changes in photosynthetic pigments, proteins and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures [J]. Journal of Plant Biology,2002,45:28-36
    [27]Stepien P, Klobus G. Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress [J]. Biologia Plantarum,2006,50:610-616
    [28]Yang X, Lu C. Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize Plants [J]. Physiologia Plantarum,2005,124:343-352
    [29]Khavarinejad R A, Chaparzadeh N. The effects of NaCl and CaCl2 on photosynthesis and growth of alfalfa Plants [J]. Photosynthetica,1998,35:461-466
    [30]Parida A, Das A B, Mittra B. Effects of salt on growth, ion accumulation photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora [J]. Trees Structure and Function,2004a,18: 167-174
    [31]Santos C V. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves Scientia [J]. Horticulture,2004,103:93-99
    [32]Lu C, Qiu N, Lu Q, et al. Does salt stress lead to increased susceptibility of photosystem Ⅱ to photoinhibition and changes in photosynthetic pigment composition in halophyte suaeda salsa grown outdoors [J]. Plant Science,2002,163:1063-1068
    [33]Qiu N, Lu C. Enhanced toleranced of photosynthesis against high temperature damage in salt-adapted halophyte Atriplex centralasiatica Plants [J]. Plant and Cell Environment,2003,26: 1137-1145
    [34]Winicov I, Button J D. Accumulation of photosynthesis gene transcripts in response to sodium chloride by salt tolerant alfalfa cells [J]. Planta,1991,183:478-483
    [35]Locy R D, Chang C C, Nielsen B L, et al. Photosynthesis in salt-adapted heterotrophic tobacco cells and regenerated plants [J]. Plant physiology,1996,110:321-328
    [36]谷艳芳,丁圣彦,李婷婷,等.盐胁迫对冬小麦幼苗干物质分配和生理生态特性的影响[J].生态学报,2009,29(2):840-845
    [37]Brugnoli E, Bjorkman O. Growth of cotton under continuous salinity stress:influence on allocation pattern, stomatal and non-stomatal components of Photosynthesis and dissipation of excess light energy [J]. Planta,1992,187:335-347
    [38]张旺锋,勾玲,王振林,等.氮肥对新疆高产棉花叶片叶绿素荧光动力学参数的影响[J].中国农业科学,2003,36(8):893-898
    [39]许大全.现代植物生理学[M].北京:高等教育出版社,2002.407-409
    [40]李海波,陈温福,李全英.盐胁迫下水稻叶片光合参数对光强的响应[J].应用生态学报,2006,17(9):1588-1592
    [41]刘正鲁,朱月林,胡春梅,等.氯化钠胁迫对嫁接茄子生长、抗氧化酶活性和活性氧代谢的影响[J].应用生态学报,2007,18(3):537-541
    [42]Ke Y Q, Pan T G. Effects of salt stress on the ultrastructure of chloroplast and the activities of some protective enzymes in leaves of sweet potato [J]. Acta Phytophysiologica Sinica,1999,25(3): 229-233
    [43]Sivakumar P, Sharmila P, Saradhi P. Proline allevi-ates salt-stress-induced enhancement in ribulosi-1,5-bi-phosphate oxygenase activity [J]. Biochemical and Biophysical Research Communications,2000,279:512-515
    [44]Martino C D, Delfine S, Pizzuto R, et al. Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress [J]. New Phytologist,2003,158: 455-463
    [45]Chen H X, Li W J, An S Z, et al. Characterization of PSII photochemistry and thermostability in salt treated Rumex K-1 leaves [J]. Journal of Plant Physiology,2004,161:257-264
    [46]柯玉琴,潘廷国.NaCl胁迫对甘薯叶片水分代谢、光合速率、ABA含量的影响[J].植物营养与肥料学报,2001,7(3):337-343
    [47]Popova L P, Stoinova Z G, Maslenkova L T. Involvement of abscisic acid in photosynthetic process in Hordeum vulgareL during salinity stress [J]. Plant Growth Regulation,1995,14:211-218
    [48]Sharma N, Gupta N K, Gupta S, et al. Effect of NaCl salinity on photosynthetic rate, transpiration rate, and oxidative stress tolerance in contrasting wheat genotypes [J]. Photosynthetica,2005,43: 609-613
    [49]Zheng C F, Jiang D, Liu L, et al. Effects of salt and waterlogging stresses and their combination on leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat [J]. Plant Science, 2009,176:575-582
    [50]Chen X Q, Yu B J. Ionic Effects of Na+and Cl- on Photosynthesis in glycine max seedlings under isoosmotic salt stress [J]. Journal of Plant Physiology and Molecular Biology,2007,33:294-300
    [51]Yang F, Liang Z W, Wang Z C, et al. Relationship between diurnal changes of net photosynthetic rate and influencing factors in rice under saline sodic stress [J]. Rice Science,2008,15:119-124
    [52]唐薇,罗振,温四民,等.干旱和盐胁迫对棉苗光合抑制效应的比较[J].棉花学报,2007,19(1):28-32
    [53]Meloni D A, Oliva M A, Martinez C A. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress [J]. Environment and Experiment Botany,2003,49:69-76
    [54]李维江,张冬梅,唐薇,等.转Bt基因抗虫棉和有色棉苗期耐盐性差异研究[J].棉花学报,2001,13(4):234-239
    [55]董合忠,李维江,唐薇,等.干旱和淹水对棉苗某些生理特性的影响[J].西北植物学报,2003,23(10):1695-169
    [56]Brugnoli E, Lauteri M. Effects of salinity on stomatal conductance, photosynthetic capacity and capacity and carbon isotope discrimination of salt-tolerant (Gossypium hirsutumL.) and salt-sensitive bean (Phaseilus vulgarisL.) C3 non-halo-phytes [J]. Plant Physiology,1991,95: 628-635
    [57]Ennahli S, Earl H J. Physiological limitations to photosynthetic carbon assimilation in cotton under water stress [J]. Crop Science,2005,45:2374-2382
    [58]林世青,许春晖,张其德,等.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用[J].植物学通报,1992,9(1):1-16
    [59]Baker N R. A possible role for photosystem II in environmental perturbations of photosynthesis [J]. Physiol Plant,1991,81:563-570
    [60]魏亦农,孔广超,曹连莆.干旱胁迫对春小麦与黑小麦光合特性影响的比较[J].干旱地区农业研究,2003,21(1):134-136
    [61]Netondo G W, Onyango J C, Beck E. Sorghum and salinity:Ⅱ. Gas exchange and chlorophyll fluorescence of sorghum under salt stress [J]. Crop Science,44:806-811
    [62]浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000
    [63]陈述彭,童庆禧,郭华东.遥感信息机理研究[M].北京:科学出版社,1998
    [64]Hunt G R. Electromagnetic radiation:the communication link in remote sensing [M]. In:Remote Sensing in Grology. Siegal B, Gillespia A. Wiley New York,1980,702
    [65]冯伟.基于高光谱遥感的小麦氮素营养及生长指标监测研究[D].南京农业大学博士学位论文,2007
    [66]赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003.6
    [67]Kramer P J. Water Relations of Plants [M]. San Diego:Academic Press,1983
    [68]Jackson R D. Spectral response of cotton to suddenly induced water stress [J]. International Journal Remote Sensing,1985,6:177-185
    [69]Thomas J R, Namken L N, Oerther G F, Brown R G. Estimating leaf water content by reflectance measurement [J]. Agronomy Journal,1971,63:845-847
    [70]Carter G A. Primary and secondary effects of water content of the spectral reflectance of leaves [J]. American Journal of Botany,1991,78:916-924
    [71]Filella I, Penuelas J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status [J]. International Journal of Remote Sensing,1994,15:1459-1470
    [72]Tian Q J, Tong Q X, Guo X W. Spectroscopic determination of wheat water status using 1650-1850 nm spectral absorption features [J]. International Journal of Remote Sensing,1991,78:916-924
    [73]王纪华,赵春江,郭晓维,等.利用遥感方法诊断小麦叶片含水量的研究[J].华北农学报,2001,15(4):68-72
    [74]田庆久,宫鹏,赵春江,等.用光谱反射率诊断小麦水分状况的可行性分析[J].科学通报,2000,45(24):2645-2650
    [75]王纪华,赵春江,郭晓维,等.用光谱反射率诊断小麦叶片水分状况的研究[J].中国农业科学,2001,34(1):1-4
    [76]Danson F M, Steven M D, Malthus T J, et al. High-spectral Resolution Data for Determining Leaf Water Concentration [J]. International Journal of Remote Sensing,1992,13:461-470
    [77]Shibayama M, Takahashi W, Morinaga S, et al. Canopy water deficit detection in Paddy rice Using a high-resolution fields Peetro-radiometer [J]. Remote Sensing of Environment,1993,45:117-126
    [78]Filella I, Penuelas J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status [J]. International Journal Remote Sensing,1994,15:1459-1470
    [79]Penuelas J, Pinol J, Ogaya R, et al. Estimation of plant water concentration by the reflectance water index W1 (R900/R970) [J]. International Journal of Remote Sensing,1997,18:2869-2872
    [80]田永超,朱艳,曹卫星,等.小麦冠层反射光谱与植株水分状况的关系[J].应用生态学报,2004,15(11):2072-2076
    [81]Penuelas J, Filella I, Biel C, et al. The reflectance at the 950-970 nm region as an indicator of plant water status [J]. International Journal of Remote Sensing,1993,14:1887-1905
    [82]Gao B C. NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space [J]. Remote Sensing of Environment,1996,58:257-266
    [83]Dawson T P, Curran P J, North P R J, et al. The propagation of foliar biochemical absorption features in forest canopy reflectance:A theoretical analysis [J]. Remote Sensing of Environment, 1999,67:147-159
    [84]蒋桂英.新疆棉花主要栽培生理指标的高光谱定量提取与应用研究[D].湖南农业大学博士学位论文,2004
    [85]Pietro Ceccatoa, Ste'phane Flasseb, Stefano Tarantolac, et al. Detecting vegetation leaf water content using reflectance in the optical domain [J]. Remote Sensing of Environment,2001,77: 22-33
    [86]Tugrul Yilmaz M, Raymond Hunt Jr E, Thomas Jackson J. Remote sensing of vegetation water content from equivalent water thickness using satellite imagery [J]. Remote Sensing of Environment,2008,112:2514-2522
    [87]Danson F M, Bowyer P. Estimating live fuel moisture content from remotely sensed reflectance [J]. Remote Sensing of Environment,2004,92:309-321
    [88]隋学艳.棉花主要栽培生理指标的近地高光谱监测研究[D].石河子大学硕士学位论文,2006
    [89]Jacquemoud S, Bacour C, Poilve H, et al. Comparison of four radiative transfer models to simulate plant canopies reflectance:Direct and inverse mode [J]. Remote Sensing of Environment,2000,74: 471-481
    [90]刘良云,王纪华,张永江,等.叶片辐射等效水厚度计算与叶片水分定量反演研究[J].遥感学报,2007,11(3):289-295
    [91]Glenn Downing H, Gregory Carter A, Kenneth Holladay W, et al. The radiative-equivalent water thickness of leaves [J]. Remote Sensing of Environment,1993,46(1):103-107
    [92]沈艳,牛铮,王汶,等.基于导数光谱变量叶片含水量模型的建立[J].地理与地理信息科学,2005,21(4):16-19
    [93]刘广明,杨劲松,姚荣江.影响土壤浸提液电导率的盐分化学性质要素及其强度研究[J].土壤学报,2005,42(2):247-252
    [94]Heydari N, Gupta A D, Loof R. Salinity and sodicity influences on infiltration during surge flow irrigation [J]. Irrigation Science,2001,20:165-173
    [95]Leone A P, Menenti M, Buondonno A, et al. A field experiment on spectrometry of crop response to soil salinity [J]. Agriculture water management,2007,89:39-48
    [96]Leone A P, Menenti M, Sorrentino G. Reflectance spectroscopy to study crop response to soil salinity [J]. Italian Journal of Agronomy,2000,4:75-85
    [97]Koyro H W. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.) [J]. Environmental and Experimental Botany,2006,56:136-146
    [98]Wang D, Poss J A, Donovan T J, et al. Biophysical properties and biomass production of elephant grass under saline conditions [J]. Journal of Arid Environments,2002,52:447-456
    [99]Wang D, Wilson C, Shannon M C. Interpretation of salinity and irrigation effects and soybean canopy reflectance in visible and near-infrared spectrum domain [J]. International Journal of Remote Sensing,2002,23:811-824
    [100]Poss J A, Russell W B, Grieve C M. Estimating yields of salt-and water-stressed forages with remote sensing in the visible and near infrared [J]. Journal of Environmental Quality,2006,35: 1060-1071
    [101]张丽平,张格英,史庆华,等.氯化钠胁迫对不同耐盐黄瓜品种的损伤效应及反射光谱特性的影响[J].植物营养与肥料学报,2008,14(4):761-765
    [1]王遵亲.中国盐渍土[M].北京:科学出版社,1993,325-344
    [2]张旺锋,勾玲,王振林,等.氮肥对新疆高产棉花叶片叶绿素荧光动力学参数的影响[J].中国农业科学,2003,36(8):893-898
    [3]Sultana N, Ikeda T, Kashem M A. Effect of seawater on photosynthesis and dry matter accumulation in developing rice grains [J]. Photosynthetica,2002,40(1):115-119
    [4]Wilson C, Liu X, Lesch S M, et al. Growth response of major USA cowpea cultivars Ⅱ. Effect of salinity on leaf gas exchange [J]. Plant Science,2006,170:1095-1101
    [5]薛延丰,刘兆普.不同浓度NaCl:和Na2CO3:处理对菊芋幼苗光合及叶绿素荧光的影响[J].植物生态学报,2008,32(1):161-167
    [6]Munns R, Tester M. Mechanisms of salinity tolerance [J]. Annual Review of Plant Biology,2008, 59:651-81
    [7]Yang C W, Wang P, Li C Y, et al. Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat [J]. Photosynthetica,2008,46 (1):107-114
    [8]Megdiche W, Hessini K, Gharbi F, et al. Photosynthesis and photosystem Ⅱ efficiency of two salt-adapted halophytic seashore Cakile maritima ecotypes [J]. Photosynthetica,2008,46 (3): 410-419
    [9]Brugnoli E, Lauteri M. Effects of salinity on stomatal conductance, photosynthetic capacity and capacity and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive bean (Phaseilus vulgarisL.) C3 non-halophytes [J]. Plant Physiology,1991,95: 628-635
    [10]唐薇,罗振,温四民,等.干旱和盐胁迫对棉苗光合抑制效应的比较[J].棉花学报,2007,19(1):28-32
    [11]Ennahli S, Earl H J. Physiological limitations to photosynthetic carbon assimilation in cotton under water stress [J]. Crop Science,2005,45:2374-2382
    [12]白文波,李品芳,李保国.NaCl和NaHCO3协迫下马蔺生长于光合特性的反应[J].土壤学报,2008,45(2):328-335
    [13]Sayed O H. Chlorophyll fluorescence as a tool in cereal crop research [J]. Photosynthetica,2003,41: 321-330
    [14]林世青,许春晖,张其德,等.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用[J].植物学通报,1992,9(1):1-16
    [15]Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis:the basics [J]. Annual Review of plant physiology,1991,45:633-652.
    [16]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448
    [17]Lu C, Qiu N, Lu Q, et al. Does salt stress lead to increased susceptibility of photosystem Ⅱ to photoinhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsa grown outdoors [J]. Plant science,2002,163:1063-1068
    [18]Qiu N, Lu Q, Lu C. Photosynthesis, photosystem Ⅱ efficiency and the xanthophyll cycle in the salt-adapted halophyte Atriplex centyalasiatica [J]. New Phytologist,2003,159:479-486
    [19]Yang X, Lu C. Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize Plants [J]. Plant Physiology,2005,124:343-352
    [20]Qiu N, Lu C. Enhanced toleranced of photosynthesis against high temperature damage in salt-adapted halophyte Atriplex centralasiatica Plants [J]. Plant, Cell and Environment,2003,26: 1137-1145
    [21]Brugnoli E, Bjorkman O. Growth of cotton under continuous salinity stress:influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy [J]. Planta,1992,187:335-347
    [22]孙小芳,刘友良.棉花品种耐盐性鉴定指标可靠性的检验[J].作物学报,2001,27(6):794-801
    [23]周祥胜,成灿土,施满法,等.中棉所抗旱耐盐品种(系)在浙江种植的应用前景[J].中国棉花,2000,1:25-26
    [24]Bilger W, Birkman O. Role of the xanthophylls cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in Hedera canariensis [J]. Photosynthesis Research,1990,25:173-185
    [25]Kramer P J. Water Relations of Plants [M]. Academic Press. New York:New York Press,1983, 271-272
    [1]王遵亲.中国盐渍土[M].北京:科学出版社,1993,325-344
    [2]Munns R. Comparative physiology of salt and water stress [J]. Plant, Cell and Environment,2002,25: 239-250
    [3]Kramer P J. Water Relations of Plants [M]. San Diego:Academic Press,1983. pp 354-359
    [4]Filella I, Pen-uelas J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status [J]. International Journal of Remote Sensing,1994,15:1459-1470
    [5]Carter G A. Primary and secondary effects of water content of the spectral reflectance of leaves [J]. American Journal of Botany,1991,78:916-924
    [6]王纪华,赵春江,郭晓维,等.利用遥感方法诊断小麦叶片含水量的研究[J].华北农学报,2001,15(4):68-72
    [7]田庆久,宫鹏,赵春江,等.用光谱反射率诊断小麦水分状况的可行性分析[J].科学通报,2000,45(24):2645-2650
    [8]王纪华,赵春江,郭晓维,等.用光谱反射率诊断小麦叶片水分状况的研究[J].中国农业科学,2001,34(1):1-4
    [9]Penuelas J, Pinol J, Ogaya R, et al. Estimation of Plant water concentration by the reflectance water index W1 (R900/R970) [J]. International Journal of Remote Sensing,1997,18:2869-2872
    [10]田永超,朱艳,曹卫星,等.小麦冠层反射光谱与植株水分状况的关系[J].应用生态学报,2004,15(11):2072-2076
    [11]Penuelas J, Filella I, Biel C, et al. The reflectance at the 950-970 nm region as an indicator of plant water status [J]. International Journal of Remote Sensing,1993,14:1887-1905
    [12]Gao B C. NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space [J]. Remote Sensing of Environment,1996,58:257-266
    [13]Dawson T P, Curran P J, North P R J, et al. The propagation of foliar biochemical absorption features in forest canopy reflectance:A theoretical analysis [J]. Remote Sensing of Environment, 1999,67:147-159
    [14]蒋桂英.新疆棉花主要栽培生理指标的高光谱定量提取与应用研究[D].博士学位论文,湖南农业大学.2004
    [15]Pietro Ceccatoa, Ste'phane Flasseb, Stefano Tarantolac, et al. Detecting vegetation leaf water content using reflectance in the optical domain [J]. Remote Sensing of Environment,2001,77: 22-33
    [16]Tugrul Yilmaz M, Raymond Hunt Jr E, Thomas Jackson J. Remote sensing of vegetation water content from equivalent water thickness using satellite imagery [J]. Remote Sensing of Environment,2008,112:2514-2522
    [17]Danson F M, Bowyer P. Estimating live fuel moisture content from remotely sensed reflectance [J]. Remote Sensing of Environment,2004,92:309-321
    [18]隋学艳.棉花只要栽培生理指标的近地高光谱监测研究[D].硕士学位论文,石河子大学.2006
    [19]Jacquemoud S, Bacour C, Poilve H, et al. Comparison of four radiative transfer models to simulate plant canopies reflectance:Direct and inverse mode [J]. Remote Sensing of Environment,2000,74: 471-481
    [20]刘良云,王纪华,张永江,等.叶片辐射等效水厚度计算与叶片水分定量反演研究[J].遥感学报,2007,3:289-295
    [21]孙小芳,刘友良.棉花品种耐盐性鉴定指标可靠性的检验[J].作物学报,2001,27(6):794-801
    [22]周祥胜,成灿土,施满法,等.中棉所抗旱耐盐品种(系)在浙江种植的应用前景[J].中国棉花,2000,1:25-26
    [23]Danson F M, Steven M D, Malthus T J. High-spectral resolution data for determining leaf water content [J]. International Journal of Remote Sensing,1992,13(3):461-470
    [24]龚富生,张嘉宝.植物生理学实验[M].北京:气象出版社,1995,12-15
    [25]Yang P, Wu W-B, Tang H-J, et al. Mapping Spatial and Temporal Variations of Leaf Area Index for Winter Wheat in North China [J]. Agricultural Sciences in China,2007,6(12):1437-1443
    [26]Zhu Y, Yao X, Tian Y-C, et al. Analysis of common canopy vegetation indices for indicating leaf nitrogen accumulations in wheat and rice [J]. International Journal of Applied Earth Observation and Geoinformation,2008,10:1-10
    [1]房朋,任丽丽,张立涛,等.盐胁迫对杂交酸模叶片光合活性的抑制作用[J].应用生态学报,2008,19(10):2137-2142
    [2]Munns R. Comparative physiology of salt and water stress [J]. Plant, Cell and Environment,2002, 25:239-250
    [3]Brugnoli E, Lauteri M. Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutumL.) and salt-sensitive (Phaseolus vulgarisL.) C3 non-halophytes [J]. Plant Physiology,1991,95:628-635
    [4]李海波,陈温福,李全英.盐胁迫下水稻叶片光合参数对光强的响应[J].应用生态学报,2006,17(9):1588-1592
    [5]刘正鲁,朱月林,胡春梅,等.氯化钠胁迫对嫁接茄子生长、抗氧化酶活性和活性氧代谢的影响[J].应用生态学报,2007,18(3):537-541
    [6]Martino C D, Delfine S, Pizzuto R, et al. Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress [J]. New Phytologist,2003,158: 455-463
    [7]Chen H X, Li W J, An S Z, et al. Characterization of PSII photochemistry and thermostability in salt treated RumexK-1 leaves [J]. Journal of Plant Physiology,2004,161:257-264
    [8]刘广明,杨劲松,姚荣江.影响土壤浸提液电导率的盐分化学性质要素及其强度研究[J].土壤学报,2005,42(2):247-252
    [9]Heydari N, Gupta A D, Loof R. Salinity and sodicity influences on infiltration during surge flow irrigation [J]. Irrigation Science,2001,20:165-173
    [10]颜宏,赵伟,盛艳敏,等.碱胁迫对羊草和向日葵的影响[J].应用生态学报,2005,16(8):1497-1501
    [11]Ramsis B S, Clause J O, Robert W F. Contributions of groundwater conditions to soil and water salinization [J]. Hydrogeology Journal,1999,7:46-64
    [12]Leone A P, Menenti M, Buondonno A, et al. A field experiment on spectrometry of crop response to soil salinity [J]. Agriculture water management,2007,89:39-48
    [13]Leone A P, Menenti M, Sorrentino G. Reflectance spectroscopy to study crop response to soil salinity [J]. Italian Journal of Agronomy,2000,4:75-85
    [14]Koyro H W. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.) [J]. Environmental and Experimental Botany,2006,56:136-146
    [15]Wang D, Poss J A, Donovan T J, et al. Biophysical properties and biomass production of elephant grass under saline conditions [J]. Journal of Arid Environments,2002,52:447-456
    [16]Wang D, Wilson C, Shannon M C. Interpretation of salinity and irrigation effects and soybean canopy reflectance in visible and near-infrared spectrum domain [J]. International Journal of Remote Sensing,2002,23:811-824
    [17]Poss J A, Russell W B, Grieve C M. Estimating yields of salt-and water-stressed forages with remote sensing in the visible and near infrared [J]. Journal of Environmental Quality,2006,35: 1060-1071
    [18]张丽平,张格英,史庆华,等.氯化钠胁迫对不同耐盐性黄瓜品种的损伤效应及反射光谱特性的影响[J].植物营养与肥料学报,2008,14(4):761-765
    [19]孙小芳,刘友良.棉花品种耐盐性鉴定指标可靠性的检验[J].作物学报,2001,27(6):794-801
    [20]周祥胜,成灿土,施满法,等.中棉所抗旱耐盐品种(系)在浙江种植的应用前景[J].中国棉花,2000,1:25-26
    [21]Turhan H, Genc L, Smith S E, Bostanci Y B, et al. Assessment of the effect of salinity on the early growth stage of the common sunflower (Sanay cultivar) using spectral discrimination techniques [J]. African Journal of Biotechnology,2008,7:750-756
    [22]屈卫群,王绍华,陈兵林,等.棉花主茎叶SPAD值与氮素营养诊断研究[J].作物学报,2007,33(6):1010-1017
    [1]Sultana N, Ikeda T, Kashem M A. Effect of seawater on photosynthesis and dry matter accumulation in developing rice grains [J]. Photosynthetica,2002,40(1):115-119
    [2]Wilson C, Liu X, Lesch S M, et al. Growth response of major USA cowpea cultivars:Ⅱ. Effect of salinity on leaf gas exchange [J]. Plant Science,2006,170:1095-1101
    [3]薛延丰,刘兆普.不同浓度NaCl:和Na2CO3:处理对菊芋幼苗光合及叶绿素荧光的影响[J].植物生态学报,2008,32(1):161-167
    [4]Munns R, Tester M. Mechanisms of salinity tolerance [J]. Annual Review of Plant Biology,2008, 59:651-81
    [5]Yang C W, Wang P, Li C Y, et al. Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat [J]. Photosynthetica,2008,46 (1):107-114
    [6]Megdiche W, Hessini K, Gharbi F, et al. Photosynthesis and photosystem Ⅱ efficiency of two salt-adapted halophytic seashore Cakile maritima ecotypes [J]. Photosynthetica,2008,46 (3): 410-419
    [7]Brugnoli E, Bjorkman O. Growth of cotton under continuous salinity stress:influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy [J]. Planta,1992,187:335-347
    [8]石德成,赵可夫.NaCl和Na2CO3.对星星草生长及营养液中主要矿质元素存在状态的影响[J].草业学报,1997,6(2):51-56
    [9]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis [J]. Annual Review of Plant Biology,1982,33:317-345
    [10]Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis:the basics [J]. Annual Review of Plant physiology,1991,45:633-652
    [11]Demmig B, Winter K, Krger A, et al. Photoinhibition and zeaxanthin formation in intact leaves:A possible role of the xan-thophylls cycle in the dissipation of excess light energy [J]. Plant Physiology,1987,84:218-224
    [12]Lu C, Qiu N, Lu Q, et al. Does salt stress lead to increased susceptibility of photosystem Ⅱ to photoinhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsa grown outdoors [J]. Plant science,2002,163:1063-1068
    [13]Maricle B R, Leer W, Hellquist C E, et al. Effects of salinity on chlorophyll fluorescence and CO2 fixation in C4 estuarine grasses [J]. Potosynthetica,2007,45(3):433-440
    [14]Penuelas J, Pinol J, Ogaya R, et al. Estimation of Plant water concentration by the reflectance water index W1 (R900/R970) [J]. International Journal of Remote Sensing,1997,18:2869-2872
    [15]Pietro Ceccatoa, Ste'phane Flasseb, Stefano Tarantolac, et al. Detecting vegetation leaf water content using reflectance in the optical domain [J]. Remote Sensing of Environment,2001,77: 22-33
    [16]Tugrul Yilmaz M, Raymond Hunt Jr E, Thomas Jackson J. Remote sensing of vegetation water content from equivalent water thickness using satellite imagery [J]. Remote Sensing of Environment,2008,112:2514-2522
    [17]Danson F M, Bowyer P. Estimating live fuel moisture content from remotely sensed reflectance [J]. Remote Sensing of Environment,2004,92:309-321
    [18]沈艳,牛铮,颜春燕.植被叶片及冠层层次含水量估算模型的建立[J].应用生态学报,2005,16(7):1218-1223
    [19]隋学艳.棉花只要栽培生理指标的近地高光谱监测研究[D].硕士学位论文,石河子大学.2006
    [20]Chuvieco E, Cocero D, Riano D, et al. Combining NDVI and Surface Temperature for the estimation of live fuels moisture content in forest fire danger rating [J]. Remote Sensing of Environment,2004,92:322-331
    [21]Riano D, Vaughan P, Zarco-Tejada E, et al. Estimation of fuel moisture content by inversion of radiative transfer models to simulate equivalent water thickness and dry matter content:analysis at leaf and canopy rate [J]. IEEE Transactions on Geoscience Remote Sensing,2005,43:819-826
    [22]Penuelas J, Pinol J, Ogaya R, et al. Estimation of Plant water concentration by the reflectance water index W1 (R900/R970) [J]. International Journal of Remote Sensing,1997,18:2869-2872
    [23]田永超,朱艳,曹卫星,等.小麦冠层反射光谱与植株水分状况的关系[J].应用生态学报,2004,15(11):2072-2076
    [24]Penuelas J, Filella I, Biel C, et al. The reflectance at the 950-970 nm region as an indicator of plant water status [J]. International Journal of Remote Sensing,1993,14:1887-1905
    [25]Gao B C. NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space [J]. Remote Sensing of Environment,1996,58:257-266
    [26]Dawson T P, Curran P J, North P R J, et al. The propagation of foliar biochemical absorption features in forest canopy reflectance:A theoretical analysis [J]. Remote Sensing of Environment, 1999,67:147-159
    [27]Pinol J, Filella I, Ogaya R, et al. Ground based spectroradiometric estimation of live fine fuel moisture of Mediterranean plants [J]. Agricultural and Forest Meteorology,1998,90:173-18
    [28]蒋桂英.新疆棉花主要栽培生理指标的高光谱定量提取与应用研究[D].博士学位论文,湖南农业大学.2004
    [29]Carter G A. Primary and secondary effects of water content of the spectral reflectance of leaves [J]. American Journal of Botany,1991,78:916-924
    [30]王纪华,赵春江,郭晓维,等.利用遥感方法诊断小麦叶片含水量的研究[J].华北农学报,2001,15(4):68-72
    [31]房朋,任丽丽,张立涛,等.盐胁迫对杂交酸模叶片光合活性的抑制作用[J].应用生态学报,2008,19(10):2137-2142
    [32]刘广明,杨劲松,姚荣江.影响土壤浸提液电导率的盐分化学性质要素及其强度研究[J].土壤学报,2005,42(2):247-252
    [33]Heydari N, Gupta A D, Loof R. Salinity and sodicity influences on infiltration during surge flow irrigation [J]. Irrigation Science,2001,20:165-173
    [34]Leone A P, Menenti M, Buondonno A, et al. A field experiment on spectrometry of crop response to soil salinity [J]. Agriculture water management,2007,89:39-48
    [35]Leone A P, Menenti M, Sorrentino G. Reflectance spectroscopy to study crop response to soil salinity [J]. Italian Journal of Agronomy,2000,4:75-85
    [36]Koyro H W. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.) [J]. Environmental and Experimental Botany,2006,56:136-146
    [37]赵英时.遥感应用分析原理与分析[M].北京:科学出版社,2003
    [38]Brugnoli E, Bjorkman O. Growth of cotton under continuous salinity stress:influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy. Planta,1992,187:335-347
    [39]Heydari N, Gupta A D, Loof R. Salinity and sodicity influences on infiltration during surge flow irrigation. Irrigation Science,2001,20:165-173
    [40]颜宏,赵伟,盛艳敏,等.碱胁迫对羊草和向日葵的影响[J].应用生态学报,2005,16(8):1497-1501
    [41]Ramsis B S, Clause J O, Robert W F. Contributions of groundwater conditions to soil and water salinization [J]. Hydrogeology Journal,1999,7:46-64
    [42]Li Y. Use of second derivatives of canopy reflectance for monitoring prairie vegetation over different soil backgrounds. Remote Sensing of Environment,1993,44:81-87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700