用户名: 密码: 验证码:
SOI光波导器件及其增透膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于其特殊的结构,SOI(Silicon-on-insulator)材料具有优良的光学和电学性能,为超大规模集成电路(VLSI:Very Large Scale Integration)和平而波导技术提供了一个共同的平台。SOI光波导制作工艺与成熟的硅基CMOS工艺相兼容,SOI材料不仅可以制备无源和有源光电子器件,而且还可以和MEMS器件集成。SOI材料上的光电器件的单片集成是光电子产业的发展方向。本论文对SOI大截面脊形波导器件及其相关的增透膜进行了研究。
     为减少SOI波导端面菲涅耳反射损耗,寻找合适的增透膜,分别采用PECVD方法制备了SiN_xO_y:H薄膜、IBAD方法制备了氮氧化硅薄膜和电子束蒸发的方法制备了HfO_2薄膜。通过椭圆偏振仪、X-ray光电子能谱、分光计等设备,对制备薄膜的光学性能、成分进行了表征。相关的光学试验结果表明这三种薄膜都是适合硅基光器件的良好的单层增透膜。其中,在光通信窗口1550nm处,通过镀厚度为185nm的HfO_2单层薄膜,双面抛光硅片的菲涅耳损耗降至0.022dB。对于SOI脊形波导器件,从工艺的实际实现条件上,PECVD方法制备SiN_xO_y:H薄膜受到设备结构的限制,不适用波导的端面镀膜;IBAD方法制备氮氧化硅薄膜对于抛光后的SOI端面沉积薄膜不受影响,但是对于集成的波导器件,沉积过程受到限制;电子束蒸发的方法制备HfO_2薄膜由于其特殊的沉积方式,只要有特殊的夹具夹持波导器件,使波导端面垂直于蒸发方向,即可获得高度均匀的HfO_2薄膜,对于集成的波导器件依然可行,这是一种方便简易的镀膜方法。
     根据SOI脊形波导单模理论,采用电感耦合反应离子刻蚀制备了高垂直度的SOI脊形波导。为了更好的和光纤耦合,摸索了集成光波导器件的制备工艺。通过对V型槽、U型槽阵列和波导集成的研究,进一步优化了集成SOI波导器件的制备工艺。
     采用U型槽阵列制备了集成的光波导器件,成功地实现了在集成波导端面的沉积HfO_2增透膜。在此基础上,对于集成的Y分支和T分支器件进行了研究,对于这些基本器件的研究为后续工作的开展打下了一定的基础。对这些集成器件的光学性能
SOI (Silicon-on-insulator) consists of a thin silicon layer on top of an oxide cladding layer carried on a bare silicon wafer. With its silicon core (n=3.45) and its oxide cladding (n=1.45), it has a high vertical refractive index contrast. Also, both silicon and the oxide are transparent at the telecom wavelength of 1.3um and 1.5um. Due to its special structure, SOI material system, which has very good optical and electronic properties, provides a common platform for VLSI (Very Large Scale Integration) and PLC (Planar Lightwave Circuit). Fabrication process of SOI optical waveguide is very compatible with standard CMOS fabrication processes. Passive and active optoelectronic devices can be fabricated on the SOI wafer, and MEMS devices also can be integrated on the SOI wafer. Monolithic integration of optoelectronic devices on the SOI wafer is the main trend for future optoelectronic industry. Our work in this dissertation is focused on the optical waveguide devices and their anti-reflection coatings in SOI materials.For SOI-based optical waveguide devices, the reflectance and transmittance of uncoated waveguiding silicon layer is almost constant about 31% and 55%, respectively. At the air/waveguide or waveguide/coupling fiber interfaces Fresnel reflection occurs. Fresnel reflection loss of the two waveguide endfaces was calculated to be 3.22dB assuming a normally incident beam. A SOI-based waveguide device needs a high-quality anti-reflection coating on both faces of the device to minimize the Fresnel reflection. To find proper anti-reflection coatings, various methods have been explored to deposit high-quality anti-reflection coatings, including SiN_xO_y:H films deposited by plasma enhanced chemical vapor deposition (PEVCVD), silicon oxynitride films prepared by ion beam assisted deposition (IBAD), and HfO_2 films fabricated by electron beam evaporation. The optical properties and components of the films were characterized by spectroscopic ellipsometry, X-ray photoelectron spectroscopy and Perkin-Elmer Lambda
    900 spectrophotometer, etc.. The optical experiment results suggested that all the films were very attractive single layer anti-reflection coatings for the SOI-based optoelectronic devices. And for a coated double-side polished silicon wafer, Fresnel losses at the telecom wavelength of 1550nm have been reduced to 0.022dB by depositing HfO2 film (185nm) as single layer anti-reflection coating. For practical fabrication process, it is very difficult to deposit SiNxOy:H films onto the SOI rib waveguide endfaces due to the size of SOI waveguide devices. Silicon oxynitride films can be deposited onto the SOI rib waveguide endfaces after CMP (chemical Mechanical Polishing), but silicon oxynitride films cannot deposited onto the endfaces of the integrated SOI waveguide devices using IBAD. A clamp fixed the SOI rib waveguide, and the waveguide endfaces were perpendicular to the evaporation direction so that HfO2 could be easily deposited onto the integrated SOI waveguide endfaces using electron beam evaporation.Based on the single-mode waveguide theory, SOI rib waveguides were fabricated by inductive coupled plasma reactive ion etching with vertical sidewall. To achieve the integration of self-alignment connection between single mode fiber and rib waveguide in silicon-on-insulator (SOI) wafer, a three-mask lithography process was used. Uniformity V-grooves and U-grooves were etched by wet etching and dry etching, respectively. The experiment results indicated that the three-mask lithography ICPRIE process is easy, cost-effective and acceptable in a mass production environment. And HfO2 films can be deposited onto the endfaces of the integrated waveguide devices through U-groove.Based on these experiments, the monolithic integration of Y-branch and T-branch devices were fabricated in the SOI wafer , respectively. We measured the fiber-waveguide-fiber insertion losses as the ratio between the output and input powers using Agilent 8164A lightwave measurement system. For the symmetric 1><2 Y-branch with branch angle 28 of 0.8°, the fiber-waveguide-fiber loss was measured to be 4.4dB at X=l.55um. And the results at ?i=l .55 \im are 5.0±0.5 dB and 5.2±0.5 dB, respectively, in the two output waveguides of the 1 x2 single-mode T-branch. The split ratio is nearly 52:48.Endface roughness, surface roughness and sidewall roughness result in increasing scattering losses for waveguides. According to scalar scattering theory, Tien's theory and Marcuse's theory, scattering loss induced by the rms (root-mean-square) roughness was
    studied systematically. And the scattering loss is proportional to the square of the sidewall rms roughness.A series of atomic force microscope measurements were carried out to demonstrate the rms roughness of SOI rib waveguide etched by ICPRIE method. To smooth the sidewall surface and corner mirror surface, various methods have been explored. In order not to change the waveguide configuration, low-temperature ultra-high vacuum annealing, hydrogen annealing and mixed ICPRIE were used to reduce the rms roughness of the rough surfaces. After such treatments, the ripples of the surfaces disappeared, and the rms roughness could be reduced to approximately 9nm. With slight shape changed, oxidation and wet etching is a great way to reduce roughness. The SOI rib waveguide devices went through a dry oxidation. After the oxidation step, the SiO2 layers with the thickness of lOOnm were removed by by 40wt.% KOH solutions at 70°C. The ripples of the surfaces disappeared, and the rms roughness could be lowed down to approximately 0.5nm. This is to our knowledge the smallest reported rms roughness for a high-index-difference system such as as SOI rib waveguide.
引文
[1] Young-Tak Han, Sang-Ho Park, Jang-Uk Shin, Duk-Jun Kim, Yoon-Jung Park, Sung-Woong Park, Jongdeog Kim, Hee-Kyung Sung, "A two-step etching technique for silica terraces in the PLC hybride integration", IEEE Photonics Technology Letters, 16(2004)2436.
    [2] Hisato Uetsuka, "AWG technologies for dense WDM applications", IEEE Journal of Selected Topics in Quantum Electronics, 10(2004)393
    [3] T. Ohara, H. Takara, I. Shake, K. Mori, K. Sato, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, I. Ogawa, T. Kitoh, K. Magari, M. Okamoto, R. V. Roussev, J. R. Kurz, K. R. Parameswaran, M. M. Fejer, "160-Gb/s OTDM transmission using integrated all-optical MUX/DEMUX with all-channel modulation and demultiplexing", IEEE Photonics Technology Letters, 16(2004)650.
    [4] Alexei L. Glebov, Lidu Huang, Shigenori Aoki, Michael Lee, Kishio Yokouchi, "Planar hybrid polymer-silica microlenses with tunable beamwidth and focal length", IEEE Photonics Technology Letters, 16(2004)1107
    [5] Torsten Augustsson, "Proposal of a DMUX with a Fabry-Perot all-reflection filter-based MMIMI configuration", IEEE Photonics Technology Letters, 13(2002)215
    [6] R. Claps, D. Dimitropoulos, B. Jalali, "Stimulated Raman scattering in silicon waveguides", Electronics Letters, 38(2002) 1352
    [7] Keiro Komatsu, Shuntaro Yamazaki, Michikazu Kondo, Yoshinori Ohta, "Low-loss broad-ban LiNbO_3 guided-wave phase modulators using Titanium/Magnesium double diffusion method", Journal of lightwave Technology, LT-5(1987)1239
    [8] Kawano K., Kitoh T., Humonji H., Nozawa T., Yanagibashi M., Suzuki T., "Spectral-domain analysis of coplanar waveguide traveling-wave electrodes and their applications to Ti: LiNbO_3 Mach-Zehnde optical modulators", IEEE Transactions on Microwave Theory and Techniques, 39(1991) 1595
    [9] http://ceta.mit.edu/PIER/pierl 6/09.960801 p.PDP.DeSario.pdf
    [10] M. Valli, A. Fioretti, M. N. Armenise, "Fabrication of Good Quality Ti: LiNbO_3 Planar Waveguides by Diffusion in Dry and Wet 02 Atmospheres", Journal of Modem Optics, 35(1988)885
    [11] Noguchi K., Mitomi O., Miyazawa H., Seki S., "A broadban Ti: LiNbO_3 optical modulator with a ridge structure", Journal of Lightwave Technology, 13(1995) 1164.
    [12] Leech P. W., Ridgway M., Faith M., "Channel waveguides formed in fused silica and silica-on-silicon by Si, P and Ge ion implantation", IEE Proceedings-Optoelectronics, 143(1996)281
    [13] T. Saida, A. Himeno, M. Okuno, A. Sugita, K. Okamoto, "Silica-based 2x2 multimode interference coupler with arbitary power splitting ratio", Electronics Letters, 35(1999)2031.
    [14] Tetsuo Miya, "Silica-Based Planar Lightwave Circuits Passive and Thermally Active Devices", IEEE Journal of Selected Topics in Quantum Electronics, 6(2000)38.
    [15] Eric Oilier, "Optical MEMS devices based on moving waveguides", IEEE Journal on Selected Topics in Quantum Electronics, 8(2002)155
    [16] M. P. Eamshaw, J. B. D. Soole, M. Cappuzzo, L. Gomez, E. Laskowski, A. Paunescu, "8x8 Optical Switch Matrix Using Generalized Mach-Zehnder Interferometers", IEEE Photonics Techology Letters, 15(2003)810
    [17] Huang W., Syms R. R. A., "Sol-Gel silica-on-silicon buried-channel EDWAs", Journal of Lightwave Technology, 21 (2003)1339.
    [18] Valery I. Tolstikhin, Adam Densmore, Kirill Pimenov, Yury Logvin, Fang Wu, Sylvain Laframboise, Serge Grabtchak "Monolithically integrated optical channel monitor for DWDM transmission systems", Journal of Lightwave Technology, 22(2004) 146
    [19] Yamada H., Sanjoh H., Kohtoku M., Takada, K., "Measurement of phase and amplitude error distributions in InP-based arrayed-waveguide grating multi-demultiplexers", Electronics Letters, 36(2000) 136
    [20] Densmore A., Pimenov K., Tolstikhin, V. I., "Integrated eleetroabsorption attenuator-photodetector for optical power control in WDM transmission systems", IEEE Journal of Selected Topics in Quantum Electronics, 8(2002)1435
    [21] Xuejin Yan, Masanovic M. L., Skogen E. J., Hu Z., Blumenthal D. J., Coldren L. A., "Optical mode converter integration with InP-InGaAsP active and passive waveguides using a single regrowth process", IEEE Photonies Technology Letters, 14(2002)1249
    [22] Ramadan T. A., Scarmozzino R., Osgood R. M., Jr., "A novel 1×4 coupler-multiplexer permutation switch for WDM applications", Journal of Lightwave Technology, 18(2000)579
    [23] Makoto Takahashi, Tatemi Ido, Takamitsu Nagara, "A Polymer PLC Platform with a fiber-alignment V-groove for a low-cost 10-GbE WWDM", IEEE Photonics Technology Letters, 16(2004)266
    [24] Jae-Wook Kang, Jang-Joo Kim, Eunkyoung Kim, "All-optical Mach-Zehnder modulator using a photochromic dye-doped polymer", Applied Physics Letters, 40(2002) 1710
    [25] Peter K. H. Ho, D. Stephen Thomas, Richard H. Friend, Nir Tessler, "All-polymer optoelectronic devices", Science, 285(1999)233
    [26] J. Jiang, C. L. Callender, J. P. Noad, R. B. Walker, S. J. Mihailov, J. Ding, M. Day, "All-polymer photonic devices using excimer laser micromachining", IEEE Photonics Technology Letters, 16(2004)509
    [27] Aydin Yeniay, Renyuan Gao, Kazuya Takayama, Renfeng Gao, Anthony F. Garito, "Ultra-low-loss polymer waveguides", Journal of Lightwave Technology, 22(2004) 154
    [28] George T. Paloczi, Yanyi Huang, Amnon Yariv, Shayan Mookherjea, "Polymeric Mach-Zehnder interferometer using serially coupled microring resonators", Optics Express, 11(2003)2666.
    [29] J. P. Collinge, SOI Technology: Materials to VLSI, Kluwer Acadmi Pub. 1991.
    [30] Richard A. Soref, "Silicon-based optoelectronics", Proceedings of the IEEEE, 81(1993)1687
    [31] B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, F. Coppinger, "Adivanees in silicon-on-insulator optoelectronics", IEEE Journal of Selected Topics in Quantum Electronics, 4(1998)938
    [32] Sebania Libertino, Salvatore Coffa, Mario Saggio, "Design and fabricated of integrated Si-based optoelectronic devices", Materials Science in Semiconductor Processing, 3(2000)375.
    [33] Wei Hong, "Recent developments in silicon optoelectronic devices", Microelectronics Reliability, 42(2002)317.
    [34] G. K. Celler, Sorin Cristoloveanu, "Frontiers of silicon-on-insulator", Journal of Applied Physics, 93(2003)4955
    [35] Robert J. Bozeat, S. Day, F. Hopper, F. P. Payne, S. W. Roberts, M. Asghari, "Silicon based waveguides", Topics in Applied Physics, 94(2004)269
    [36] Sorin Cristoloveanu, "Silicon on insulator technologies devices: from present to future", Solid-State Electronics, 45(2001)1403.
    [37] A. Layadi, A. Vonsovici, R. Orobtchouk, D. Pascal, A. Koster, "Low-loss optical waveguide on standard SOI/SIMOX substrate", Optics Communications, 146(1998)31.
    [38] http://www.simgui.com.cn
    [39] http://soitec.com
    [40] Rickman A. G., Reed G. T., Weiss B. L., Namavar F., "Low-loss planar optical waveguides fabricated in SIMOX material", IEEE Photonics Technology Letters, 4(1992)633.
    [41] U. Fischer, T. Zinke, J. -R. Kropp, F. Arndt, K. Petermann, "0.1dB/cm waveguide losses in single-mode SOI rib waveguides", IEEE Photonics Technology Letters, 8(1996)633
    [42] T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, M. R. Joesy, "0.15dB/cm loss in Unibond SOI waveguides", Electronics Letters, 35(1999)977.
    [43] Richard A. Soref, Joachim Schmidtchen, Klaus Petermann, "Large single-mode rib waveguides in GeSi-Si and Si-on-SiO_2", IEEE Journal of Quantum Electronics, 27(1991)1971.
    [44] Souren P. Pogossian, Lili Vescan, Adrian Vonsovici, "The Single-Mode Condition for Semiconductor Rib Waveguides with Large Cross Section", IEEE Journal of Lightwave Technology, 16(1998)1851.
    [45] J. Lousteau, D. Furniss, A. B. Seddon, T. M. Benson, A. Vukovic, P. Sewell, "The single-mode condition for silicon-on-insulator optical rib waveguides with large cross section", Journal of Lightwave Technology, 22(2004) 1923.
    [46] Emmons R. M., Hall D. G., "Buried-oxide silicon-on-insulator structures. Ⅱ. waveguide grating couplers", IEEE Journal of Quantum Electronics, 28(1992) 164
    [47] Jalali B., Trinh P. D., Yegnanarayanan S., Coppinger F., "Guided-wave optics in silicon-on-insulator technology", IEE Proceedings-Optoelectronics, 143(1996)307
    [48] P. D. Trinh, S. Yegnanarayanan, F. Coppinger, B. Jalali, "Silicon-on-Insulator (SOI)phased-array wavelength multi-dmultiplexer with extrmely low-polarization sensitivity", IEEE Photonics Techology Letters, 9(1997)940.
    [49] P. D. Trinh, S. Yegnanarayanan, B. Jalali, "Integrated Optical Directional Coupler in Silicon-on-Insulator", Electronics Letters, 31 (1995)2097.
    [50] Ang T. W., Reed G. T., Vonsovici A., Evans A. G. R., Routlev P. R., Josey M. R., "Effects of grating heights on highly efficient unibong SOI waveguide grating couplers", IEEE Photonics Technology Letters, 12(2000)59
    [51] Hongzhen Wei, Jinzhong Yu, Zhongli Liu, Xiaofeng Zhang, Wei Shi, Changshui Fang, "Fabricated of 4×4 taped MMI coupler with large section", IEEE Photonics Technology Letters, 13(2001)466
    [52] Csutak S. M., Dakshina-Murthy S., Campbell J. C., "CMOS-compatible planar silicon waveguide-grating-coupler photodetectors fabricated on silicon-on-insulator(SOI) substrates", IEEE Journal of Quantum Electronics, 38(2002)477
    [53] Cassan E., Laval S., Lardenois S., Koster A., "On-chip optical interconnects with compact and low-loss light distribution in silicon-on-insulator rib waveguides", IEEE Journal Selected Topics in Quantum Electronics, 9(2003)460
    [54] P. D. Trinh, S. Yegnanarayanan, B. Jalali, "5×9 Integrated Optical Star Coupler in Silicon-on-Insulator Technology", IEEE Photonics Techology Letters, 8(1996)794
    [55] Richard A. Soref, Joseph P. Lorenzo, "All-silicon active and passive guided-wave components for λ=1.3 and 1.6μm", IEEE Journal of Quantum Electronics, QE-22(1986)873
    [56] Richard A. Soref, Brian R. Bennett, "Electrooptical effects in silicon", IEEE Journal of Quantum Electronics, QE-23(1987) 123.
    [57] U. Fischer, T. Zinke, K. Petermann, "Integrated optical waveguides switches in SOI", IEEE International SOI Conference, 3-5 Oct. 1995, 141
    [58] C. Cocorullo, I. Rendina, P. M. Sarro, "Silicon thermo-optical micro-modulator with 700kHz-3dB bandwidth", IEEE Photonics Technology Letters, 7(1995)363
    [59] Stephen R. Giguere, Lionel Friedman, Richard A. Soref, Joseph P. Lorenzo, "Simulation studies of silicon electro-optic waveguide devices", Journal of Applied Physics, 68(1990)4964.
    [60] Thomas Prinat, Lionel Friedman, Richard A. Soref, "Electro-optic mode-displacement silicon light modulator", Journal of Applied Physics, 70(1991)3355.
    [61] C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, X. D. Liu, "Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3μm", Applied Physics Letters, 67(1995)2448.
    [62] Antonella Sciuto, Sebania Libertino, Antonio Alessandria, Salvo Coffa, Giuseppe Coppola, "Design, fabrication, and testing of an integrated Si-based light modulator", Journal of Lightwave Technology, 21 (2003)228
    [63] C. A. Barrios, M. Lipson, "Modeling and analysis of high-speed electro-optic modulation in high confinement silicon waveguides using metal-oxide-semiconductor configuration", Journal of Applied Physics, 96(2004)6008
    [64] C. Angulo Barrios, V. R. Almeida, R. Panepucci, M. Lipson, "Electrooptic modulation of silicon-on-insulator submicrometer-size waveguide devices", Journal of Lightwave Technology, 21 (2003)2332.
    [65] P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, Ph. Robert, "CMOS Compatible Fully Integrated Mach-Zehnder Interferometer in SOl Technology", IEEE Photonics Technology Letters, 12(2000)660
    [66] Ansheng Liu, Richard Jones, Ling Liao, Dean Samara-Rubio, Doron Rubin, Oded Cohen, Remus Nieolaescu, Mario Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor", 427(2004)615.
    [67] Mike Salib, Ling Liao, Richard Jones, Mike Morse, Ansheng Liu, Dean Samara-Rubio, Drew, Alduino, Mario Paniccia, "Silicon Photonics", Intel Technology Journal, 8 (2004)143.
    [68] Pierre Herve, Shlomo Ovadia, "Optical technology for Enterprise networks", Intel Technology Journal, 8 (2004)73.
    [69] Atsushi Sakai, "Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate", IEEE Journal of quantum Electronics, 38(2000)743
    [70] Marko Loncar, Dusan Nedeljkovic, Theodor Doll, Jelena Vuckovic, Axel Scherer, Thomas P. Pearsall, "Waveguiding in planar photonic crystals", Applied Physics Letters, 77(2000) 1937
    [71] Masatoshi Tokushima, Hideo Kosaka, Akihisa Tomita, Hirohito Yamada, "Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide", Applied Physics Letters, 76(2000)952
    [72] M. Patrini, M. Galli, F. Marabelli, M. Agio, L. C. Andreani, D. Peyrade, Yong Chen, "Photonic bands in patterned silicon-on-insulator waveguides", IEEE Journal of Quantum Electronics, 38(2002)885.
    [73] J. Arentoft, T. Serndergaard, M. Kristensen, A. Boltasseva, M. Thorhauge L. Frandsen, "Low-loss silicon-on-insulator photonic crystal waveguides", Electronics Letters, 38(2002)27
    [74] M. Zelsmann, E. Picard, T. Charvolin, E. Hadji, M. Heitzmann, B. Dal'zotto, M. E. Nier, C. Seassal, P. Rojo-Romeo, X. Letartre, "Seventy-fold enhancement of light extraction from a defectless photonic crystal made on silicon-on-insulator", Applied Physics Letters, 83(2003)2542
    [75] Yoshinori Tanaka, Takashi Asano, Ranko Hatsuta, Susumu Noda, "Analysis of a line-defect waveguide on a silicon-on-insulator two-dimensional photonic-crystal slab", Journal of Lightwave Technology, 22(2004)2787
    [76] Wim Bogaerts, Vincent Wiaux, Dirk Taillaert, Stephan Beckx, Bert Luyssaert, Peter Bienstman, Roel Baets, "Fabrication of photonic crystals in silicon-on-insulator using 248-nm deep YUV lithography", IEEE Journal of Selected Topics in Quantum Electronics, 8(2002)928.
    [77] Wim Bogaerts, Roel Baets, Pieter Dumon, Vincent Wiaux, Stephan Beckx, Dirk Taillaert, Bert Luyssaert, Joris Van Campenhout, Peter Bienstman, Dries Van Thourhout, "Nanophotonic Waveguides in Silicon-on-Insulator Fabricated with CMOS Technology" Journal of Lightwave Technology Technology, Manuscript JLT-6757
    [78] Born M, Wolf. E, Principles of optics. Oxford: Pergamon, 1970.
    [79] Howard R. Stuart, Dennis G. Hall, "Absorption enhancement in silicon-on-insulator waveguides using metal island films ", Appl. Phys. Lett., 69(1996) 2327
    [80] C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, X. D. Liu, "Silicon on insulator Mach—Zehnder waveguide interferometers operating at 1.3 mum", Appl. Phys. Lett., 67 (1995) 2448
    [81] Stephen R. Giguere, Lionel Friedman, Richard A. Soref, Joseph P. Lorenzo, "Simulation studies of silicon electro-optic waveguide devices" J. Appl. Phys., 68(1990) 4964
    [82] G. -R. Yang, Y. -P. Zhao, Y. Z. Hu, T. Paul Chow, Ronald J. Gutmann, "XPS and AFM study of chemical mechanical polishing of silicon nitride", Thin Solid Films, 333(1998) 219
    [83] K. Worhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, et. al., "Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics", Sensor. Actuat. A-Phys. 74(1999) 9
    [84] Hui Lin, Liqiang Xu, Xiang Chen, Xuhong Wang, et. al. "Moisture-resistant properties of SiNx films prepared by PECVD", Thin Solid Films, 333(1998) 71
    [85] Wentao Xu, Toshiyuki Fujimoto, Isao Kojima, "Preparation and characterization of smooth and dense silicon nitride thin films", Thin Solid Films, 394(2001) 109.
    [86] Wei-Tang Li, David R. McKenzie, William D. McFall, Qi-Chu Zhang, "Effect of sputtering-gas pressure on properties of silicon nitride films produced by helicon plasma sputtering", Thin Solid Films, 384(2001) 46.
    [87] A. C. Adams, "Plasma deposition fo inorganic films", Solid State Tech., 26 (4)(1983) 135.
    [88] K. M. Mar, G, M. Samuelson, "Properties of plasma enhanced CVD silicon nitride: measurements and interpretations", Solid State Tech., 23 (4)(1980) 137.
    [89] W. A. Lanford, M. J. Rand, "The hydrogen content of plasma-deposited silicon nitride", J. Appl. Phys., 49 (1978) 2473.
    [90] Wentao Xu, Boquan Li, Toshiyuki Fujimoto, Isao Kojima, "Suppressing the durface roughness and columnar growth of silicon nitride films", Surf. Coat. Tech., 135(2001) 274.
    [91] G. E. Jellison, Jr., F. A. Modine, P. Doshi, A. Rohatgi, "Spectroscopic ellipsometry characterization of thin-film silicon nitride", Thin Solid Films, 313-314(1998) 193.
    [92] L. Asinovsky, F. Shen, T. Yamaguchi, "Characterization of the optical properties of PECVD SiNx films using ellipsometry", Thin Solid Films, 313-314(1998) 198.
    [93] Guillermo Santana, Arturo Morales-Acevedo, "Optimized ofPECVD SiN:H films for silicon solar cells", Solar Energy Materials & Solar Cells 60(2000) 135-142.
    [94] Christoph Boehme, Gerald Lucovsky, "Origins of silicon solar cell passivation by SiNx: H anneal", Journal of Non-crystalline Solides 299-302(2002)1157-1161.
    [95] Hiromitsu Kato, Norihide Kashio, Yoshimichi Ohki, Kwang Soo Seol, Takashi Noma, "Band-tail photoluminescence in hydrogenated amorphous silicon oxynitride and silicon nitride films ", J. Appl. Phys., 93 (2003) 239
    [96] Hiromitsu Kato, Makoto Fujimaki, Takashi Noma, Yoshimichi Ohki, "Photo-induced refractive index change in hydrogenated amorphous silicon oxynitride", J. Appl. Phys., 91 (2002) 6350
    [97] S. Hasegawa, S. Sakamori, M. Futatsudera, T. Inokuma, Y. Kurata, "Structure of defects in silicon oxynitride films", J. Appl. Phys., 89 (2001) 2598
    [98] M. Serenyi, M.Racz, T. Lohner, "Refractive index of sputtered silicon oxynitride layers for antireflection coating", Vacuum 61(2001) 245
    [99] M. KlanjSek Gunde, M.Maeek, "The relationship between the macroscopic properties of PECVD silicon nitride and oxynitride layers and the characteristics of their networks", Appl. Phys. A 74(2002) 181
    [100] Yasuharu Yokoyama, Cozenage Horjuchi, Tsugio Maeshima, Toshiaki Ohta, "X-ray photoelectron spectroscopy and X-ray absorption near edge structure study of structural change of perhydropolysilazane to silicon nitride by heat treatment", Jpn. J. Appl. Phys. 33(1994) 3488
    [101] Z. -W. Deng, R. Souda, "XPS studies on silicon carbontiride films prepared by sequential implantation of nitrogen and carbon into silicon", Diam. Relat. Mater. 11(2002) 1676
    [102] Honggang Hu, A. H. Ccarin, "Determination of attenuation lengths and electron escape depths in silicon nitride thin films", J. Electrochem. Soc. 140(1993) 3203
    [103] H. -W. Chen, D. Landheer, T. -S. Chao, J. E. Hulse, T. -Y. Huang, "X-ray photoelectron spectroscopy of gate-quality silicon oxynitride films produced by annealing plasma-nitrided Si(100) in nitrous oxide", J. Electrochem. Soc., 148(2001) F 140
    [104] J. R. Shallenberger, D. A. Cole, S. W. Novak, "Characterization of silicon oxynitride thin films by x-ray photoelectron spectroscopy", J. Vac. Sci. Technol. A, 17 (1999) 1086
    [105] M. A. Sobolewski, C. R. Helms, "X-ray photoelectron spectroscopy and Auger spectroscopy studies of thin silicon nitride films thermally grown on silicon", J. Vac. Sci. Technol. A, 6(1988) 1358
    [106] Harland G. Tompkins, Richard B. Gregory, Paul W. Deal, Steven M. Smith, "Analysis of silicon oxynitrides with spectroscopic ellipsometry and Auger spectroscopy, compared to analyses by Rutherford backscattering spectrometry and Fourier transform infrared spectroscopy", J. Vac. Sci. Technol. A, 17(1999) 391
    [107] S. Callard, A. Gagnaire, J. Joseph, "Fabrication and characterization of graded refractive index silicon oxynitride thin films", J. Vac. Sci. Technol. A, 15 (1997) 2088
    [108] Paul G. Snyder, Yi-Ming Xiong, John A. Woollam, Ghanim A. AI-Jumaily, F. J. Gagliardi, "Graded refractive index silicon oxynitride thin film characterized by spectroscopic ellipsometry ", J. Vac. Sci. Technol. A, 10(1992) 1462
    [109] Yi-Ming Xiong, Paul G. Snyder, John A. Woollam, Eric R. Krosche, "Silicon nitride/silicon oxynitride/silicon dioxide thin film multilayer characterized by variable angle spectroscopic ellipsometry ", J. Vac. Sci. Technol. A, 10(1992) 950
    [110] P. Baumeister, O. Arnon, "Use of hafnium dioxide in multilayer dielectric reflectors for the near UV", Applied Optics, 16(1977)439.
    [111] M. Alvisi, S. Scaglione, S. Martelli, A. Rizzo, L. Vasallelli, "Structural and optical modification in hafnium oxide thin films related to the momentum parameter transferred by ion beam assistance", Thin Solid Films 354(1999)19.
    [112] M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, L. Vasanelli, "HfO_2 films with high laser damage threshold", Thin Solid Films 58(2000)250.
    [113] M. Gilo, N. Croitoru, "Study of HfO_2 films prepared by ion-assisted deposition using a gridless end-hall ion source", Thin Solid Films 350(1999)203.
    [114] C. T. Kuo, R. Kwor, K. M. Jones, "Study of sputtered HfO2 thin films on silicon", Thin Solid Films 213(1992)257.
    [115] M. Fadel, O. A. AzimM., O. A. Omer, R. R. Basily, "A study of some optical properties of hafnium dioxide (HfO_2) thin films and their applications", Appl. Phys. A 66, 335-343 (1998)
    [116] S. Sayan, E. Garfunkel, S. Szuer, "Soft X-ray photoemission studies of the HfO_2/SiO_2/Si system", Appl. Phys. Lett. 80(2002)2135
    [117] P. F. Lee, J. Y. Dai, K. H. Wong, H. L. W. Chan, C. L. Choy, "Growth and characterization of Hf-aluminate high-k gate dielectric ultrathin films with equivalent oxide thickness less than 10A", J. Appl. Phys. 93(2003)3665
    [118] M. -H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D. -h. Ko, J. H. Lee, N. I. Lee, K. Fujihara, "Thermal stability and structural characteristics of HfO_2 films on Si(100) grown by atomic-layer deposition", Appl. Phys. Lett. 81 (2002)472
    [119] A. Rickman, G. T. Reed, B. L. Weiss, F. Namavar, "Low-loss planar optical waveguides fabricated in SIMOX material", IEEE Photonics Technology Letters, 4(1992)633.
    [120] A. G. Rickman, G. T. Reed, Fereydoon Namavar, "Silicon-on-Insulator Optical Rib Waveguide Loss and Mode Characteristics", IEEE Journal of Lightwave Technology, Jan. /1994, 12(10), pp1771-1776.
    [121] 魏红振,余金中,张小峰,韩伟华,刘忠立,王启明,史伟,房昌水,“SOI及GeSi/Si脊形光波导的模式与波导几何结构”,光学学报,21(2001)556-558.
    [122] 林志浪,博士论文,2004
    [123] 尹锐,杨建义,王明华,“梯形截面波导的特性分析”,光学学报,20(2000)1494-1498.
    [124] Oily Powell, "Single-Mode Condition for Silicon Rib Waveguides", IEEE Journal of Lightwave Technology, 20(2002) 1851-1855.
    [125] Jinsong Xia, Jinzhong Yu, Zhangtao Wang, Zhongchao Fan, Shaowu Chert, "Low power 2×2 thermo-optic SOI waveguide switch fabricated by anisotropy chemical etching", Optics Communications 232(2004)223-238.
    [126] 樊中朝,余金中,陈少武,“ICP刻蚀技术及其在光电子器件制作中的应用”,微细加工技术,2(2003)21-28.
    [127] 陈晓南,杨培林,庞宣明,袁丛清,“等离子体刻蚀中工艺参数对刻蚀速率影响的研究”,西安交通大学学报,38(2004)546-547.
    [128] M. Chabloz, Y. Sakai, T. Matsuura, K. Tsutsumi, "Improvement of sidewall roughness in deep silicon etching, "Microsystem Technologies 6, 86-89 (2000).
    [129] T. E. F. M. Standaert, M. Schaepkens, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein, J. M. Cook, "High density fluorocarbon etching of silicon in an inductively coupled plasma: Mechanism of etching through a thick steady state fluorocarbon layer", J. Vac. Sci. Technol. A 16, 239 (1998).
    [130] Saurabh J. Ullal, Harmeet Singh, John Daugherty, Vahid Vahedi, Eray S. Aydil, "Formation and removal of composite halogenated silicon oxide and fluorocarbon films deposited on chamber walls during plasma etching of multiple film stacks", J. Vac. Sci. Technol. B 20, 1939 (2002).
    [131] Kitt Wai Kok, Won Jong Yoo, K. Sooriakumar, J. Sheng Pan, E. Y. Lee, "Investigation of in situ trench etching process and Bosch process for fabricating high-aspect-ratio beams for microelectromechanical systems", J. Vae. Sci. Technol. B 20, 1878 (2002).
    [132] G. J. Veldhuis, T. Nauta, C. Gui, J. W. Berensehot, P. V. Lambeek, "Eleetrostatically Actuated Meehanooptical Waveguide ON-OFF Switch Showing High Extinction at a Low Actuation-Voltage", IEEE Journal of Selected Topics in Quantum Electronics, 5(1999)60.
    [133] Edward Barkley, Clifton G. Fonstad, Jr., "The Impact of CMP and Underlying Back-End Topographical Features on Losses in Deposited Dielectric Waveguides", IEEE Journal of Quantum Electronics, 40(2004) 1709.
    [134] U. Fischer, T. Zinke, J. -R. Kropp, F. Arndt, K. Petermann, "0.1 dB/cm waveguide losses in single-mode SOI rib waveguides", IEEE Photon.TeehnoI.Lett. 8(1996)647-648.
    [135] Ansheng Liu, Haisheng Rong, Mario Paniccia, Oded Cohen, Dani Hak, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering", Optics Express, 12(2004)4261-4268
    [136] http://lib.hut.fi/Diss/2004/isbn9513864235/isbn9513864235.pdf
    [137] Carola Strandman, Ylva Backlund, "Bulk silicon holding structures for mounting of optical fibers in V-grooves", Journal of Microelectromechanical systems, 6(1997)35-40
    [138] A. Bruno, B. Mersali, L. Menigaux, "Multi-pigtailing using V-grooves and Mechanical cleaving on the same InP substrate", Electronics Letters, 33 (1997) 1075-1077.
    [139] M. de Labachelerie, N. Kaou, V. Armbruster, J. -C. Jeannot, P. Mollier, H. Porte and N. Devoldere, "A micromachined connector for the coupling of optical waveguides and ribbon optical fibers", Sensors and Actuators A: Physical, 89(2001) 36-42.
    [140] H. Kaufmann, P. Buchmann, R. Hirter, H. Melchior, G. Guekos, "Self-adjusted permanent attachment of fibers to GaAs waveguide components", Electronics Letters, 22(1986)642.
    [141] Michel A. Rosa, Nam Q. Ngo, Denis Sweatman, Sima Dimitrijev, H. Barry Harrison, "Self-alignment of optical fibers with optical quality end-polished silicon rib waveguides using wet chemical micromachining techniques", IEEE J. Selected Topics Quantum Electron., 5(1999) 1249-1254.
    [142] R. G. Heideman, G. J. Veldhuis, E. W. H. Jager, P. V. Lambeck, "Fabrication and packaging of integrated chemo-optical sensors", Sensors & Actuators B 35-36(1996)234-240.
    [143] Grand G., Denis H., Valette S., "New method for low cost and efficient optical connections between singlemode fibres and silica guides", Electronics Letters, 27(1991)16-18.
    [144] BogaertsW., WiauxV., TaillaertD., BeckxS., LuyssaertB., BienatmanP., Baets R., "Fabrication of photonic crystals in silicon-on-insulator using 248-nm deep UV lithography", IEEE Journal of Selected Topics in Quantum Electronics, 8(2002)928-934
    [145] M. Patrini, M. Galli, F. Marabelli, M. Agio, L. C. Andreani, D. Peyrade, Yong Chen, "Photonic Bands in Patterned Silicon-on-Insulator Waveguides", IEEE Journal of Quantum Electronics, 38(2002)885
    [146] Mike Salib, Ling Liao, Richard Jones, Mike Morse, Ansheng Liu, Dean Samara-Rubio, Drew, Alduino, Mario Paniccia, "Silicon Photonics", Intel Technology Journal, 8 (2004) 143.
    [147] Edmond J. Murphy, Trudie C. Rice, Leon Mccaughan, George T. Harvey, Peter H. Read, "Permanent attachment of single-mode fiber arrays to waveguides", Journal of Lightwave Technology, LT-3(1985)795.
    [148] Rod C. Alferness, V. R. Ramaswamy, Steven K. Korotky, Manuel D. Divino, Lawrence L. Buhl, "Efficient single-mode fiber to titanium diffused lithium niobate waveguide coupling for λ=1.32μm", IEEE Journal of Quantum Electronics, QE-18(1982)1807.
    [149] R. L. Espinola, M. -C. Tsai, James T. Yardley, R. M. Osgood, Jr., "Tast and Low-Power Thermooptic Switch on Thin Silicon-on-Insulator", IEEE Photonics Technology Letters, 15(2003)1366
    [150] P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, Ph. Robert, "CMOS Compatible Fully Integrated Mach-Zehnder Interferometer in SOI Technology", IEEE Photonics Technology Letters, 12(2000)660
    [151] P. Dainesi, L. Thevenaz, Ph. Robert, "Intensity modulation in two Mach-Zehander interferometers using plasma dispersion in silicon-on-insulator", Applied Physics B, 73(2001)475
    [152] M. Kolesik, M. Matus, J. V. Moloney, "All-Optical Mach-Zehnder-lnterferometer-Based Demultiplexer—A Computer Simulation Study", IEEE Photonics Technology Letters, 15(2003)78.
    [153] D. T. Fuchs, H. B. Chan, H. R. Stuart, F. Baumann, D. Greywalh M. E. Simon, A. Wong-Foy, "Monolithic integration of MEMS-based phase shifters and optical waveguides in silicon-on-insulator", Electronics Letters, 40(2004)142
    [154] Shani Y., Henry C. H., Kistler R. C., Kazarinov R. F., Orlowsky K. J., "Integrated optic adiabatic devices on silicon", IEEE Journal of Quantum Electronics, 27(1991)556
    [155] L. H. Spiekman, Y. S. Oei, E. G. Metaal, F. H. Groen, P. Demeester, M. K. Smit, "Ultrasmall waveguide bends: the comer mirrors of the future?", IEE Proc.-Optoelectron., 142(1995)61.
    [156] Raymond van Roijen, Geert L. A. van der Hofstad, Maurice Groten, John M. M. van der Heyden, Peter J. A. Thijs, Bart H. Verbeek, "Fabrication of low-loss integrated optical comer mirrors", Applied Optics, 32(1993)3246.
    [157] Youngchul Chung, Nadir Dagli, "Experimental and theoretical study of turning mirrors and beam splitters with optimized waveguide structures", Optical and Quantum Electronics, 27(1995)395.
    [158] R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, R. M. Osgood, Jr., "Ultracompact comer-mirrors and T-branches in silicon-on-insulator", IEEE Photonics Technology Letters, 14(2002)65.
    [159] Y. Z. Tang, W. H. Wang, T. Li, Y. L. Wang, "Integrated waveguide turning mirror in silicon-on-insulator", IEEE Photonics Technology Letters, 14(2002)68.
    [160] Stefan Wiechmann, Hans Joachim Heider, Jorg Mfiller, "Analysis and design of integrated optical mirrors in planar waveguide technology", Journal of Lightwave Technology, 21(2003)1584.
    [161] Dietrich Marcuse, Light Transmission Optics. Second Eidtion, Van Nostrand Reinhold Company, 1982.
    [162] D. Marcuse, "Mode conversion caused by surface imperfections of a dielectric slab waveguide", Bell Syst. Tech. J. 48(1969)3187.
    [163] J. P. R. Lacey, F. P. Payne, "Radiation loss from planar waveguides with random wall imperfections", IEE Proceedings 137, (1990) 282-288.
    [164] F. P. Payne, J. P. R. Lacey, "A theoretical analysis of scattering loss from planar optical waveguides", Optical and Quantum Electronics 26(1994) 977-986.
    [165] J A Ogilvy, J R Foster, "Rough surfaces: gaussian or exponential statistics?" J. Phys. D: Appi. Phys. 22(1989) 1243-1251.
    [166] P. K. Tien, "Light waves in thin films and integrated optics", Appl. Opt. 10, 2395-2413(1971).
    [167] R. J. Deri, E. Kapon, L. M. Schiavone, "Scattering in low-loss GaAs/AlGaAs rib waveguides", Appl. Phys. Lett. 51, 789-791(1987).
    [168] J. S. Foresi, M. R. Black, A. M. Agarwal, L. C. Kimerling, "Losses in polycrystalline silicon waveguides", Appl. Phys. Lett. 68, 2052-20541(1996).
    [169] O. Skorka, B. Meyler, J. Salzman, "Propagation loss in GaN-based ridge waveguides", Appl. Phys. Lett. 84, 3801-3803(2004).
    [170] St. Kollakowski, Ch. Lemm, A. Strittmatter, E. H. Bottcher, D. Bimberg, "Buried InAIGaAs-InP waveguides: etching, overgrowth and characterization", IEEE Photon Technol. Lett., 10(1996)114.
    [171] Hyang-Mok Lee, Min-Cheol Oh, Heuk Park, Wol-Yon Hwang, Jang-Joo Kim, "End-face scattering loss in integrated-optical waveguides", Appl. Optics. 36(1997)9021.
    [172] D. H. Santamore, M. C. Cross, "Surface scattering analysis of phonon transport in the quantum limit using an elastic model", Phys. Rev. B 66, 144302(2002).
    [173] Kevin K. Lee, Desmond R. Lim, Hsin-Chiao Luan, Anuradha Agarwal, James Foresi, Lionel C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO_2 waveguide: experiments and model", Appl. Phys. Lett. 77, 1617-1619(2000).
    [174] 王文辉,博士论文,2004
    [175] J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, J. H. Abeles, " Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic microscope", Appl. Phys. Lett. 83, 4116-4118(2003).
    [176] J. M. Bennett, L. Mattsson, Introduction to Surface Roughness and Scattering, Optical Society of America, 1989.
    [177] Stefan Wiechmann, Hans Joachim Heider, Jorg Muller, "Analysis and Design of Integrated Optical Mirrors in Planar Waveguide Technology", J. Lightwave Technol. 21, 1584-1591 (2003).
    [178] H. -C. Liu, Y. -H. Lin, W. Hsu, "Sidewall roughness control in advanced silicon etch process", Microsystem Technologies 10, 29-34 (2003).
    [179] Akira Himeno, Hiroshi Terui, Morio Kobayashi, "Loss measurement and analysis of high-silica reflection bending optical waveguides", J. Lightwave Technol. 6, 41-46 (1988).
    [180] Lee, S. M.; Chew, W. C.; Moghaddam, M.; Nasir, M. A.; Chuang, S. -L.; Herrick, R. W.; Balestra, C. L.; "Modeling of rough-surface effects in an optical turning mirror using the finite-difference time-domain method", J. Lightwave Technol. 9, 1471-1480 (1991).
    [181] R'egis Orobtchouk, Suzanne Laval, Daniel Pascal, Alain Koster, "Analysis of Integrated Optical Waveguide Mirrors", J. Lightwave Technol. 15, 815-820 (1997)
    [182] Kevin K. Lee, Desmond R. Lim, Lionel C. Kimerling, "Fabrication of ultralow-loss Si/SiO_2 waveguides by roughness reduction", Optics Lett. 26(2001)1888-1890.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700