用户名: 密码: 验证码:
松辽盆地齐家北地区扶余油层沉积微相研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过广泛的收集前人的工作成果,结合岩心描绘工作,以及市内样品测试分析和研究工作,对齐家北地区沉积微相进行系统的研究。
     从松辽盆地的区域地质背景,地层等特征入手,通过对本区扶余油层的岩性特征、测井曲线特征、储集特征的分析,归纳总结出本区在泉四段沉积时期共发育两种亚相六种主要沉积微相,并且建立起本区三角洲沉积微相模式。并对现有的17口取心井进行详细沉积微相分析,其余的48口未取心井通过测井曲线资料进行微相划分。在此基础之上作出本区扶余油层7小层的沉积微相平面图。进而综合分析沉积微相在垂向和平面上的变化趋势。此外,本文还对沉积微相和砂体储集特征的联系进行讨论,沉积微相在一定程度上制约着砂体横向和纵向上的展布,所以对于不同的沉积微相砂体的物性和含油气性有着明显的不同。
Songliao basin is located in Northeast China which is a vast Mesozoic- Cenozoic basin., and covers the area of E119°40′~E128°24′, N42°25′~N49°23′and stretches in NNE direction, with length of 750km, width of 350km and total area of 260,000 km2. Songliao basin is divided into six first-order structural units including western slope region, northern plunge region, central depression region, northeast uplift region, southwest uplift region and southeast uplift region. The central depression region includes Heyupao sag, Mingshui terrace, Longlvpao-Honggang terrace, Qijia-Gulong sag, Daqing placanticline, Sanzhao sag and Chaoyanggou terrace.
     North area of Qijia is located in north Qijia-Gulong sag of central depression region in the north of Songliao basin. It is located in the urban of Da Qing and the Duerbote Mongol borough which belongs to Da Qing City, in Hei Longjiang Province。This area is adjacent to the east of Da Qing placanticline, The west of the area reaches Qijia oil field, the south border of the area is Lamadianmiao village and the north border is Zhangqi village belonging to Lidian town. The total area of North Qijia is 304.5 km2. Fuyu oil formation is one of main oil formation in this area and it belongs to forth segment of Quantou Formation in lower Cretaceous. We divide Fuyu oil formation into seven sublayers according to its lithology, electrical property and gas-oil characteristic and the three upper sublayers is the main oil sublayers.
     The main lithology of forth segment of Quantou Formation is interbedded sand, silt and mudstone. The grain composition of sand is quartz, feldspar and debris, and includes a little steady heavy mineral. The content of Quartz is more than others and the content of feldspar and debris in the samples are equivalent.
     The main composition of debris is granite intermediate-acidic volcanics and metamorphic rock. This composition is similar with the lithology of north provenance.
     By comprehensive study of deposition characteristic(lithology, thickness ratio between sand and strata, sedimentary structure, framework characteristic), electrometry characteristic and reservoir characteristic(physical property), It shows that is shallow water lake delta sediments and the subfacies delta front and delta plain is main facies. Delta front include microfacies of underwater distributary channel, underwater interdistributary, mouth bar and distal bar Delta plain chiefly include distributary channel microfacies and interdistributary microfacies.
     From bottom to top, the subfacies of forth segment in Quantou Formation is from delta plain to delta plain. The FI1-FI3 sublayers mainly develop delta front subfacies, while the FI5-FI7 sublayers mainly develop delta plain subfacies.
     The mouth bar and distal bar sedimentary microfacies of delta front always appear in the FI1 sublayer,while we can see mouth bar in the FI2 sublayer in south parts of area. The logging traces of mouth bar and distal bar always take on obviously dental finger-like and funnel-shaped. Distal bar microfacies is above the mouth bar microfacies according to facies sequence on the top of in this area. The overlying layer of forth segment of Quantou Formation is the first segment in Qingshankou formation which develops predelta subfacies.
     Underwater distributary channel microfacies always appears on FI1-FI3 sublayers and is under the mouth bar and distal bar microfacies. The logging traces of underwater distributary channel microfacies always take on obviously campaniform. The isogram map of thickness ratio between sand and strata show that underwater distributary channel stretches in NS direction whichis is similar to the direction of provenance. Between underwater distributary channel microfacies is underwater interdistributary which is composed of deep gray mudstone or siltston and always develop in the FI2-FI3 sublayers.
     FI4 sublayer is transitional layer between delta front subfacies and delta plain subfacies. Jin76, Jin73, Gu72, Gu705 well etc of south mainly develop delta front subfacies, but FI4 sublayer in north area mainly develop delta plain subfacies which are composed of amaranth, celadon mudstone and siltstone.
     Distributary channel and interdistributary microfacies of delta plain mainly develop in FI5-FI7 sublayers. According to the isogram map of thickness ratio between sand and strata of delta plain show that the thickness ratio between sand and strata of delta plain is lower than it is in delta front. At the same time the lithology of delta plain subfacies including amaranth mudstone and a little gypsum vein show that the weather in this period is dry and torrid. The provenance is also inadequate and the scale of water body is small.
     The reservoir conditions of sandbody of underwater distributary channel are best in all sandbody and its porosity and permeability is the highest in all sandbody. Distributary sanbody is comparative lower than it. However, (underwater) interdistributary have the lowest porosity and permeability in this region because its content of argillized is much higher.The underwater distributary channel sand body is also the best oil-bearing formation in all sandbody which is not only owing to reservoir condiditions, but also due to sand body in the top of forth segment of Quantou formation that is much closer to generating rock of first segmen of Qingshankou formationt.
引文
[1] 大庆油田石油地质志编写组 编.中国石油地质志(卷二)[M] .石油工业出版社.1993:55
    [2] 贾卧,陈树民,蒋鸿亮.大庆探区齐家北地区含油砂岩分布预测[J].大庆石油地质与开发,2004,23(2):12-13
    [3] 姜传金,蒋鸿亮,赵福海.微幅度构造与岩性圈闭识别技术及应用[J].大庆石油地质与开发,2005,24(3):19-20,37
    [4] 刘晓冬,程勤松,李守田.松辽盆地北部齐家-古龙地区断层-裂缝体系分维特征及其应用[J].大庆石油学院学报,1998,22(2):14-17
    [5] 唐为清,郭荣坤,王忠东,王 红,罗安银,毋学平.沉积微相测井资料神经网络判别方法研究[J]. 沉积学报,2001,19(4):581-584
    [6] 杜飚,汤军.多井沉积微相评价技术在江汉岩性油藏的应用[J]. 江汉石油职工大学学报,2006,19(2):6-8
    [7] 刘招君,董清水,王嗣敏,朱建伟,郭巍.陆相层序地层学导论与应用[M].石油工业出版社.2002:96
    [8] 王允城编著.油气储层评价.石油工业出版社.1999
    [9] 陈友飞. 沉积相研究及其若干理论问题. 福建师范大学学报,14(2):112-118
    [10] 宋成辉、王志章、漆家福、李晓、张春雷. 多参数综合方法判别沉积微相. 西安石油大学学报,2004,19(6):10-14
    [11] 赵希刚、吴汉宁、杨建军、王靖华、柏冠军. 碎屑岩油气藏沉积微相的测井参数特征识别研究. 石油物探,2005,44(6):582-587
    [12] 于民凤,程日辉,那晓红. 陆相盆地主要沉积微相的测井特征. 世界地质,24(2):182-187
    [13] 张志坚. 松辽盆地北部泰康地区高台子油层四砂组沉积微相特征. 大庆石油地质与开发,2005,24(3):11-13
    [14] 张志坚、张国斌、佟卉、张明.松辽盆地北部泰康地区青山口组一段沉积微相特征. 大庆石油学院学报,2004,28(6):84-86
    [15] 陈烨菲,彭仕宓. 沉积微相定量研究方法.石油勘探与开发,2003,30(4):51-53
    [16] 李少华、张昌民、张尚锋、彭裕林、陈新民、姚凤英. 沉积微相控制下的储层物性参数建模. 江汉石油学院学报,2003,25(1):24-26
    [17] 杨明达、杨明辉、刘鸿友、赵洪涛. 松辽盆地南部海坨子地区姚家组二、三段沉积微相研究. 石油实验地质,2002:24(4):348-352
    [18] 周红、杨永利、鲁国甫. 储层沉积微相研究——以下二门油田核三段砂体为例. 地质科技情报,2002,21(2):80-82
    [19] 孙岩、王文广、张明学. 松辽盆地海坨子地区萨尔图油层三砂组沉积微相. 大庆石油学院学报,2002,26(4):4-6
    [20] 赵有山、刘喜武、年静波. 储层沉积微相制图技术研究及其应用. 世界地质,20(3):291-295
    [21] 洪秀娥、郭建宇、李建荣、李桂霞. 油藏描述过程中沉积微相研究的方法及应用. 江汉石油学院学报,2001,23(增刊):22-24
    [22] 胡雪涛、李允. 储层沉积微相的随机模拟及其对比研究. 西南石油学院学报,2000,22(1):16-19
    [23] 黎文、周志才. 用地震剖面划分沉积微相. 石油物探,2000,39(1):57-62
    [24] 陈烨菲、彭仕宓、钟显彪、纪玉峰、马立文.松辽盆地四五家子油田下白垩统泉头组沉积相. 古地理学报,2003,5(3):316-325
    [25] 胡忠贵、朱忠德、李相明、冯常茂. 沉积微相对储层物性控制作用的定量评价—以英台地区青山口组、泉头组四段 I 砂组为例. 油气地质与采收率,2004,11(4):4-6
    [26] 王必金、杨光海、袁井菊、卢明国.高分辨率地震资料在沉积微相与储层研究中的应用. 石油物探,2006,45(1):52-56
    [27] 崔攀峰、赵惊蛰、杨秋莲、孙燕妮. 华池油田长 3 油层沉积微相与含油性关系. 西安石油学院学报,2002,17(1):15-19
    [28] 刘宪斌,林金逞,韩春明.地震储层研究的现状及展望.地球学报,2002,23(1):73-79.
    [29] 王东坡,刘立,张立平,吕传江.松辽盆地白垩纪古气候 沉积旋回 层序地层. 吉林大学出版社,1995
    [30] 王东坡,刘招君,刘立. 松辽盆地演化与海平面升降. 地质出版社. 1995
    [31] 穆龙新,贾爱林,陈亮等.储层精细研究方法.北京:石油工业出版社,2000
    [32] 李兴国.陆相储层沉积微相与微相构造.北京:石油工业出版社,2000
    [33] 罗杰G.沃克.沉积相模式.地质部情报研究所译,1975
    [34] Alaa M. Salem,S. Morad,Luiz F. Mato. Diagenesis and Reservoir-Quality Evolution of Fluvial Sandstones During Progressive Burial and Uplift: Evidence from the Upper Jurassic Boipeba Member,Reconcavo Basin, Northeastern Brazil.1 AAPG Bulletin,2000,84(7):1015-1040.
    [35] Alicia M. Wilson,James R. Boles, Grant and Garven. Calcium mass transpor and sandstone diagenesis during compaction-driven flow:Stevens Sandstone, San Joaquin basin ,California. GSA Bulletin,2000,112(6):845-856.
    [36] Glaiton M. S. Scherer. Preservation of aeolian genetic units by lava flows in the Lower Cretaceous of the Parana Basin, southern Brazil. Sedimentology,2002,49:97-116.
    [37] Julian C. Baker, Peter J. Havord,Ken R. Martin. Diagenesis and Petrophysics of the Early Permian Moogooloo Sandstone,Southern Carnarvon Basin,Wester Australia.1 AAPG Bulletin,2000,84(2):250-265.
    [38] Kitty L. Milliken. Diagenetic heterogeneity in sandstone at the outcrop scale,breathitt Formation (Pennsylvanian),eastern Kentucky. AAPG Bulletin,2001,85(5):795-815.
    [39] M. L. Kuhlman,H. C. Lau,and A. H. Falls. Surfactant Criteria for Successful Carbon Dioxide Foam in Sandstone Reservoirs. SPE Reservior Eval. & Eng,2000,3(1):35-41.
    [40] Nanqun He,SPE. U. of Tulsa,Dean S. Oliver,et al.Conditioning Stochastic Reservoir Models to Well-Test Data. SPE Reservoir Eval. & Eng,2000,3(1):74-79.
    [41] Roger G. Walker. Deep-Water Sandstone facies and Ancient Submerine Fans: Models For Exploration For stratigraphic Traps. AAPG 1978,62(6):932-966.
    [42] Roberto F. Mezzomo,SPE. Jose M.Luvizotto,SPE. and Cesor L. Palagi. Improved Oil Recovery in Carmopolis Field: R&D and Field Implementations.SPE Reservoir Evaluation & Engineering,2001,4-10.
    [43] Sylvia M. C. dos Anjos, Luiz F. De Ros, Rogerio Schiffer de Souza. Depositional and diagenetic controls on the reservoir quality of Lower Cretaceous Pendencia sandstones,Potiguar rift basin,Brazil. AAPG BULLETIN,2000,84(11):1719-1742.
    [44] Shanley. K. W, & McCabe. P. J. Perspectives on the sequence stratigraphy of continental strata. AAPG Bull, 1994,78: 544-568.
    [45] Shanmugam G. and Molola R. J. Submarine Fans: Charicteristics, Models, Classification,and Reservoir potential. Earth-Science Reviews. 1988,24: 383-428.
    [46] Shanmugam. G. Sandy slump and Sandy debris flow facies in the Pliocene and pleistocene the Gulf of Mexica: implications for submarine fan models. AAPG Bull, 1996 , 80 (8):1335-1336.
    [47] Shanmugam. G. The Bouma Sequence and the turbidite mind set. Earch-Science Reviews, 1997,42: 4, 201-229.
    [48] J.Cuddy,BP Exploration.Litho-Facies and Permeability Prediction From Electrical Logs Using Fuzzy Logic. SPE Resermoir Eval.& Eng,2000,3(4):319-324
    [49] Varnai P. Sequence stratigraphie analysis of Plio-plestocene turbidite systems, northern Green canyon and Central Euing bank areas, northern Gulf of Mexico. AAPG Bull,1997,81(9)-1593.
    [50] Van Wagoner J. C. Sequence stratigrephy and marine to nonmarine facies architecture of fore land basin strata Book Cliffs, Utah, USA: Reply. AAPG Bull,1998.,82(8): 1607-1618.
    [51] Van Wagoner J.C.Sequence stratigrephy and marine to nonmarine facies architecture of fore land basin strata Book Cliffs, Utah, USA: Reply. AAPG Bull, 1998, 82(8): 1607-1618.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700