用户名: 密码: 验证码:
东太平洋海隆13°N附近玄武岩特征及其对岩浆作用的指示意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究对东太平洋海隆13°N附近的玄武岩进行了矿物组成分析、全岩常量和微量元素分析、铀系同位素组成分析、橄榄石和斜长石及其中熔体包裹体成分分析。该研究有利于深入认识快速扩张洋中脊地幔的熔融过程和玄武质岩浆演化特征,并揭示玄武质岩浆动力学过程对岩浆化学和同位素组成的控制机制。
     该区玄武岩的矿物组成和常量元素特征表明,玄武质岩浆在浅部洋壳内经历了强烈的低压橄榄石+斜长石共结晶,而不存在单斜辉石斑晶。热力学软件COMAGMAT计算表明,岩浆在高压(4-8 kbar)条件下经历了单斜辉石结晶。另外,对65个熔体包裹体的组成分析表明,洋中脊玄武岩结晶深度并不是过去所指出的洋壳内,而是在岩浆侵入洋壳之前就已经历了分异结晶作用,即洋中脊玄武质岩浆过程并不是一个理想的绝热过程。岩浆结晶过程中Ni含量的变化可以通过岩浆房内少量多次的岩浆混合作用解释。洋中脊玄武质岩浆早期结晶产物:高Mg#橄榄石捕获有早期熔体-熔体包裹体。高Mg#橄榄石中熔体包裹体研究证明东太平洋海隆地幔中的确存在不同来源深度和熔融程度的岩浆混合作用。
     研究对比了洋中脊和洋岛玄武岩230Th-238U不平衡数据,结果表明洋中脊玄武岩过剩230Th受控于地幔熔融条件。我们提出一个密度控制模型以解释玄武岩铀系同位素组成特征。在该模型中,深部来源的岩浆均具有相对浅部岩浆较高的(230Th/238U)、Fe8、La/Sm和岩浆密度。深源岩浆较高的密度会导致其在迁移过程中的上浮力较弱,从而倾向于长时间滞留在岩浆房底部;而浅部来源的岩浆具有较低的岩浆密度和较强的上浮力,从而滞留时间较短。
     研究对比了2202个东太平洋海隆玄武岩和888个海隆附近海山玄武岩常量元素组成,以揭示研究区地幔熔融条件对岩浆演化的控制作用。结果表明,从东太平洋海隆北段至南段,扩张速率逐渐从8 cm/yr (16°N)变化至15 cm/yr (19°S),其岩浆结晶压力也相应降低。因此,受控于扩张速率的岩浆供应控制了洋壳温度和岩浆结晶深度。
The East Pacific Rise (EPR) is located to the east of pacific and is not far from the western coast of America. It is a typical fast spreading ridge, which has produced the major component of the upper part of the Pacific ocean crust. The study of petrology and geochemistry of MORBs from the EPR is critical for understanding the magmatic process and the dynamics for generating new oceanic crust. In this study, we analyzed the mineralogy, whole-rock major and trace elements, U-series isotopic compositions and melt inclusions hosted in olivine- and plagioclase-phenocrysts in MORBs from the EPR 13°N. This study aims to investigate the melting behavior of upper mantle and magma evolution process in fast spreading ridge, and to reveal the control of melting dynamics on chemical and isotopic compositions of basaltic magma.
     The mineralogical characters and major element compositions show that MORB magmas in this study area have experienced extensive low-pressure crystallization of olivine plus plagioclase, whereas clinopyroxene has not taken part in crystallization. The calculation using COMAGMAT resulted in that these magmas had fractionated clinopyroxene under pressure of 4-8 kbar. The results of analyses for sixty-five initial melt inclusions show that their host magmas have experienced high pressure fractionation of clinopyroxene. The MORB magmas have experienced fractionation not only in the ocean crust but also beneath the ocean crust, and the MORB magmatism is not an ideal adiabatic process. The variations of Ni in these samples can be addressed by multiple magma mixing processes in the magma chamber. High Mg# olivine hosts early-stage melt– melt inclusion, and the study based on these melt inclusions shows that magmas beneath the EPR have experienced mixing with magmas from various melting depths and degrees.
     The comparison of U-series data between MORBs and OIBs show that the excess 230Th are dominated by mantle melting conditions. We have proposed a density-control model to address the characteristics of U-series isotopic compositions. In this model, the deep-sourced melt has higher (230Th/238U), Fe8, La/Sm and density than that from shallow depth. The high density of the deep-sourced melt leads to its weak buoyancy, thus would tend to reside in the magma chamber for long time; whereas the shallow-sourced melt has a low density and intensive buoyancy, and would have short residence time.
     Major elements of 2202 basalts from the East Pacific Rise (EPR) and 888 basalts from near-EPR seamounts are used to investigate their differences in magma crystallization pressures and mantle melting conditions. The magma crystallization pressure decreases significantly as spreading rate of the EPR increases from ~80 mm/yr in the north (16°N) to ~160 mm/yr in the south (19°S), while this trend is unobvious in near-EPR seamounts. This suggests that the magma supply controlled by spreading rate dominates the ridge crust temperature and magma crystallization depth.
引文
曾志刚,王晓媛,张国良,等.东太平洋海隆13°N附近Fe-氧羟化物的形成:矿物和地球化学证据.中国科学(D辑), 2007, 37: 1349-1357
    李三中,郭晓玉,侯方辉,吕海青,郝德峰,刘保华.洋中脊分段性及其拓展和叠接机制.海洋地质动态, 2004, 20 (11): 19-28.
    鄢全树,石学法.洋中脊与地幔柱热点相互作用研究进展.海洋地质与第四纪地质, 2006, 26 (5): 131-138.
    李小虎,初凤友,雷吉江,赵建如.慢速-超慢速扩张西南印度洋中脊研究进展. 地球科学进展, 2008 (23): 595-603.
    Alexandera R T, Macdonald K C. Small off-axis volcanoes on the East Pacific Rise. Earth and Planetary Science Letters, 1996, 139: 387-394
    Allan J F, Batiza R, Perfit M R, Fornari P J, Sack R. Petrology of Lavas from the Lamont Seamount Chain and Adjacent East Pacific Rise, 10°N. Journal of Petrology, 1989, 30 (5): 1245-1298
    Allan J F, Batiza R, Sack R O. Geochemical characteristics of Cocos Plate seamount lavas. Contribution to Mineralogy and Petrology, 1994, 116: 47-61
    Allègre C J, Turcotte D L. Implications of a two-component marble-cake mantle. Nature, 1986, 323 (11): 123-127
    Almeev R, Holtz F, Koepke J, Haase K, Devey C. Depths of Partial Crystallization of H2O-bearing MORB: Phase Equilibria Simulations of Basalts at the MAR near Ascension Island (7-11°S). Journal of Petrology, 2007, doi: 10.1093 /petrology/ egm068
    Almeev R R, Holtz F, Koepke J, Parat F, Botcharnikov, R E. The effect of H2O on olivine crystallization in MORB: Experimental calibration at 200 MPa. American Mineralogy, 2007, 92(4): 670-674
    Anderson A T. Magma mixing: petrological processes and volcanological tools. Journal of Volcanology Geothermal Research, 1976, 1: 3-33
    Antrim L, Sempere J C, Macdonald K C. Fine Scale Study of a Small Overlapping Spreading Center System at 12°54’N on the East Pacific Rise. Marine Geophysical Researches, 1988, 9: 115-130
    Bach W, Hegner E, Erzinger J, et al. Chemical and isotopic variations along the superfast spreading East Pacific Rise from 6 to 30°S. Contribution to Mineralogy and Petrology, 1994, 116: 365-380
    Ballard R D, Hekinian R, Francheteau J. Geological setting of hydrothermal activity at 12°50’N on the East Pacific Rise: a submersible study. Earth and Planetary Science Letters, 1984, 69: 176-186
    Batiza R, Niu Y, Karsten J L, Boger W, Potts E, Norby L, Butler R. Steady and non-steady state magma chambers below the East Pacific Rise. Geophysical Research Letters, 1996, 23: 221-224
    Batiza R, Niu Y, Zayac W. Chemistry of seamounts near the East Pacific Rise: Implication for geometry of subaxial mantle flow. Geology, 1990, 18: 1122-1125
    Batiza R, Niu Y L. Petrology and Magma Chamber Processes at the East Pacific Rise ~ 9°30'N. Journal of Geophysical Research, 1992, 97(B5): 6779-6797
    Batiza R, Vanko D. Petrology of young pacific seamounts. Journal of Geophysical Research, 1984, 89: 11235-11260
    Beattiea P. The generation of uranium series disequilibria by partial melting of spinel peridotite: constraints from partitioning studies. Earth and planetary science letters, 1993, 117: 379-391
    Ben Othman D, Allègre C J. U-Th isotopic systematics at 13°N East Pacific Rise segment. Earth and Planetary Science Letters, 1990, 98: 129-137
    Berlo K, Blundy J, Turner S, et al. Textural and chemical variation in plagioclase phenocrysts from the 1980 eruptions of Mount St. Helens, USA. Contribution to Mineralogy and Petrology, 2007, 154: 291-308
    Berndt J, Koepke J, Holtz F. An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200 MPa. Journal of Petrology, 2005, 46: 135-167
    Blake S, Rogers N. Magma differentiation rates from (226Ra/230Th) and the size and power output of magma chambers. Earth and Planetary Science Letters, 2005, 236: 654-669
    Blake S. Volcanism and the dynamics of open magma chambers. Nature, 1981, 289: 783-785
    Blundy J D, Robinson J A C, Wood B J. Heavy REE are compatible in clinopyroxene on the spinel lherzolite solidus. Earth and Planetary Science Letters, 1998, 160: 493-504
    Blundy J D, Shimizu N. Trace element evidence for plagioclase recycling in calc-alkaline magmas. Earth and Planetary Science Letters, 1991, 102: 178-197
    Blundy J D, Wood B J. Prediction of crystal-melt partition coefficients from elastic moduli. Nature, 1994, 372: 452-454
    Boudier F, Nicolas A, Ildefonse B. Magma chambers in the Oman ophiolite: fed from the top and the bottom. Earth and Planetary Science Letters, 1996, 144: 239-250
    Bourdon B, Joron J L, Claude-Ivanaj C, et al. U-Th-Pa-Ra systematics for the Grande Comore volcanics: melting processes in an upwelling plume. Earth and Planetary Science Letters, 1998, 164: 119-133
    Bourdon B, Turner S P, Ribe N M. Partial melting and upwelling rates beneath the Azores from a U-series isotope perspective. Earth and Planetary Science Letters, 2005, 239: 42-56
    Bourdon B, Zindler A, Elliott T, et al. Constraints on mantle melting at mid-ocean ridges from global 238U-230Th disequilibrium data. Nature, 1996, 384: 231-235
    Boynton W V. Cosmochemistry of the rare earth elements: meteorite studies. Rare Earth Element Geochemistry. Amsterdam: Elsevier Press, 1984. 63-114
    Burnett M S, Caress D W, Orcutt J A. Tomographic image of the magma chamber at 12°50’N on the East Pacific Rise. Nature, 1989, 330: 206-208
    Carbotte S, Mutter C, Mutter J, Ponce-Correa G. Influence of magma supply and spreading rate on crustal magma bodies and emplacement of the extrusive layer: Insights from the East Pacific Rise at lat 16°N. Geology, 1998, 26(5): 455-458
    Caroff M, Fleutelot C. The north-south propagating spreading center of the North Fiji Basin. Modeling of the geochemical evolution in periodically replenished and tapped magma chambers. Mineralogy and Petrology, 2003, 79: 203-224
    Castillo P R, Klein E, Bender J, et al. Petrology and Sr, Nd, and Pb isotope geochemistry of mid-ocean ridge basalt glasses from the 11°45′N to 15°00′N segment of the East Pacific Rise. Geochemistry Geophysics Geosystems, 2000, doi: 10.1029/1999GC000024
    Castillo P R, Klein E, Bender J, et al. Petrology and Sr, Nd, and Pb isotope geochemistry of mid-ocean ridge basalt glasses from the 11°45′N to 15°00′N segment of the East Pacific Rise. Geochemistry Geophysics Geosystems, doi: 10.1029/1999GC000024, 2000.
    Chaussidon M, Sheppard S M F, Hydrogen M A. Hydrogen, sulphur and neodymium isotope variations in the mantle beneath the EPR at 12°50′N. Journal of Geochemistry Society, 3: 325-337
    Chen Y J. Themal effects of gabbro accretion from a deeper second melt lens at fast spreading East Pacific Rise. Journal of Geophysical Research, 1998, 106: 8581-8588
    Chen Y J, Lin J. High sensitivity of ocean ridge thermal structure to changes in magma supply: the Galápagos Spreading Center. Earth and Planetary Science Letters, 2004, 221: 263-273
    Choukroune P, Francheteau J, Hekinian R. Tectonics of the East Pacific Rise near 12°50’N: a submersible study. Earth and Planetary Science Letters, 1984, 68: 115-127
    Claude-Ivanaj C, Joron J L, Allegre C J. 238U-230Th-226Ra fractionation in historical lavas from the Azores: long-lived source heterogeneity vs. metasomatism fingerprints. Chemical Geology, 2001, 176: 295-310
    Condomines M, Sigmarsson O. 238U–230Th disequilibria and mantle melting processes: a discussion. Chemical Geology, 2000, 162: 95-104
    Coogan L A, Jenkin G R, Wilson R N. Constraining the cooling rate of the lower oceanic crust: a new approach applied to Oman ophiolite. Earth and Planetary Science Letters, 2002, 199: 127-146
    Coogan L A, Thompson G, MacLeod C J. A textural and geochemical investigation of high level gabbros from the Oman ophiolite: implications for the role of the axial magma chamber at fast-spreading ridges. Lithos, 2002, 63: 67-82
    Cooper K M, Goldstein S J, Sims K W W, et al. Uranium-series chronology of Gorda ridge volcanism: new evidence from the 1996 eruption. Earth and Planetary Science Letters, 2003, 206: 459-475
    Cooper K M, Reid M R, Murrell M T, Clague D A. Crystal and magma residence at Kilauea Volcano, Hawaii: 230Th–226Ra dating of the 1955 east rift eruption. Earth and Planetary Science Letters, 2001, 184: 703-718
    Couch S, Sparks R S J, Carroll M R. Mineral disequilibrium in lavas explained by convective self-mixing in open magma chambers. Nature, 2001, 411: 1037-1039
    Danyushevsky L V, Della-Pasqua F N, Sokolov S. Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications. Contribution to Mineralogy and Petrology, 2000, 138: 68-83
    Danyushevsky L V, McNeill A W, Sobolev A V. Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chemical Geology, 2002, 183: 5-24
    Danyushevsky L V. The effect of small amounts of H2O on crystallisation of mid-ocean ridge and backarc basin magmas, Journal of Volcanology and Geothermal Research, 2001, 110: 265-280
    Danyushevsky L V, Sobolev A V, Dmitriev L V. Estimation of the pressure of crystallization and H2O content of MORB and BABB glasses: calibration of an empirical technique. Mineralogy and Petrology, 1996, 57: 185-204
    Defant M J, Nielsen R L. Interpretation of open system petrogenetic processes: Phase equilibria constraints on magma evolution. Geochimica et Cosmochimica Acta, 1990, 54: 87-102
    Detrick R S, Buhl P, Vera E, Mutter J, Orcutt J, Madsen J, Brocher T. Multi-channel seismic imaging of a crust magma chamber along the East Pacific Rise. Nature, 1987, 326: 35-41
    Dungan M A, Rhodes J M. Residual glasses and melt inclusions in basalts from DSDP Legs 45 and 46: Evidence for magma mixing. Contribution to Mineralogy and Petrology, 1978, 67: 417-431
    Dungan M A, Rhodes J M. Residual glasses and melt inclusions in basalts from DSDP legs 45 and 46: evidence for magma mixing. Contribution to Mineralogy and Petrology, 1979, 67: 417-431
    Eason D, Sinton J. Origin of high-Al N-MORB by fractional crystallization in the upper mantle beneath the Galápagos Spreading Center. Earth and Planetary Science Letters, 2006, 252: 423-436
    Elkins L J, Gaetani G A, Sims K W W. Partitioning of U and Th during garnet pyroxenite partial melting: constraints on the source of alkaline ocean island basalts. Earth and Planetary Science Letters, 2008, 265: 270-286
    Engel A E, Engel C G, Havens R G. Chemical characteristics of oceanic basalts and the upper mantle. Geological Society American Bulletin, 1965, 76: 719-734
    Falloon T J, Danyushevsky L V, Ariskin A. The application of olivine geothermometry to infer crystallization temperatures of parental liquids: Implications for the temperature of MORB magmas. Chemical Geology, 2007, 241: 207-233
    Fedele L, Bodnar R J, DeVivo B, Tracy R. Melt inclusion geochemistry and computer modelling of trachyte petrogenesis at Ponza, Italy. Chemical Geology, 2003, 194: 81-104
    Flower M F J. Thermal and kinematic control on ocean-ridge magma fractionation: contrasts between Atlantic and Pacific spreading axes. Journal of geological Society, London, 1981, 138: 695-712
    Ford C E, Russell D G, Craven J A, Fisk M R. Olivineliquid equilibria: temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn. Journal of Petrology, 1983, 24: 256-265
    Fornari D J, Perfit M R, Allan J F, Batiza R. Small-scale heterogeneities in depleted mantle sources: near-ridge seamount lava geochemistry and implications for mid-ocean-ridge magmatic processes. Nature, 1988a, 331: 511-513
    Fornari D J, Perfit M R, Allan J F, Batiza R, Haymon R, Barone A, Ryan W B F, Smith T, Simkin T, Luckman M A. Geochemistry and structural students of the Lamont seamounts: seamounts as indicators of mantle processes. Earth and Planetary Science Letters, 1988b, 89: 63-83
    Francis D. The pyroxene paradox in MORB glasses-a signature of picritic parental magmas? Nature, 1986, 319: 586-588
    Fran?ois F, Schiano P. Experimental investigation of equilibration conditions during forsterite growth and melt inclusion formation. Earth and Planetary Science Letters, 2005, 236: 882-898
    Francheteau J, Ballard R D. The East Pacific Rise near 21°N, 13°N and 20°S: inferences for along-strike variability of axial processes of the Mid-Ocean Ridge. Earth and Planetary Science Letters, 1983, 64: 93-116
    Furnes H, Hellevang B, Robins B, Gudmundsson A. Geochemical stratigraphy of the lavas of the Solund-Stavfjord Ophiolite Complex, W. Norway, and magma-chamber dynamics. Bulletin of Volcanology, 2003, 65: 441-457
    Gaetani G A, Watson E B. Open system behavior of olivine-hosted melt inclusions. Earth and Planetary Science Letters, 2000, 183: 27-41
    Gaetani G A, Watson E B. Modeling the major-element evolution of olivine-hosted melt inclusions. Chemical Geology, 2002, 183: 25-41
    Gaillard F, Scaillet B, Pichavant M. The effect of water and fO2 on the ferric–ferrous ratio of silicic melts. Chemical Geology, 2001, 174: 255-273
    Galushkin Y I, Dubinin E P, Sveshnikov A A. A nonstationary model of the thermal regime of axial zones of mid-ocean ridges: Formation of crustal and mantle magma chambers. Physics of the Solid Earth, 2007, 43: 130-147
    Garcial M O, Pietruszka A J, Rhodes J M. A petrologic perspective of kilauea Volcano's summit magma reservoir. Journal of Petrology, 2003, 44: 2313–2339
    Ginibre C, W?rner G, Kronz A. Minor- and trace-element zoning in plagioclase: implications for magma chamber processes at Parinacota volcano, northern Chile. Contribution to Mineralogy and Petrology, 2002, 143: 300-315
    Ginibre C, W?rner G. Variable parent magmas and recharge regimes of the Parinacota magma system (N. Chile) revealed by Fe, Mg and Sr zoning in plagioclase. Lithos, 2007, 98: 118-140
    Gomez O, Briais A. Near-axis seamount distribution and its relationship with the segmentation of the East Pacific Rise and northern Pacific-Antarctic Ridge, 17°N-56°S. Earth and Planetary Science Letters, 2000, 175: 233-246
    Grove T L, Baker M B, Kinzler R J. Coupled CaAl-NaSi diffusion in plagioclase feldspar: Experiments and applications to cooling rate speedometry. Geochimica et Cosmochimica Acta, 1984, 48: 2113-2120.
    Grove T L, Bryan W B. Fractionation of pyroxene-phyric MORB at low pressure: An experimental study, Contribution to Mineralogy and Petrology, 1983, 84: 293-309
    Grove T L, Kinzler R J, Bryan W B. Fractionation of midocean ridge basalt (MORB). American Geophysical Union Geophysical Monograph, 1992, 71: 281-310
    Hamelin B, Dupper B, Allegre C J. Lead-Strontium isotopic variations along the East Pacific Rise and the mid-Atlantic ridge: A comparative study. Earth and Planetary Science Letters, 1984, 67: 340-350
    Harding A J, Orcutt J A, Kappus M E, Vera E E, Mutter J C, Buhl P, Detrick R S, Brocher T M. Sructure of Young Oceanic Crust at 13oN on the East Pacific Rise From Expanding Spread Profiles. Journal of Geophysical Research, 1989, 94: 12163-12196.
    Hauri E. SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions. Chemical Geology, 2002, 183: 115-141
    Hawkesworth C, Scherstén A. Mantle plumes and geochemistry. Chemical Geology, 2007, 241: 319-331
    Hekiniana R, Francheteaub J, Armijoc R, Cogne J P, Constantin M, Girardeau J, Hey R, Naar D F, Searle R. Petrology of the Easter microplate region in the South Pacific. Journal of Volcanology and Geothermal Research, 1996, 72: 259-289
    
    Helffrich G R, Wood B J. The earth’s mantle. Nature, 2001, 412: 501-507
    Herzberg C. Partial crystallization of mid-ocean ridge basalts in the crust and mantle. Journal of Petrology, 2004, 45: 2389-2405
    Herzberg C, Asimow P D, Arndt N, et al. Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites. Geochemistry Geophysics Geosystems, 2007, 5, Q02006. doi:10.1029/2006GC001390
    Hirose K, Kushiro I. Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth and Planetary Science Letters, 1993, 114, 477-489
    Hirschmann M M, Stolper E M. A possible role for garnet pyroxenite in the origin of the‘garnet signature’in MORB. Contribution to Mineralogy and Petrology, 1996, 124: 185-208
    Hoffmann A W. Mantle geochemistry: the message from oceanic volcanism. Nature, 1997, 385: 219-228
    Hirschmann M M, Kogiso T, Baker M B, Stolper E M. Alkalic magmas generated by partial melting of garnet pyroxenite. Geology, 2003, 31: 481-484
    Huppert H E, Sparks R S J, Whitehead, J A. Replenishment of magma by light imputs. Journal of Geophysical Research, 1986, 91: 6113-6122
    Huppert H E, Sparks R S J. Restrictions on the compositions of mid-ocean ridge basalts: a fluid dynamical investigation. Nature, 1980, 286: 46-48
    Huppert H E, Sparks R S J, Whitehead J A. Replenishment of magma by light imputs. Journal of Geophysical Research, 1986, 91: 6113-6122
    Irving A J, Frey F A. Trace element abundances in megacrysts and their host basalts: Constraints on partition coefficients and magacryst genesis, Geochimica et Cosmochimica Acta, 1984, 48: 1201-1221
    Ivanovich M, Harmon R S. Uranium-Series Disequilibrium. Clarendon Press, Oxford, England. 1982
    Iwanmori H. A model for disequilibrium mantle melting incorporating melt transport by porous and channel flows. Nature, 1993, 366: 734-737
    Iyer S D, Ray D. Structure, tectonic and petrology of mid-oceanic ridges and the Indian scenario. Current Science, 2003, 85: 277-289
    Jenkins D M, Newton R C. Experimental determination of the spinel peridotite to garnet peridotite inversion at 900°C and 1000°C in the system CaO-MgO-Al2O3-SiO2, and at 900°C with natural garnet and olivine. Contribution to Mineralogy and Petrology, 1979, 68: 407-419
    Kay R, Hubbard N J, Gast P W. Chemical characteristics and origin of oceanic ridge volcanic rocks. Journal of Geophysical Research 75, 1585-1613.
    Kelemen P B, Dick H J B. Focused melt flow and localized deformation in the upper mantle: juxtaposition of replacive dunite and ductile shear zones in the Josephine peridotites, SW Oregon. J Geophys Res, 1995, 100: 423-438
    Kelemen P B, Koga K, Shimizu K K. Geochemistry of gabbro sills in the crust-mantle transition zone of the Oman ophiolite: implications for the origin of the oceanic lower crust. Earth and Planetary Science Letters, 1997, 146: 475-488
    Kelemen P B, Shimizu N, Salters V J M. Focussed flow of melt in the upper mantle: Extraction of MORB beneath oceanic spreading ridges. Mineralogy Magzine, 1994, 58: 466-467
    Kelley D F, Barton M. Pressures of Crystallization of Icelandic Magmas. Journal of Petrology, 2008, 49: 465-492
    Kent G M, Harding A J, Orcutt J A. Evidence for a smaller magma chamber beneath the East Pacific Rise at 9o30’N, Nature, 1990, 344: 650-653
    Kinzler R, Grove T. Primary magmas of mid-ocean ridge basalt 2. applications. Journal of Geophysical Research, 1992, 97: 6907-6926
    Klein E M, Langmuir C H, Global correlation of ocean ridge basalt chemistry with axial depth and crustal thickness. Journal of Geophysical Research, 1987, 92: 8089–8115
    Klein E M, Langmuir C H. Local versus global variations in ocean ridge basalt composition: a reply. Journal of Geophysical Research, 1987, 94(B4): 4241-4252
    Klemmen S, O'Neill H S. The near-solidus transition from garnet lherzolite to spinel lherzolite. Contribution to Mineralogy and Petrology, 2000, 138: 237-248
    Kogiso T, Hirschmann M M, Frost D J. High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts. Earth and Planetary Science Letters, 2003, 216: 603-617
    Kogiso T, Hirschmann M M, Reiners P W. Length scales of mantle heterogeneities and their relationship to ocean island basalt geochemistry. Geochimica et Cosmochimica Acta, 2004, 68: 345-360
    Kogiso T, Hirschmann M M. Experimental study of clinopyroxenite partial melting and the origin of ultra-calcic melt inclusions. Contribution to Mineralogy and Petrology, 2001, 142: 347-360
    Koh K M, Tay E G, Lundstrom C C, et al. Investigating solid mantle upwelling rates beneath mid-ocean ridges using U-series disequilibria, 1: a global approach. Earth and Planetary Science Letters, 1998, 157: 151-165
    Kokfelt T F, Hoernle K, Lundstrom C, et al. Time-scales for magmatic differentiation at the Snaefellsj?kull central volcano, western Iceland: constraints from U–Th–Pa–Ra disequilibria in post-glacial lavas. Geochimica et Cosmochimica Acta, 2009, 73: 1120-1144
    Korenaga J, Kelemen P B. Origin of gabbro sills in the Moho transition zone of the Oman ophiolite: Implications for magma transport in the oceanic lower crust. Journal of Geophysical Research, 1997, 102: 27729-27749
    Kress V C, Ghiorso M S. Thermodynamic modeling of post-entrapment crystallization in igneous phases, Journal of Volcanology and Geothermal Research, 2004, 137: 247-260
    Landi P, Métrich N, Bertagnini A, et al. Dynamics of magma mixing and degassing recorded in plagioclase at Stromboli (Aeolian Archipelago, Italy). Contribution to Mineralogy and Petrology, 2004, 147: 213-227
    Landwehr D, Blundy J, Chamorro-Perez E M, et al. U-series disequilibria generated by partial melting of spinel lherzolite, Earth and Planetary Science Letters, 2001, 188: 329-348
    Lange R A, Carmichael I S E. Densities of Na2O-K2O-CaO-MgO-FeO-Fe2O3- A12O3-TiO2-SiO2 liquids: New measurements and derived partial molar properties. Geochemica and Cosmochimica Acta, 1987, 51: 2931-2946
    Langmuir C H. Geochemical consequences of in situ crystallization. Nature, 1989, 340: 199-205
    Langmuir C H, Bender J F, Batiza R. Petrological and tectonic segmentation of the East Pacific Rise, 5°30’-14°30’N. Nature, 1986, 322: 422-429
    Larsen L M, Pedersen A K. Processes in high-Mg, high-T magmas: evidence from olivine, chromite and glass in Palaeogene picrites from West Greenland. Journal of Petrology, 2000, 41: 1071-1098
    le Roux P J, Le Roex A P, Schilling J G. Crystallization processes beneath the southern Mid-Atlantic Ridge (40-55oS), evidence for high-pressure initiation of crystallization. Contribution to Mineralogy and Petrology, 2002, 142: 582-602
    le Roux P J, Shirey S B, Hauri E H, et al. The effects of variable sources, processes and contaminants on the composition of northern EPR MORB (8-10°N and 12-14°N): Evidence from volatiles (H2O, CO2, S) and halogens (F, Cl). Earth and Planetary Science Letters, 2006, 251: 209-231
    le Roux P J, le Roex A P, Schilling J G. Crystallization processes beneath the southern Mid-Atlantic Ridge (40-55oS), evidence for high-pressure initiation of crystallization. Contribution to Mineralogy and Petrology, 2002, 142: 582-602
    le Roux P J, Shirey S B, Hauri E H, Perfit M R, Bender J F. The effects of variable sources, processes and contaminants on the composition of northern EPR MORB (8-10°N and 12-14°N): Evidence from volatiles (H2O, CO2, S) and halogens (F, Cl). Earth and Planetary Science Letters, 2006, 251: 209-231
    Li C, Ripley E M, Mathez E A. The effect of S on the partitioning of Ni between olivine and silicate melt in MORB. Chemical Geology, 2003, 201: 295-306
    Ligi M, Bonatti E, Cipriani A, et al. Water-rich basalts at mid-oceanridge cold spots. Nature, 2005, 434: 66-69
    Longhi J. Some phase equilibrium systematics of lherzolite melting: I, Geochemistry Geophysics Geosystems, 2002, 3(3), 10.1029/2001GC000204.
    Lundstrom C C, Hoernle K, Gill J. U-series disequilibria in volcanic rocks from the Canary islands: plume versus lithospheric melting. Geochimica et Cosmochimica Acta, 2003, 67(21): 4153-4177
    Lundstrom C C, Gill J, Williams Q, Perfit M R. Mantle Melting and Basalt Extraction by Equilibrium Porous Flow. Science, 1995, 270: 1958-1961
    Lundstrom C. Models of U-series disequilibria generation in MORB: the effects of two scales of melt porosity. Physics of the Earth and Planetary Interiors, 2000, 121: 189–204
    Lundstrom C C, Gill J, Williams Q. A geochemically consistent hypothesis for MORB generation. Chemical Geology, 2000, 162: 105-126
    Lundstrom C C, Sampson D E, Perfit M R, Gill J, Williams Q. Insights into mid-ocean ridge basalt petrogenesis: U-series disequilibria from the Siqueiros Transform, Lamont Seamounts, and East Pacific Rise. Journal of Geophysical Research, 1999, 104 (B6): 13035–13048
    Macdonald K C, Fox P J. The axial summit graben and cross-sectional shape of the East Pacific Rise as indicators of axial magma chambers and recent volcanic eruption. Earth and Planetary Science Letters, 1988, 88: 119-131
    Macdonald K C, Fox P J, Miller S, et al. The East Pacific Rise and its Flanks 8-18°N: History of Segmentation, Propagation and Spreading Direction Based on SeaMARC II and Sea Beam Studies. Marine Geophysical Researches, 1992, 14: 299-344
    Macdonald K C, Fox P J, Perram L J, Eisen M F, Haymon R M, Miller S P, Carbotte S M, Cormier M H, Shor A N. A new view of the mod-ocean ridge from the behaviour of ridge-axis discontinuities. Nature, 1988, 335: 217-225
    Macdougall J D, Lugmair G W. Sr and Nd isotopes in basalts from the East Pacific Rise: significance for mantle heterogeneity. Earth and Planetary Science Letters, 1986: 77: 273-284
    MacLeod C J, Yaouancq G. A fossil melt lens in the Oman ophiolite: Implications for magma chamber processes at fast spreading ridges. Earth and Planetary Science Letters, 2000, 176: 357-373
    Makenzie D, O’Nions R K. Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology, 1991, 32: 1021-1091
    Martin D, Nokes R. Crystal settling in a vigorously convecting magma chamber. Nature, 1988, 332: 534-536
    McClain J S, Orcutt J A, Burnett M. The East Pacific Rise in cross section: a seismic model, Journal of Geophysical Research, 1985, 90: 8627-8639
    McKenzie D. Constraints on melt generation and transport from U-series activity ratios. Chemical Geology, 2000, 162: 81-94
    McKenzie D. 230Th-238U disequilibrium and melting processes beneath ridge axes. Earth and Planetary Science Letters, 1985, 72: 149-157
    Medard E, McCammon C A, Barr J A, et al. Oxygen fugacity, temperature reproducibility, and H2O contents of nominally anhydrous piston-cylinder experiments using graphite capsules. American Mineralogy, 2008, 93: 1838-1844
    Michael P J, Chase R L. The influence of primary magma composition, H2O and pressure on Mid-Ocean Ridge basalt differentiation. Contribution to Mineralogy and Petrology, 1987, 96: 245-263
    Michael P J, Cornell W C. Influence of spreading rate and magma supply on crystallization and assimilation beneath midocean ridges: evidence from chlorine and major element chemistry of mid-ocean ridge basalts. Journal of Geophysical Research, 1998, 103: 18325-18356
    Mordick B E, Glazner A F. Clinopyroxene thermobarometry of basalts from the Coso and Big Pine volcanic fields, California. Contribution to Mineralogy and Petrology, 2006, 152: 111-124
    Müntener O, Kelemen P B, Grove T L. The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contribution to Mineralogy and Petrology, 2001, 141: 643-658
    Nielsen R L, Crum J. Bourgeois R, Hascall K, Forsythe L M, Fisk M R, Christie D M. Melt inclusions in high-An plagioclase from the Gorda Ridge: an example of thelocal diversity of MORB parent magmas. Contribution to Mineralogy Petrology, 1995, 122: 34-50
    Nielsen T F D, Turkov V A, Solovova I P, Kogarko L N, Ryabchikov I D. A Hawaiian beginning for the Iceland plume: Modelling of reconnaissance data for olivine-hosted melt inclusions in Palaeogene picrite lavas from East Greenland. Lithos, 2006, 92: 83-104
    Niu Y L, Langmuir C H, Kinzler R J. The origin of abyssal peridotites: a new perspective. Earth and Planetary Science Letters, 1997, 152: 251-265
    Niu Y L, Batiza R. In situ density of MORB melts and residual mantle: implications for buoyancy forces beneath mid-ocean ridges. Journal of Geology, 1991a, 99: 767-775
    Niu Y L, Batiza R. DENSCAL: a program for calculating densities of silicate melts and mantle minerals as a function of pressure, temperature, and composition in melting range. Computers & Geosciences, 1991b, 17(5): 679-687
    Niu Y L, Batiza R. An empirical method for calculating melt compositions produced beneath mid-ocean ridges: Application for axis and off-axis (seamounts) melting. Journal of Geophysical Research, 1991c, 96: 21753-21777
    Niu Y L, Batiza R. Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle. Earth and Planetary Science Letters, 1997a, 148: 471-483
    Niu Y L, Batiza R. Extreme Mantle Source Heterogeneities Beneath the Northern East Pacific Rise: Trace Element Evidence From Near-Ridge Seamounts. Proc. 30th Int?l. Geol. Congr., Part, 1997b, 15: 109-120
    Niu Y L, O’Hara M J. Global correlations of ocean ridge basalt chemistry with axial depth: a new perspective. Journal of Petrology, 2008, 49: 633-664
    Niu Y L, Regelous M, Wendt I J, Batiza R, O’Hara M J. Geochemistry of near-EPR seamounts: importance of source vs. process and the origin of enriched mantle component. Earth and Planetary Science Letters, 2002, 199: 327-345
    Niu Y L, Waggoner D G, Sinton J M, Mahoney J J. Mantle source heterogeneity and melting processes beneath seafloor spreading centres: The East Pacific Rise, 18°-19°S. Journal of Geophysical Research, 1996, 101: 27711-27733
    O’Hara M J, Richardson S W, Wilson G. Garnet-peridotite stability and occurrence in crust and mantle. Contribution to Mineralogy and Petrology, 1971, 32: 48–68
    O’Hara M J. Geochemical evolution during fractional crystallization of a periodically refilled magma chamber. Nature, 1977, 266: 503-507
    O’Hara M J. The bearing of phase equilibria studies in synthetic and natural systems on the origin of basic and ultrabasic rocks. Earth-Science Reviews, 1968, 4: 69-133
    O’Harai M J, Herzberg C. Interpretation of trace element and isotope features of basalts: Relevance of field relations, petrology, major element data, phase equilibria, and magma chamber modeling in basalt petrogenesis. Geochimica et Cosmochimica Acta, 2002, 66: 2167-2191
    Oldenburg C M, Spera F J. Dynamic mixing in magma bodies: Theory, simulation, and implications. Journal of Geophysical Research, 1989, 94: 9215-9236
    Peate D W, Hawkesworth C J, Van Calsteren P W, et al. 238U-230Th constraints on mantle upwelling and plume-ridge interaction along the Reykjanes ridge. Earth and Planetary Science Letters, 2001, 187: 259-272
    Pelayo A M, Stein S, Stein C A. Estimation of oceanic hydrothermal heat flux from heat flow and depths of midocean ridge seismicity and magma chambers. Geophysical Research Letters, 1994, 21: 713-716
    Pertermann M, Hirschmann M M, Hametner K, et al. Experimental determination of trace element partitioning between garnet and silica-rich liquid during anhydrous partial melting of MORB-like eclogite, Geochemistry Geophysics Geosystems, 2004, 10.1029/2003GC000638
    Perugini D, Poli G, Valentini L. Strange attractors in plagioclase oscillatory zoning: petrological implications. Contribution to Mineralogy and Petrology, 2005, 149: 482-497
    Pietruszka A J, Rubin K H, Garcia M O. 226Ra-230Th-238U disequilibria of historical Kilauea lavas (1790-1982) and the dynamics of mantle melting within the Hawaiian plume. Earth and Planetary Science Letters, 2001, 186: 15-31
    Prinzhofer A, Lewin E, Allègre C J. Stochastic melting of the marble cake mantle: evidence from local study of the East Pacific Rise at 12°50'N. Earth and Planetary Science Letters, 1989, 92: 189-206
    Prytulak J, Elliott T. Determining melt productivity of mantle sources from 238U–230Th and 235U–231Pa disequilibria; an example from Pico Island, Azores. Geochimica et Cosmochimica Acta, 2009, 73: 2103-2122
    Putirka K, Johnson M, Kinzler R, Longhi J, Walker D. Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0-30 kbar. Contribution to Mineralogy and Petrology, 1996, 123: 92-108
    Ribe N M. On the dynamics of mid-ocean ridges. Journal of Geophysical Research, 1988, 93: 429-436
    Richardson C, McKenzie D. Radioactive disequilibria from models of melt generation by plumes and ridges. Earth and Planetary Science Letters, 1994, 128: 425-437
    Robinson J A C, Wood B J. The depth of the spinel to garnet transition at the peridotite solidus. Earth and Planetary Science Letters, 1998, 164: 277-284
    Rogers N W, Thomas L E, Macdonald R, et al. 238U–230Th disequilibrium in recent basalts and dynamic melting beneath the Kenya rift. Chemical Geology, 2006, 234: 148-168
    Rubin K H, Macdougall J D. 226Ra excesses in mid-ocean-ridge basalts and mantle melting. Nature, 1988, 335: 158-161
    Rubin K H, Sinton J M. Inferences on mid-ocean ridge thermal and magmatic structure from MORB compositions. Earth and Planetary Science Letters, 2007, 260: 257-276
    Rubin K H, Van Der Zander I, Smith M C Minimum speed limit for ocean ridge magmatism from 210Pb–226Ra–230Th disequilibria. Nature, 2005, 437: 534-538
    Rubin K H, Macdougall J D. 226Ra excesses in mid-ocean-ridge basalts and mantle melting. Nature, 1988, 335: 158-161
    Rubin K H, Sinton J M. Inferences on mid-ocean ridge thermal and magmatic structure from MORB compositions. Earth and Planetary Science Letters, 2007, 260: 257-276
    Rubin K H, Van Der Zander I, Smith M C, Bergmanis E C. Minimum speed limit for ocean ridge magmatism from 210Pb–226Ra–230Th disequilibria. Nature, 2005, 437: 534-538
    Russo C J, Rubin K H, Graham D W. Mantle melting and magma supply to the Southeast Indian Ridge: The roles of lithology and melting conditions from U-series disequilibria. Earth and Planetary Science Letters, 2009, 278: 55-66
    Saal A E, Hauri E H, Langmuir C H, Perfit M R. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature, 2002, 419: 451-455
    Sakai H, Marais D J D, Ueda A, et al. Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts. Geochemica et Cosmochimica Acta, 1984, 48: 2433-2441
    Salters V J M, Hart S R. The hafnium paradox and the role of garnet in the source of mid-ocean ridge basalts. Nature, 1989, 342: 420-422
    Salters V J M. The generation of mid-ocean ridge basalts from the Hf and Nd isotope perspective. Earth and Planetary Science Letters, 1996, 141: 109-123
    Saltzer R L, Humphreys E D. Upper mantle P wave velocity structure of the eastern Snake River Plain and its relationship to geodynamic models of the region. Journal of Geophysical Research, 1997, 102: 11829-11841
    Scarrow J H, and Cox K G. Basalts Generated by Decompressive Adiabatic Melting of a Mantle Plume: a Case Study from the Isle of Skye, NW Scotland. Journal of Petrology, 1995, 36(1): 3-22
    Scheirer D S, Macdonald K C. Near-axis seamounts on the flanks of the East Pacific Rise, 8°N to 17°N. Journal of Geophysical Research, 1995, 100: 2239-2259
    Schiano P. Primitive mantle magmas recorded as silicate melt inclusions in igneous minerals. Earth-Science Reviews, 2003, 63: 121-144
    Schouten H S, Klitgord K D, Whitehead J A. Segmentation of mid-ocean ridge. Nature, 1985, 317: 225-229
    Shaw C S J, Dingwell D B. Experimental peridotite–melt reaction at one atmosphere: a textural and chemical study, Contribution to Mineralogy and Petrology, 2008, 155: 199–214
    Shen Y, Forsyth D W. Geochemical constraints on initial and final depths of melting beneath mid-ocean ridge. Journal of Geophysical Research, 1995, 100: 2211-2237
    Shen Y, Scheirer D S, Forsyth D W, Macdonald K C. Trade-off in production between adjacent seamount chains near the East Pacific Rise. Nature, 1995, 373: 140-143
    Shi P. Basalt evolution at low pressure: implications from an experimental study in the system CaO-FeO-MgO-Al2O3-SiO2. Contribution to Mineralogy and Petrology, 1992, 110: 139-153
    Shibata T, DeLong S E, Walker D. Abyssal tholeiites from the Oceanographer fracture zone: I. petrology and fractionation. Contribution to Mineralogy and Petrology, 1979, 70: 89-102
    Sigmarsson O, Chmele J, Morris J, Lopez-Escobar L. Origin of 226Ra-230Th disequilibria in arc lavas from southern Chile and implications for magma transfer time. Earth and Planetary Science Letters, 2002, 196: 189-196
    Sims K W W, Depaolo D J, Murrell D M, et al. Mechanisms of Magma Generation Beneath Hawaii and Mid-Ocean Ridges: Uranium/Thorium and Samarium/Neodymium Isotopic Evidence. Science, 1995, 267: 508-511
    Sims K W W, Goldstein S J, Blichert-Toft J, Perfit M R, Klemen P, Fornari D J, Michael P, Murrell M T, Hart S R, Depaolo D J, Layne G, Jull B M, Bender J. Chemical and isotopic constraints on the generation and transport of magma beneath the East Pacific Rise. Geochemica et Cosmochimica Acta, 2002, 66: 3481–3504
    Sinton J M, Detrick R S. Mid-Ocean Ridge Magma Chambers. Journal of Geophysical Research, 1992, 97: 197-216
    Sleep N H. Hotspot Volcanism and Mantle Plumes. Annue Review of Earth Planetary Sciences, 1992, 20: 19-43
    Sleep N H. Tapping of Magmas from Ubiquitous Mantle Heterogeneities: An Alternative to Mantle Plumes? Journal of Geophysical Research, 1984, 89: 10029-10041
    Sempere J C, Macdonald K C. Overlapping Spread- ing Centers: Implications from Crack Growth Simulation by the Displacement Discontinuity Method. Tectonics, 1986, 5: 151-163
    Smewing J D. Mixing characteristics and compositional differences in mantle-derived melts beneath spreading axes: Evidence from cylically layered rocks in the Ophiolite of north Oman. Journal of Geophysical Research, 1981, 86: 2645-2659
    Sobolev A V. Melt inclusions in minerals as a source of principal petrologic information. Petrology, 1996, 4: 228-239.
    Sours-Page R, Nielsen R L, Batiza R. Melt inclusions as indicators of parental magma diversity on the northern East Pacific Rise. Chemical Geology, 2002, 183: 237–261
    Sparks R S J, Huppert H E. Density changes during the fractional crystallization of basaltic magmas: fluid dynamic implications. Contribution to Mineralogy and Petrology, 1984, 85: 300-309
    Sparks R S J, Meyer P, Sigurdsson H. Density variation amongst mid-ocean ridge basalts: implication for magma mixing and the scarcity of primitive lavas. Earth and Planetary Science Letters, 1980, 46: 419-430
    Spiegelman M, Elliott T. Consequences of melt transport for uranium series disequilibrium in young lavas. Earth and Planetary Science Letters, 1993, 118: 1–20
    Spiegelman M, Reynolds J R. Combined dynamic and geochemical evidence for convergent melt flow beneath the East Pacific Rise. Nature, 1999, 402: 282–285
    Stein C A, Stein S. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 1992, 359: 123-129
    Stevenson D S, Blake S. Modelling the dynamics and thermodynamics of volcanic degassing. Bulletin of Volcanology, 1998, 60: 307-317
    Stolper E. A phase diagram for mid-ocean ridge basalts: preliminary results and implications for petrogenesis. Contribution to Mineralogy and Petrology, 1980, 74: 13-27
    Stracke A, Bourdon B, McKenzie D. Melt extraction in the Earth's mantle: Constraints from U–Th–Pa–Ra studies in oceanic basalts. Earth and Planetary Science Letters, 2006, 244: 97-112
    Stracke A, Bourdon B. The importance of melt extraction for tracing mantle heterogeneity, Geochimica et Cosmochimica Acta, 2009, 73: 218-238
    Streck M J, Wacaster S. Plagioclase and pyroxene hosted melt inclusions in basaltic andesites of the current eruption of Arenal volcano, Costa Rica. Journal of Volcanology and Geothermal Research, 2006, 157: 236-253
    Takagi D, Sato H, Nakagawa M. Experimental study of a low-alkali tholeiite at 1-5 kbar: optimal condition for the crystallization of high-An plagioclase in hydrous arc tholeiite. Contribution to Mineralogy and Petrology, 2005, 149: 527-540
    Taylor B, Martinez F. Back-arc basin basalt systematics. Earth and Planetary Science Letters, 2003, 210: 481-497
    Tenner T J, Hirschmann M M, Withers A C, et al. Hydrogen partitioning between nominally anhydrous upper mantle minerals and melt between 3 and 5 GPa and applications to hydrous peridotite partial melting. Chemical Geology, 2009, 262: 42–56
    Tepley III F J, Lundstrom C C, Sims K W W. U-series disequilibria in MORB from the Garrett Transform and implications for mantle melting. Earth and Planetary Science Letters, 2004, 223: 79-97
    Thompson G, Bryan W B, Ballard R, Hamuro K, Melson W G. Axial processes along a segment of the East pacific Rise, 10°-12°N. Nature, 1985, 318: 429-433
    Toomey D R, Wilcock W S, Solomon S C, et al. Mantle seismic structure beneath the MELT region of the East Pacific Rise from P and S wave tomography. Science, 1998, 280: 1224-1227
    Toomey D R, Hooft E E E. Mantle upwelling, magmatic differentiation, and the meaning of axial depth at fast-spreading ridges. Geology, 2008, 36(9): 679–682
    Tuff J, Takahashi E, Gibson S A. Experimental constraints on the role of garnet pyroxenite in the genesis of high-Fe mantle plume derived melts. Journal of Petrology, 2005, 46: 2023-2058
    Turner J S. A fluid-dynamical model of differentiation and layering in magma chambers. Nature, 1980, 285: 213-215
    Turner S, Blundy J, Wood B. Large 230Th-excesses in basalts produced by partial melting of spinel lherzolite. Chemical Geology, 2000, 162: 127-136
    Turner S, Hawkesworth C, Rogers N, et al. U-Th isotope disequilibria and ocean island basalt generation in the Azores. Chemical Geology, 1997, 139: 145-164
    Turner S, George R, Jerram D A, Carpenter N, Hawkesworth. Case studies of plagioclase growth and residence times in island arc lavas from Tonga and the Lesser Antilles, and a model to reconcile discordant age information. Earth and Planetary Science Letters, 2003, 214: 279-294
    Ulmer P. Partial melting in the mantle wedge–the role of H2O in the genesis of mantle-derived‘arc-related’magmas. Phys Earth Planet Int, 2001, 127: 215—232.
    Van Orman J A, Grove T L, Shimizu N. Uranium and thorium diffusion in diopside. Earth and Planetary Science Letters, 1998, 160: 505-519
    Vera E E, Mutter J C, Buhl P, Orcutt J A, Harding A J, Kappus M E, Detrick R S, Brocher T M. The Structure of 0- to 0.2-m.y.-Old Oceanic Crust at 9oN on the East Pacific Rise From Expanded spread Profiles. Journal of Geophysical Research, 1990, 95: 15529-15556
    Vigiera N, Bourdona B, Joronb J L, et al. U-decay series and trace element systematics in the 1978 eruption of Ardoukoba, Asal rift: timescale of magma crystallization. Earth and Planetary Science Letters, 1999, 174: 81-98
    Villiger S, Ulmer P, Müntener O. Equilibrium and Fractional Crystallization Experiments at 0.7 GPa: the Effect of Pressure on Phase Relations and Liquid Compositions of Tholeiitic Magmas. Journal of Petrology, 2007, 48: 159-184
    Villiger S, Müntener O, Ulmer P. Crystallization pressures of mid-ocean ridge basalts derived from major element variations of glasses from equilibrium and fractionalcrystallization experiments. Journal of Geophysical Research, 2007, 112: B01202. doi:10.1029/2006JB004342
    Vukadinovic D. Are Sr Enrichments in Arc Basalts Due to Plagioclase Accumulation, Geology, 1993, 21(7): 611-614
    Wagner T P, Grove T L. Melt/harzburgite reaction in the petrogenesis of tholeiitic magma from Kilauea volcano, Hawaii. Contribution to Mineralogy and Petrology, 1998, 131: 1-12
    Wallace P J. Volatiles in submarine basaltic glasses from the Northern Kerguelen Plateau (ODP Site 1140): Implications for source region compositions, magmatic processes, and plateau subsidence. Journal of Petrology, 2002, 43: 1311-1326
    West M, Menke W, Tolstoy M, Webb S, Sohn R. Magma storage beneath Axial volcano on the Juan de Fuca mid-ocean ridge. Nature, 2001, 423: 833–836
    White S M, Macdonald K C, Scheirer D S, Cormier M–H. Distribution of isolated volcanoes on the flanks of the East Pacific Rise, 15.3°S-20°S. Journal of Geophysical Research, 1998, 103: 30371-30384
    Williams R W, Gill J B. Effects of partial melting on the uranium decay series. Geochimica et Cosmochimica Acta, 1989, 53: 1607–1619
    Wilson D S. Focused mantle upwelling beneath mid-ocean ridges: evidence from seamount formation and isostatic compensation of topography. Earth and Planetary Science Letters, 1992, 113: 41-55
    Wilson D S, Clague D A, Sleep N H, Morton J L. Implications of magma convection for the size and temperature of magma chamber at fast spreading ridges. Journal of Geophysical Research, 1988, 93 (B10): 11974-11984
    Wiseman J D H. The petrography and significance of a rock dredged from a depth of 744 fathoms near to Providence Reef, Indian Ocean. Linnean Soc. Lond. Trans, 2nd Ser. 1936, 19: 437-443
    Wood B J, Blundy J D, Robinson J A C. The role of clinopyroxene in generating U-series disequilibrium during mantle melting: implications for uranium series disequilibria in basalts. Geochimica et Cosmochimica Acta, 1999, 63: 1613–1620
    Yan Y Y, Casey J F. Geochemical Characteristics of Siqueiros Transform, East PacificRise. Geological Survey and Research, 2006, 29: 279-293
    Yang H J, Frey F A, Clague D A, et al. Mineral chemistry of submarine lavas from Hilo Ridge, Hawaii: implications for magmatic processes within Hawaiian rift zones. Contribution to Mineralogy and Petrology, 1999, 135: 355-372
    Yang H J, Kinzler R J, Grove T L. Experiments and models of anhydrous basaltic olivine-plagioclase-augite saturated melts from 0.001 to 10 kbar. Contribution to Mineralogy and Petrology, 1996, 124: 1-18
    Zellmer G F, Blake S, Vance D, Hawkesworth C, Turner S. Plagioclase residence times at two island arc volcanoes (Kameni Islands, Santorini, and Soufriere, St. Vincent) determined by Sr diffusion systematics, Contribution to Mineralogy and Petrology, 1999, 136: 345-357
    Zeng Z G, Wang X Y, Zhang G L, et al. Formation of Fe-oxyhydroxides from the East Pacific Rise near latitude 13°N: Evidence from mineralogical and geochemical data. Science in China Series D-Earth Science, 2008, 51(2): 206-215
    Zeng Z G, Wang X Y, Zhang G L, et al. Formation of Fe-oxyhydroxides from the East Pacific Rise near latitude 13°N: Evidence from mineralogical and geochemical data. Science in China Series D-Earth Science, 2008, 51(2): 206-215
    Zhang G L, Zeng Z G, Yin X B, et al. Deep fractionation of clinopyroxene in the East Pacific Rise 13N: evidence from high MgO MORB and melt inclusions. Acta Geologica Sinica-English Edition, 2009, 83(2): 266-277
    Zhang G L, Zeng Z G, Yin X B, et al. Periodically Mixing of MORB Magmas near East Pacific Rise 13°N: Evidence from Modeling and Zoned Plagioclase Phenocrysts. Science in China Series D-Earth Science, 2008, 51 (12): 1786-1801
    Zhang S M, Wang F Z. Basalt’s action on research geosphere deep course and structural setting. Advances in Earth Science, 2002, 17(5): 685-692
    Zheng J P. Comparison of mantle-derived matierals from different spatiotemporal settings: Implications for destructive and accretional processes of the North China Craton. Chinese Science Bullitin, 2009, 54: 3397-3416
    Zindlera A, Staudigela H, Batizab R. Isotope and trace element geochemistry of young Pacific seamounts: implications for the scale of upper mantle heterogeneity. Earth and Planetary Science Letters, 1984, 70: 175-195

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700