用户名: 密码: 验证码:
金属氧化物及含氧酸盐纳米结构的设计合成及其在锂离子电池中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鉴于金属氧化物及含氧酸盐诸多材料在新能源领域、光催化领域、生物医学等方面有着广泛的应用,我们致力于控制合成组装、多孔或空心的金属氧化物及含氧酸盐材料。一方面,将其作为锂离子电池负极材料,以解决它们因存在利用率低和极化严重等原因造成循环寿命较短,实际容量和能量密度与理论值有较大差距的问题,探索具有长寿命、高功率、大容量特点的负极材料。另一方面研究它们作为光催化材料在光催化领域中的应用。本论文的详细内容概括如下:
     1.采用一个简单、友好的两步合成过程成功大批量制备了纳米品组装的CuO束状结构。通过对前驱体Cu(OH)2的热解获得束状CuO的纳米粒子,其作为锂离子电池的负极材料具有相当高的比容量,好的稳定性,尤其是在高倍率下,优于绝大多数报道的氧化铜CuO及CuO/C负极材料。CuO的组装结构使其在0.3C,1C,2C倍率下充电/放电循环50圈后容量分别达到666,609,499mAh g-1。甚至在6C高倍率下,其容量仍高达361mA h g-1。我们观察到纳米晶组装的束状CuO电极比CuO纳米粒子(束状CuO纳米结构经研磨后获得)电极的电化学性能更好。通对分析循环前后极片的XRD测试结果,得出可逆反应程度是影响CuO性能的直接原因,发生在CuO组装结构中的转化反应具有更好的可逆性,从而导致其具有更高倍率容量和循环性能。更好的可逆性源于组装结构有利于活性物质CuO和电解液之间更有效的接触,提高了Li1的传输能力。此外,多孔组装的CuO束状纳米结构还可以缓冲Li+嵌入/脱嵌过程中引起的体积膨胀,这也有助于其电化学性能的提高。
     2.各种CuO纳米结构作为锂离子电池负极材料已经得到了很好的研究,然而,将多孔CuO纳米结构用于负极材料,尤其是一维(1D)多孔CuO,却鲜有报道。在这项工作中,我们采用一个新的、简单的方法大批量制备了1D高度介孔CuO纳米棒,孔的尺寸可以通过改变煅烧温度来控制。我们将介孔CuO材料用作锂离子电池负极材料,并观察了孔尺寸对其电化学性能的影响。孔径范围为6nm-22nmCuO纳米棒状结构表现出高的比容量,好的循环稳定性,和高的倍率性能,优于绝大多数报道的CuO纳米化合物。这个高度介孔CuO材料在0.5C倍率下充放电电循环200圈后可逆容量为654mAhg-1。它也具有高的倍率容量,在6C倍率下,其比容量为410mAhg-1。这些结果表明通过简易合成法制备的孔径可调的CuO纳米结构实现了长的寿命循环和高的可逆容量,非常适用于作为下一代高性能锂离子电池负极材料。
     3. CdSnO3作为气敏材料已被广泛研究。然而,将多孔CdSnO3纟内米结构用作储能材料却鲜有报道。在这个]:作中,我们制备合成了孔径范围大约为7.8nm-28.7nm的CdSnO3多孔纳米结构,并将其用作锂离子电池负极材料。电化学测量结果表明,相比未加柠檬酸制备的CdSnO3纳米粒子{可逆容量(370mA h g-1,40圈)和倍率性能(364mA h g-1,150mA g-1))},用柠檬酸制备的高度介孔的CdSnO3纳米粒子具有更高的可逆容量(515mAh g-1,40圈)和倍率性能(506mA h g-1,150mA g-1),同时,孔径范围大约为7.8nm-28.7nm的CdSnO3介孔纳米结构的电化学性能也优于一些文献报道的CdSn03纳米结构的性能。
     4.非球形单品空心颗粒的合成,尤其是复杂的空心化合物的合成仍然是一个重大的挑战。在我们的工作中,室温条件下,通过简易自模板方法首次制备了单晶ZnSn(OH)6(ZHS)空心立方体结构。通过进行X射线衍射、X光电子能谱、扫描电子显微镜、透射电镜等一系列表征发现ZHS空心立方体的形成经过了两步过程,首先在碱性条件下,锌(Ⅱ)和锡(Ⅳ)共沉淀形成实心的ZHS立方体,然后以自身为模板通过碱协助溶解过程并获得ZHS空心立方体。在这个过程中,第二步中加入的NaOH溶液是形成ZHS空心结构的关键。实验测试了ZHS空心立方体结构对苯酚降解的光催化活性,结果显示它比实心ZHS立方体结构具有更高的催化活性。四次循环测试后,ZHS空心立方体结构的光催化活性没有明显的降低。
Metal oxides and oxysalts materials have received considerable attention because of their widespread potential applications in areas of energy, photocatalysis, biomedical and so on. As anode materials, its disadvantages, such as significant structural changes and volume changes during discharge/charge process make it difficult to achieve high rate capabilities and a long cycling life. So, to overcome these problems, some efforts have been made to synthesize assembly, porous, or hollow metal oxides and oxysalts materials. In addition, as photocatalytic materials, their photocatalytic properties also have been studied. The main parts of the results are summarized as follows:
     1. In this work, nanocrystalline-assembled CuO bundle-like structures were successfully synthesized in large-quantity by a friendly, facile two-step process. The bundle-like CuO particles are produced by thermolysis of bundle-like Cu(OH)2precursors, which exhibit excellent high specific capacity, high stability, especially high rate performance for anode materials in lithium-ion batteries, superior to that of most reported CuO-based anodes. The assembled structure of CuO endue it with high rate capacities of666,609,499mA h g-1at a current rate of0.3C,1C and2C after50cycles, respectively. Even at high rate of6C, the bundle-like CuO can still deliver a capacity of361mA h g'. It is observed that the electrochemical perfonnance of the nanocrystalline-assembled bundle-like CuO is much better than that of CuO nanoparticles obtained by destroying the assembled bundle-like CuO through grinding. XRD analysis of the both electrodes after ending discharge/charge, proved that during discharge/charge process, the conversion reaction occurring in the assembled structures have better reversibility, leading to the high rate capacity and cycling performances. The better reversibility originates from the better contact area for CuO/electrolyte, enhancing lots of sites to access of Li+in the electrolyte Li+. In addition, the assembled bundle-like CuO architectures can also relieve the volume variations during Li+uptake-release process, which also contributes to the excellent electrochemical performance.
     2. Various CuO nanostructures have been well studied as anode materials for lithium ion batteries (LIBs); However, there are few reports on the synthesis of porous CuO nanostructures used for anode materials, especially one-dimensional (1D) porous CuO. In this work, novel1D highly porous CuO nanorods with tunable porous size were synthesized in large-quantities by a new, friendly, but very simple approach. We found that the pore size could be controlled by adjusting the sintering temperature in the calcination process. With the rising of calcination temperature, the pore size of CuO has been tuned in the range of~0.4nm to22nm. The porous CuO materials have been applied for anode materials in LIBs and the effects of porous size on the electrochemical properties were observed. The highly porous CuO nanorods with porous size in the range of~6nm to22nm yielded excellent high specific capacity, good cycling stability, and high rate performance, superior to that of most reported CuO nanocomposites. The CuO material delivers a high reversible capacity of654mA h g-1. It also exhibits excellent high rate capacity of410mA h g-1even at6C. These results suggest that the facile synthetic method of producing tunable highly porous CuO nanostructure can realize a long cycle life with high reversible capacity, which is suitable for next-generation high-performance LIBs.
     3. CdSnO3materials have been extensively studied as gas-sensing materials substances. However, there are few reports on the synthesis of porous CdSnO3nanostructures used for energy storage. Here, we report the preparation of highly porous CdSnO3nanoparticles with the size in the range of~7.8nm to28.7nm and the application of anode materials for rechargeable Li-ion batteries (LIBs). Electrochemical measurements showed that the highly porous CdSnO3nanoparticles prepared with citric acid deliver the higher reversible capacity (515mA h g-1,40cycle) after the second cycle and high rate capacity(506mA h g-1,150mA g-1) than these (370mA h g-1,40cycle;364mA h g-1,150mA g-1) of counterpart obtained without citric acid, which also exhibits the capacity enhancement compared with some previous reported in the literature.
     4. The synthesis of single-crystalline hollow particles with well-defined non-spherical shapes, especially hollow complex compounds, remains a significant challenge. In this paper, single-crystalline ZnSn(OH)6(ZHS) hollow cubes were first synthesized by a facile self-templating method at room temperature. On the basis of X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy, it was found that hollow ZHS cubes were formed by a two-step process, in which solid cubes of ZHS were formed in first step due to the co-precipitation of Zn(II) and Sn(IV) under basic condition and then the solid cubes as the self-templates were converted to hollow ones through an alkali-assisted dissolution process. During the process, NaOH solution added in the second step is critical to the formation of ZHS hollow structures. The photocatalytic activity of ZHS hollow cubes for phenol degradation was tested, which showed much higher catalytic activity than that of the solid ZHS cubes. The photocatalytic activity of the ZHS hollow cubes is rather stable since it just decreased less after four trials.
引文
1 A. Patil, V. Patil, D. W. Shin, J. W. Choi, D. S. Paik, S. J. Yoon, Mate. Res. Bull.2008,43,1913.
    2 V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci.,2011,4,3243.
    3 F.Y. Cheng, J. Liang, Z.L. Tao, J. Chen, Adv. Mater.2011,23,1695.
    4 M. Winter, J. B. Brodd, Chem. Rev.2004,104,4245.
    5 P. G. Bruce, B. Scrosati, J. M. Tarascon, Angew. Chem. Int. Ed.2008,47,2930.
    6 Y. G. Wang, H. G. Li, P. He, E.J. Hosono, H.S. Zhou, Nanoscale,2010,2,1294.
    7 Advances in Lithium-ion Batteries (Eds.:W. van Schalkwijk, B.Scrosati), Kluwer Academic/Plenum, New York,2002.
    8 Lithium Batteries Science and Technology (Eds.:G.-A. Nazri,G. Pistoia), Kluwer Academic/Plenum, Boston,2004.
    9 M. S. Whittingham, Chem. Rev.2004,104,4271.
    10 C. Liu, F. Li, L. P. Ma, H. M. Cheng, Adv. Mater.2010,22, E28.
    11 Z. G. Yang, J. Liu, S. Baskaran, C. H. Imhoff, J. D. Holladay, JOMUS 2010,62,14.
    12 T. Nagaura, K. Tozawa, Prog. Batt. Solar Cells 1990,9,209.
    13 B. H.Li, Z. X.Wang, L.Q. Chen, X. J. Huang, Adv. Mater.2009,21,4593
    14 J. M. Tarascon, M. Armand, Nature 2001,414,359.
    15 A. S. Arico, P. Bruce, B. Scrosati, J. M.Tarascon, W. VanSchalkwijk, Nat. Mater.2005,4,366.
    16 M. Armand, J. M. Tarascon, Nature 2008,451,652.
    17 Applications;Wiley VCH:Weinheim, Germany,2010.
    18 K., Zaghib, M., Dontigny, A. Guerfi, P. Chares, I. Rodrigues, A, Mauger, C. M. Julien, J. Power Sources 2011,196,3949.
    18 M. V. Reddy, G. V. Subba Rao, B. V. R. Chowdari, Chem. Rev. DOI:10.1021/cr3001884
    20 M. Winter, J.O. Besenhard, Electrochem. Acta,1999,45,31.
    21 M. S. Park, S. Rajendran, Y. M. Kang, K. S. Han, Y. S. Han, J. Y. Lee, J. Power Sources,2006, 158,650.
    22 M. Yoshio, S. Kugino, N. Dimov, J. Power Sources,2006,153,375.
    23 M. Yoshio, S. Kugino, N. Dimov, J. Power Sources,2006,153,375.
    24 LA. Courtney, J. R. Dahn, J. Electrochem Soc,1997,144,2045.
    25 T. Doi, K. Takeda, T. Fukutsuka, Y. Iriyama, T. Abe, Z. Ogumi, Carbon,2005,43,2352.
    26 F. Beguin, F. Chevallier, C. Vix-Guterl, S. Saadallah, V. Bertagna, J.N. Rouzaud, E. Frackowiak, Carbon,2005 44,2160.
    27 G. Brancolini, F. Negri, Carbon,2004,42,1001.
    28 S. Pruvost, C. Herold, A. Herold, P. Lagrange, Carbon,2004,42,1825.
    29 C. Harold, S. Pruvost, A. Herold, P. Lagrange, Carbon,2004,42,2122.
    30 T.D. Tran, J.H. Feikert, X. Song, K. Kinoshita, J. Electrochem. Soc,1995,142,3297.
    31 S. Pruvost, C. Herold, A. Herold, P. Lagrange, Carbon,2003,41,1281.
    32 D. Billaud, L. Balan, R. Schneider, P. Willmann, Carbon,2006,44,2508.
    33 C. Arbizzani, S. Beninati, M. Lazzari, M. Mastragostino, J. Power Sources,2006,158,635.
    34 H. Zheng, K. Jiang, T. Abe, Z. Ogumi, Carbon,2006,44,203.
    35 L. Balan, J. Ghanbaja, P. Willmann, D. Billaud, Carbon,2005,43,2311.
    36 C. Delabarre, M. Dubois, J. Giraudet, K. Guerin, A. Hamwi, Carbon,2006,44,2543.
    37 A. Concheso, R. Santamaria, R. Men6ndez, J.M. Jimenez-Mateos, R. Alcantara, P. Lavela, J. L. Tirado, Carbon,2006,1762.
    38 N. Yoshizawa, O. Tanaike, H. Hatori, K. Yoshikawa, A. Kondo, T. Abe, Carbon,2006,44, 2558.
    39 H. Konno, T. Morishita, S. Sato, H. Habazaki, M. Inagaki, Carbon,2005,43,1110.
    40 L. Bai, US Patent,1996,5,480,740.
    41 M. A. Amin, Arab. J. Chem.,2013,6,87.
    42 J.O. Besenhard, J. Yang, M. Winter, J. Power Sources,1997,68,87.
    43 T. Nohma, S. Yoshimura, K. Nishio, Y. Yamamoto, S. Fukuoka, M. Hara, J. Power Sources,1996,58,205.
    44 S. Electric, US Patent,1989,4,820,599.
    45 E. J. Plichta, W. K. Behl, J. Electrochem. Soc.,1993,140,46.
    46 B. Scrosati, J. Electrochem. Soc.139 (1992) 2776.
    47 C. Tsang, A. Manthiram, J. Electrochem. Soc.,1997,144,520.
    48 A. Concheso, R. Santamaria, C. Blanco, R. Menendez, J.M. Jimenez-Mateos, R. Alcantara, P. Lavela, J. L. Tirado, Carbon,2005,43,923.
    49 M. Gratzel, Chemtech.1995,67,1300.
    50 D. Guyomard, C. Sigala, Y. Piffard, J. Power Sources,1997,68,692.
    51 Y. Piffard, F. Leroux, D. Guyomard, J. L. Mansot, M. Tournoux, J. Power Sources,1997,68, 698.
    52 T. Shodai, S. Okada, S. Tobishima, J. Yamaki, J. Power Source,1997,68,515.
    53 Y. Idota, et al, US Patent,1995,5,478,671.
    54 P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, Nature,2000,407,496.
    55 S. Denis, E. Baudrin, M. Touboul, J. M. Tarascon, J. Electrochem. Soc,1997,144,4099.
    56 F. Leroux, G.R. Coward, W.P. Power, L.F. Nazar, Electrochem. Solid State Lett.,1998,1, 255.
    57 F. Badway, F. Cosandey, N. Pereira, G.G. Amatucci, J. Electrochem. Soc.,2003,150, A1318.
    58 H. Li, G. Ritcher, J. Maier, Adv. Mater.,2003,15,736.
    59 J. Jamnik, J. Maier, Phys. Chem.,2003,5,5215.
    60 D. Larcher, et al. J. Electrochem. Soc.,2003,150, A133.
    61 J.Y. Eom, H.S. Kwon, J. Liu, O. Zhou, Carbon,2004,42,2589.
    62 Z. Zhou, X. Gao, J. Yan, D. Song, M. Morinaga, Carbon,2004,42,2677.
    63 T. D. Hatchard, J. R. Dahn, J. Electrochem. Soc.,2004,151, A838.
    64 I. S. Kim, P. N. Kumta, J. Power Sources,2004,136,145.
    65 Y. Liu, T. Matsumura, N. Imanishi, A. Hirano, T. Ichikawa, Y. Takeda, Electrochem. Solid-State Lett.2005,8, A599.
    66 T. Takamura, M. Uehara, J. Suzuki, K. Sekine, K.Tamura, J.Power Sources,2006,158,1401.
    67 J. T. Yin, M. Wada, K. Yamamoto, Y. Kitano, S. Tanase, T. J. Sakai, Electrochem. Soc.2006, 153,A472.
    68 J. Li, R. B. Lewis, J. R. Dahn, Electrochem. Solid-State Lett.2007,10, A17.
    69 Ma, H.; Cheng, F. Y.; Chen, J.; Zhao, J. Z.; Li, C. S.; Tao, Z. L.;Liang, J. Adv. Mater.2007,19, 4067.
    70 D. Larcher, S.Beattie, M. Morcrette, K. Edstroem, J. C. Jumas, J. M.Tarascon, J. Mater. Chem. 2007,17,3759.
    71 B. Lestrie, S. Bahri, I. Sandu, L. Roue, D. Guyomard, Electrochem. Commun.2007,9,2801.
    72 I. Sandu, P. Moreau, D. Guyomard, T. Brousse, L. Roue, Solid State Ionics 2007,178,1297.
    73 M. N. Obrovac, L. Christensen, D. B. Le, J. R. Dahn, J.Electrochem. Soc.2007,154, A849.
    74 L. F. Cui, R. Ruffo, C. K. Chan, H. L. Peng, Y. Cui, Nano Lett.2009,9,491.
    75 D. Mazouzi, B. Lestriez, L. Roue, D. Guyomard, Electrochem.Solid-State Lett.2009,12, A215.
    76 C. K. Chan, R. N. Patel, M. J. O'Connell, B. A. Korgel, Y. Cui, ACS Nano 2010,4,1443.
    77 B.Hertzberg, A. Alexeev, G. Yushin, J. Am. Chem. Soc,2010,132,8548.
    78 A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, G. Yushin, Nat. Mater.,2010,9,353.
    79 C. M. Park, J. H. Kim, H. Kim, H. J. Sohn, Chem. Soc. Rev.,2010,39,3115.
    80 N. S. Choi, Y. Yao, Y. Cui, J. Cho, J. Mater. Chem.,2011,21,9825.
    81 N. Liu, H. Wu, M. T. McDowell, Y. Yao, C. M. Wang, Y. Cui, Nano Lett.,2012,12,3315.
    82 V. P. Phan, B. Pecquenard, Adv. Funct. Mater.,2012,22,2580.)
    83 C. M. Ionica, P. E. Lippens, J. O. Fourcade, J. C. Jumas, J.Power Sources 2005,146,478.
    84 H. Bryngelsson, J. Eskhult, K. Edstrom, L. Nyholm, Electrochim. Acta,2007,53,1062.
    85 H. Sun, X. M. He, J. G. Ren, J. J. Li, C. Y. Jiang, C. R. Wan, Rare Met. Mater. Eng.2007,36, 1313.
    86 M. Roberts, P. Johns, J. Owen, D. Brandell, K. Edstrom, G. ElEnany, C. Guery, D. Golodnitsky, M. Lacey, C. M. M. Shaijumon, P. Simon, P. L. Taberna, J.Mater. Chem.,2011, 21,9876.
    87 R. A. Huggins, J. Power Sources,1999,81,13.
    88 A. D. W. Todd, P. P. Ferguson, M. D. Fleischauer, J. R. Dahn, Int. J. Energy Res.2010,34, 535.
    89 Z. Zhou, X. Gao, J. Yan, D. Song, M. Morinaga, Carbon,2004,42,2677.
    90 K. Sato, M. Noguchi, A. Demachi, N. Oki, M. Endo, Science,1994,264,556.
    91 Y.P. Wu, C. Wan, C. Jiang, S. B. Fang, Y.Y. Jiang, Carbon,1999,37,1901.
    92 W. B. Luo, J. R. Dahn, Electrochim. Acta,2009,54,4655.
    93 Y. S. Jung, A. S. Cavanagh, A. C. Dillon, M. D. Groner, S. M. George,S. H. Lee, J. Electrochem. Soc.,2010,157, A75.
    94 J. Kim, M. Noh, J. Cho, H. Kim, K. Kim, J. Electrochem. Soc.,2005,152, A1142.
    95 H. Miyashiro, A. Yamanaka, M. Tabuchi, S. Seki, M. Nakayama,Y. Ohno, Y. Kobayashi, Y. Mita, A. Usami, M. Wakihara, J. Electrochem.Soc.,2006,153, A348.
    96 A. K. Padhi, K. S. Nanjundaswamy, K. S. Goodenough, J. Electrochem.Soc.,1997,144,1188.
    97 N. N. Bramnik, K. Nikolowski, C. Baehtz, K. G. Bramnik, H. Ehrenberg, Chem. Mater.,2007, 19,908.
    98 B. L. Ellis, W. R. M. Makahnouk, Y. Makimura, K. Toghill, L. F. Nazar, Nat. Mater.,2007,6, 749.
    99 N. Recham, J. N. Chotard, L. Dupont, C. Delacourt, W. Walker, M. Armand, J. M. Tarascon, Nat. Mater.,2010,9,68.
    100 M. E. Arroyo-deDompablo, R. Dominko, J. M. Gallardo-Amores, L. Dupont, G. Mali, H. Ehrenberg, J. Jamnik, E. Moran, Chem.Mater.,2008,20,5574.
    101 S. I. Nishimura, S. Hayase, R. Kanno, M. Yashima, N. Nakayama, A. Yamada, J. Am. Chem. Soc.,2008,130,13212.
    102 B. L. Ellis, W. R. M. Makahnouk, W. N. R. Weetaluktuk, D. H. Rya, L. F. Nazar, Chem. Mater.,2010,22,1059.
    103 N. Recham, J. N. Chotard, L. Dupont, C. Delacourt, W. Walker, M. Armand, J. M. Tarascon, Nat. Mater.2010,9,68.
    104 P. Novak, K. Muller, K. S. V. Santhanam, O. Haas, Chem. Rev.,1997,97,207.
    105 F. Y. Cheng, W. Tang, C. S. Li, J. Chen, H. K. Liu, P. W. Shen,S. X. Dou, Chem. Eur. J. 2006,12,3082
    106 X. Y. Han, C. X. Chang, L. J. Yuan, T. L. Sun, J. T. Sun, Adv. Mater.,2007,19,1616.
    107 H. Chen, M. Armand, M. Courty, M. Jiang, C. P. Grey, F. Dolhem, J. M. Tarascon, P. Poizot, J. Am. Chem. Soc,2009,131,8984.
    108 Y. D. Yin, D.Talapin, Chem. Soc. Rev.,2013,42,2484.
    109 P. T. Selvin, M. A. Eid, K. D. Sadhan, Arab. J. Sci. Eng.,2013,38,457.
    110 Q. F. Zhang, U. Evan, Uchaker, L. C. Stephanie, G. Z. Cao, Chem. Soc. Rev.,2013,42,3127.
    111王彦妮,张志琨,崔作林,催化学报,1995,16,304.
    112 M. Anpo, T. Shima, S. Kodama, Y. Kubokawa, J. Phys. Chem.1987,91,4305.
    113 H. Ariga, T.Taniike, H. Morikawa, M. Tada, B. K. Min, K. Watanabe, Y. Matsumoto, S. Ikeda, K. Saiki, Y.Iwasawa, J. Am. Chem. Soc.,2009,131,14670.
    114 M. G. Kim, J. Cho, Adv. Funct. Mater.2009,19,1497.
    115 D. Jugovic, D. Uskokovic, J. Power Sources,2009,190,538.
    116 J. T. Han, Y. H. Huang, J. B. Goodenough, Chem. Mater.,2011,23,2027.
    117 M. V. Reddy, G. V. Subba Rao, B. V. R. Chowdari, Chem. Rev.,2013.
    118 H. Li, Z. Wang, L. Chen, X. Huang, Adv. Mater.,2009,21,4593.
    1 F. Y. Cheng, J. Liang, Z. L. Tao and J. Chen, Adv. Mater.,2011,23,1695.
    2 P. L. Taberna, S. Mitra, P. Poizot, P. Simon and J. M. Tarascon, Nat. Mater.,2006,5,567.
    3 L. Q. Lu and Y. Wang, J. Mater. Chem.,2011,21,17916.
    4 H. B.Wang, Q. M. Pan, J. W. Zhao, G. P. Yin and P. J. Zuo, J. Power Sources,2007,167,206.
    5 X. J. Zhang, W. H. Shi, J. X. Zhu, D. J. Kharistal, W. Y. Zhao, B. S. Lalia, H. H. Hng and Q. Y. Yan, ACS Nano,2011,5,2013.
    6 J. K. Feng, H. Xia, M. O. Lai and L. Lu, Mater. Res. Bull.,2011,46,424.
    7 J. S. Zhou, H. H. Song, X. H Chen, L. J. Zhi, S. B. Yang, J. P. Huo and W. T. Yang, Chem. Mater.,2009,21,2935.
    8 Y. J. Mai, X. L. Wang, J. Y. Xiang, Y. Q. Qiao, D. Zhang, C. D. Gu and J. P. Tu, Electrochim. Acta,2011,56,2306.
    9 B.Wang, X. L. Wu, C. Y. Shu, Y. G. Guo and C. R. Wang, J. Mater.Chem.,2010,20,10661.
    10 S. Y. Gao, S. X. Yang, J. Shu, S. X. Zhang, Z. D. Li and K. Jiang, J. Phys. Chem. C,2008,112, 19324.
    11 X. P. Gao, J. L. Bao, G. L. Pan, H. Y. Zhu, P. X. Huang, F. Wu and D. Y. Song, J. Phys. Chem. B,2004,108,5547.
    12 F. Wang, W. Z. Tao, M. S. Zhao, M. W. Xu, S. C. Yang, Z. B. Sun, L. Q. Wang and X. P. Song, J. Alloys Compd.,2011,509,9798.
    13 J. Y. Xiang, J. P. Tu, L. Zhang, Y. Zhou, X. L. Wang and S. J. Shi, J.Power Sources,2010,195, 313.
    14 J. H. Ju and K. S. Ryu, J. Electrochem. Soc.,2011,158, A814.
    15 X. J. Zhang, W. H. Shi, J. X. Zhu, D. J. Kharistal, W. Y. Zhao,B. S. Lalia, H. H. Hng and Q. Y. Yan, ACS Nano,2011,5,2013.
    16 J. C. Park, J. Kim, H. Kwon and H. Song, Adv. Mater.,2009,21,803.
    17 M. Wan, D. L. Jin, R. Feng, L. M. Si, M. X. Gao and L. H. Yue,Inorg. Chem. Commun.,2011, 14,38.
    18 Y. Y. Hu, X. T. Huang, K. Wang, J. P. Liu, J. Jiang, R. M. Ding,X. X. Ji and X. Li, J. Solid State Chem.,2010,183,662.
    19 J. Y. Xiang, J. P. Tu, L. Zhang, Y. Zhou, X. L. Wang and S. J. Shi, Electrochim. Acta,2010, 55,1820.
    20 W. X. Zhang, M. Li, Q. Wang, G. D. Chen, M. Kong, Z. H. Yang and S. Mann, Adv. Funct. Mater.,2011,21,3516.
    21 Q. M. Pan, H. Z. Jin, H. B. Wang and G. P. Yin, Electrochim. Acta,2007,53,951.
    22 H. B. Wang, Q. M. Pan, J. W. Zhao and W. T. Chen, J. Alloys Compd.,2009,476,408.
    23 D. P. Singh, A. K. Ojha and O. N. Srivastava, J. Phys. Chem. C,2009,113,3409.
    24 Y. H. Ni, H. Li, L. N. Jin and J. M. Hong, Cryst. Growth Des.,2009,9,3868.
    25 S. Grugeon, S. Laruelle, R. Herrera-Urbina, L. Dupont, P. Poizot and J. M. Tarascon, J. Electrochem. Soc.,2001,148, A285.
    26 E. Garcia-Tamayo, M. Valvo, U. Lafont, C. Locati, D. Munao and E. M. Kelder, J. Power Sources,2011,196,6425.
    27 F. S. Ke, L. Huang, G. Z. Wei, L. J. Xue, J. T. Li, B. Zhang, S. R. Chen, X. Y. Fan and S. G. Sun, Electrochim. Acta,2009,54,5825.
    28 S. Laruelle, S. Grugeon, P. Poizot, M. Dolle, L. Dupont and J. M. Tarascon, J. Electrochem. Soc.,2002,149, A627.
    29 D. W. Zhang, T. H. Yi and C. H. Chen, Nanotechnology,2005,16,2338.
    30 A. Debart, L. Dupont, P. Poizot, J. B. Leriche and J. M. Tarascon, J. Electrochem. Soc.,2001, 148,A1266.
    31 X. H. Huang, J. P. Tu, B. Zhang, C. Q. Zhang, Y. Li, Y. F. Yuan and H. M. Wu, J. Power Sources,2006,161,541.
    32 J. Y. Xiang, J. P. Tu, J. Zhang, J. Zhong, D. Zhang and J. P. Cheng, Electrochem. Commun., 2010,12,1103.
    33 K. M. Shaju, F. Jiao, A. Debart and P. G. Bruce, Phys. Chem. Chem. Phys.,2007,9,1837.
    34 X. H. Huang, C. B. Wang, S. Y. Zhang and F. Zhou, Electrochim. Acta,2011,56,6752.
    35 P. Fei, P. H. Yeh, J. Zhou, S. Xu, Y. Gao, J. Song, Y. Gu, Y. Huang and Z. L. Wang, Nano Lett.,2009,9,3435.
    36 S. F. Zheng, J. S. Hu, L. S. Zhong, W. G. Song, L. J. Wan and Y. G. Guo, Chem. Mater.,2008, 20,3617.
    37 L. B. Chen, N. Lu, C. M. Xu, H. C. Yu and T. H. Wang, Electrochim. Acta,2009,54,4198.
    1 L. Ji, Z. Lin, M. Alcoutlabi and X. Zhang, Energy Environ. Sci.,2011,4,2682.
    2 F. Cheng, J. Liang, Z. Tao and J. Chen, Adv. Mater.,2011,23,1695.3 V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach,Energy Environ. Sci.,2011,4,3243.
    4 Y.Wang, H. Li, P. He, E. Hosono and H. Zhou, Nanoscale,2010,2,1294.
    5 Z. Chen, M. Zhou, Y. Cao, X. Ai, H. Yang and J. Liu, Adv. Energy Mater.,2012,2,95.
    6 H. Jia, P. Gao, J. Yang, J. Wang, Y. Nuli and Z. Yang, Adv. Energy Mater.,2011,1,1036.
    7 M. G. Kim and J. Cho, Adv. Funct. Mater.,2009,19,1497.
    8 Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. Liu, L. B. Hu, W. D. Nix and Y. Cui, ACS Nano, 2011,11,2949.
    9 L. Zhao, Y. S. Hu, H. Li, Z. Wang and L. Chen, Adv. Mater.,2011,23,1385.
    10 P. L. Taberna, S. Mitra, P. Poizot, P. Simon and J. M. Tarascon, Nat. Mater.,2006,5,567.
    11 L. Q. Lu and Y. Wang, J. Mater. Chem.,2011,21,17916.
    12 X. Zhang, W. Shi, J. Zhu, D. J. Kharistal, W. Zhao, B. S. Lalia, H. H. Hng and Q. Yan, ACS Nano,2011,5,2013.
    13 J. Y. Xiang, J. P. Tu, Y. Q. Qiao, X. L. Wang, J. Zhong, D. Zhang and C. D. Gu, J. Phys. Chem. C,2011,115,2505.
    14 Z. Wang, F. Su, S. Madhavi and X. W. Lou, Nanoscale,2011,3,1618.
    15 Q. Yu, H. Huang, R. Chen, P. Wang, H. Yang, M. Gao, X. Peng and Z. Ye, Nanoscale,2012,4, 2613.
    16 W. Zhang, M. Li, Q. Wang, G. Chen, M. Kong, Z. Yang and S. Mann, Adv. Funct. Mater., 2011,21,3516.
    17 J. Y. Xiang, J. P. Tu, J. Zhang, J. Zhong, D. Zhang and J. P. Cheng, Electrochem. Commun., 2010,12,1103.
    18 X. Chen, N. Q. Zhang and K. N. Sun, J. Mater. Chem.,2012,22,13637.
    19 X. L. Wang, W. Q. Han, H. Chen, J. Bai, T. A. Tyson, X. Q. Yu, X. J. Wang and X. Q. Yang, J. Am. Chem. Soc.,2011,133,20692.
    20 B. Wang, X. L. Wu, C. Y. Shu, Y. G. Guo and C. R. Wang, J. Mater. Chem.,2010,20,10661.
    21 X. P. Gao, J. L. Bao, G. L. Pan, H. Y. Zhu, P. X. Huang, F. Wu and D. Y. Song, J. Phys. Chem. B,2004,108,5547.
    22 J. H. Ju and K. S. Ryu, J. Electrochem. Soc.,2011,158, A814.
    23 Q. Pan, K. Huang, S. Ni, F. Yang, S. Lin and D. He, J. Alloys Compd.,2009,484,322.
    24 L. L. Wang, W. Cheng, H. X. Gong, C. H. Wang, D. K. Wang, K. B. Tang and Y. T. Qian, J. Mater. Chem.,2012,22,11297
    25 H. Liu, D. Su, R. Zhou, B. Sun, G. Wang and S. Z. Qiao, Adv. Energy Mater.,2012,2,970.
    26 Z. Wen, Q. Wang, Q. Zhang and J. Li, Adv. Funct. Mater.,2007,17,2772.
    27 Y. Li, B. Tan and Y. Wu, Nano Lett.,2007,8,265.
    28 C. Zhu, C. Chen, L. Hao, Y. Hu and Z. Chen, Solid State Commun.,2004,130,681.
    29 G. H. Du and G. Van Tendeloo, Chem. Phys. Lett.,2004,393,64.
    30 W. X. Zhang, M. Li, Q. Wang, G. D. Chen, M. Kong, Z. H. Yang and S. Mann, Adv. Funct. Mater.,2011,21,3516.
    31 D. P. Singh, A. K. Ojha and O. N. Srivastava, J. Phys. Chem. C,2009,113,3409.
    32 Y. H. Ni, H. Li, L. N. Jin and J. M. Hong, Cryst. Growth Des.,2009,9,3868.
    33 E. Garcia-Tamayo, M. Valvo, U. Lafont, C. Locati, D. Munao and E. M. Kelder, J. Power Sources,2011,196,6425.
    34 J. Y. Xiang, J. P. Tu, L. Zhang, Y. Zhou, X. L. Wang and S. J. Shi, J. Power Sources,2010, 195,313.
    35 J. C. Park, J. Kim, H. Kwon and H. Song, Adv. Mater.,2009,21,803.
    36 X. H. Huang, C. B. Wang, S. Y. Zhang and F. Zhou, Electrochim. Acta,2011,56,6752.
    37 S. F. Zheng, J. S. Hu, L. S. Zhong, W. G. Song, L. J. Wan and Y. G. Guo, Chem. Mater.,2008, 20,3617.
    38 H. Wang, Q. Pan, J. Zhao and W. Chen, J. Alloys Compd.,2009,476,408.
    39 J. Y. Xiang, J. P. Tu, L. Zhang, Y. Zhou, X. L. Wang and S. J. Shi, Electrochim. Acta,2010, 55,1820.
    40 S. Gao, S. Yang, J. Shu, S. Zhang, Z. Li and K. Jiang, J. Phys. Chem. C,2008,112,19324.
    41 Y. Shi, B. Guo, S. A. Corr, Q. Shi, Y.-S. Hu, K. R. Heier, L. Chen, R. Seshadri and G. D. Stucky, Nano Lett.,2009,9,4215.
    42 Y. Ren, A. R. Armstrong, F. Jiao and P. G. Bruce, J. Am. Chem. Soc,2010,132,996.
    43 J. Zhou, Y. Ji, J. He, C. Zhang and G. Zhao, Microporous Mesoporous Mater.,2008,114,424.
    44 H. Liu, G. X. Wang, J. Liu, S. Z. Qiao and H. J. Ahn, J. Mater. Chem.,2011,21,3046.
    45 J. S. Chen, T. Zhu, X. H. Yang, H. G. Yang and X. W. Lou, J. Am. Chem. Soc,2010,132, 13162.
    46 J. Hwang, J. Kim, E. Ramasamy, W. Choi and J. Lee, Microporous Mesoporous Mater.,2011, 143,149
    1 M. Ge, J. Rong, X. Fang and C. Zhou, Nano Lett.,2012,12,2318.
    2 N. S. Choi, Y. Yao, Y. Cui and J. Cho, J. Mater. Chem.,2011,21,9825.
    3 H. Li, Z. X. Wang, L. Q. Chen and X. J. Huang, Adv. Mater.,2009,21,4593.
    4 H. Wang, Y. Wu, Y. Bai, W. Zhou, Y. An, J. Li and L. Guo, J. Mater. Chem.,2011,21,10189.
    5 C. K. Chan, H. L. Peng, G. Liu, K. Mcilwrath, X. F. Zhang, R. A. Huggins and Y. Cui, Nat. Nanotechnol.,2008,3,31.
    6 X. J. Zhu, Z. P. Guo, P. Zhang, G. D. Du, R. Zeng and Z. X. Chen, J Mater Chem.,2009,19, 8360.
    7 T. Xiao, Y. W. Tang, Z. Y. Jia and S. L. Feng, Electrochim. Acta,2009,54,2396.
    8 Y. Sharma, N. Sharma, G. V. Subba Rao and B. V. R. Chowdari, Adv. Funct. Mater.,2007,17, 2855.
    9 P. A Conner and JTS. J. Power Sources,2001,97,223.
    10 X. J. Zhu, L. M. Geng, F. Q.Zhang, Y. X.Liu and L. B Cheng, J. Power Sources,2009,189, 828.
    11 Y. Sharma, N. Sharma, G. V. Subba Rao and B. V. R. Chowdari, Chem. Mater.,2008,20, 6829.
    12 Y. Cao, Z. Cheng, J. Xu, Y. Zhang and Q. Pan, Crystengcomm.,2009,11,2615.
    13 Y. L. Liu, Y. Xing, H. F. Yang, Z. M. Liu, Y. Yang and G. L Shen, Analytica. Chimica. Acta., 2004,527,21.
    14 Y. Sharma, N. Sharma, GVS. Rao and BVR. Chowdari, J. Power Sources,2009,192,627.
    15 F. Belliard and JTS. Irvine, J. Power Sources,2001,97,219.
    16 G. Derrien, J. Hassoun, S.Panero and B. Scrosati, Adv. Mater.,2007,19,2336.
    17 F. Cheng, Z. Tao, J. Liang and J. Chen, Chem. Mater.,2008,20,667.
    18 Z. Wen, Q. Wang, Q. Zhang and J. Li, Adv. Funct. Mater.,2007,17,2772.
    19 L. L. Wang, H. X. Gong, C. H. Wang, D. K. Wang, K. B. Tang and Y. T. Qian, Nanoscale, 2012,4,6850.
    20 F. Cheng, H. Wang, Z. Zhu, Y. Wang, T. Zhang, Z. Tao and J. Chen, Energy Environ. Sci., 2011,4,3668.
    21 Y. Liu, B. Chen, F. Cao, H. L. W. Chan, X. Zhao and J. Yuan, J. Mater. Chem.,2011,21, 17083.
    22 H. E. Wang, Z. G. Lu, L. J. Xi, R. G. Ma, C. D. Wang and J. A. Zapien, Acs Appl. Mater. Inter.,2012,4,1608.
    23 H. Liu, D. W. Su, R. F. Zhou, B. Sun, G. X. Wang and S. Z. Qiao, Adv. Energy Mater.,2012,2, 970.
    24 L. L. Wang, K. B. Tang, Z. P. Liu, D. K. Wang, J. Sheng and W. Cheng, J Mater Chem.2011, 21,4352.
    25 J. Wang, P. King and R. A. Huggins, Solid State Ionics,1986,20,185.
    26 N. Sharma, K. M. Shaju, G. V. Subba Rao and B.V.R. Chowdari, J. Power Sources 2005,139, 250
    27 J. Wang, X.-m. Liu and H. Yang, T. Nonferr.s Metal. Soci.,2012,22,613.
    28 H. Kim and J. Cho, J. Mater. Chem.,2008,18,771.
    1 X. W. Lou, L. A. Archer, and Z.Yang, Adv. Mater.,2008,20,3987.
    2 H. Zhang, Q. Zhu, Y. Zhang, Y.Wang, L. Zhao and B. Yu, Adv. Funct. Mater.,2007,17,2766.
    3 Z. Yang, D. Han, D. Ma, H. Liang, L. Liu and Y. Yang, Cryst. Growth Des.,2009,10,291.
    4 W. Cheng, K. B. Tang, Z. P. Liu and J. Sheng, Chem. Commun.,2009,46,7185.
    5 Y. R. Ma and L. M. Qi, J. Colloid Interf. Sci.,2009,335,1.
    6 H. Yu, J. Yu, S. Liu and S. Mann, Chem. Mater.,2007,19,4327.
    7 C. Ge, D. Z. Zhang, A. L. Wang, H. B. Yin, M. Ren, Y. M. Liu, T. S. Jiang and L. B. Yu, J. Phys. Chem. Solids,2009,70,1432.
    8 C. J. Martinez, B. Hockey, C. B. Montgomery and S. Semancik, Langmuir,2005,21,7937.
    9 K. Nam, J. Shim, H. Ki, S.-I. Choi, G. Lee, J. Jang, Y. Jo, M.-H. Jung, H. Song and J. Park, Angew. Chem. Int. Ed.,2008,47,9504.
    10 C. Zimmermann, C. Feldmann, M. Wanner and D. Gerthsen, Small,2007,3,1347.
    11 S. S. Kim, W. Zhang and T. Pinnavaia, J. Science,1998,282,1302.
    12 Y. S. Han, G. Hadiko, M. Fuji and M. Takahashi, Chem. Lett.,2005,34,152.
    13 Q. Zhang, W. S Wang, J. Goebl and Y. D. Yin, Nano Today,2009,4,494.
    14 C. H. Lu, L. M. Qi, J. H. Yang, X. Y. Wang, D. Y. Zhang, J. L. Xie and J. M. Ma, Adv. Mater., 2005,17,2562.
    15 Z. Y. Jiang, Z. X. Xie, X. H. Zhang, S. C. Lin, T. Xu, S. Y. Xie, R. B. Huang and L. S. Zheng, Adv. Mater.,2004,16,904.
    16 J. W. Kramer, S. A. Isaacs and V. Manivannan, J. Mater. Sci.,2009,44,3387
    17 K. Ewa, Polym. Degrad. Stabil.,1999,64,439.
    18 L. Yang, Y. Hu, F. You and Z. Y. Zhang, Polym. Eng. Sci.,2007,47,1163.
    19 X. Fu, X. Wang, Z. Ding, D. Y. C. Leung, Z. Zhang, J. Long, W. Zhang, Z. Li and X. Fu, Appl. Catal. B:Environ.,2009,91,67.
    20 Y. H. Jiao and X. J. Zhong, J. Appl. Polym. Sci.,2009,112,36.
    21 B. Zhang, Y. H. Jiang and X. J. Zhong, J. Appl. Polym. Sci.,2009,112,82.
    22 P. A. Cusack, M. S. Heer and A. W. Monk, Polym. Degrad. Stabil.,1991,32,177.
    23 Y. Cao, D. Jia, J. Zhou and Y. Sun, Eur. J. of Inorg. Chem.,2009,27,4105.
    24 A. Rong, X. P. Gao, G. R. Li, T. Y. Yan, H. Y. Zhu, J. Q. Qu and D. Y. Song, J. Phys. Chem. B,2006,110,14754.
    25 J. W. Kramer, B. Kelly and V. Manivannan, Cent. Eur. J. Chem.,2010,8,65.
    26 G. Wrobel, M. Piech, S. Dardona, Y. Ding and P.-X. Gao, Cryst. Growth Des.,2009,9,4456.
    27 H. Jena, K. V. G. Kutty and T. R. N. Kutty, Mater. Chem. Phys.,2004,88,167-179
    28 Y. Zhang, M. Guo, M. Zhang, C. Yang, T. Ma and X. Wang, J. Cryst. Growth,2007,308, 99.
    29 Y. Wang and T. Chen, Electrochim. Acta,2009,54,3510.
    30 P. Dhage, A. Samokhvalov, D. Repala, E. C. Duin, M. Bowman and B. J. Tatarchuk, Ind. Eng. Chem. Res.,2010,49,8388.
    31 H. Fan, S. Y. Ai and P. Ju, Crystengcomm,2010, DOI:10.1039/c0ce00050g.
    32 Z. Wang, D. Luan, C. M. Li, F. Su, S. Madhavi, F. Y. C. Boey and X. W. Lou, J. Am.Chem. Soc.,2010, DOI:10.1021/ja107871r.
    33 Y. D. Yin, C. Erdonmez, S. Aloni and A. P. Alivisatos, J. Am. Chem. Soc.,2006,128,12671.
    34 X. Hu, Y. Tang, T. Xiao, J. Jiang, Z. Jia, D. Li, B. Li and L. Luo, J. Phys.Chem. C.,2010, 114,947.
    35 W. S. Wang, L. Zhen, C. Y. Xu, B. Y. Zhang and W. Z. Shao, J. Phys. Chem. B,2006,110, 23154.
    36 Y. X. Qi, Q. C. Liu, K. B. Tang, Z. H. Liang, Z. B. Ren and X. M. Liu, J. Phys. Chem. C,2009, 113,3939.
    37 L. P. Zhu, H. M. Xiao, W. D. Zhang, G. Yang and S. Y. Fu, Cryst. Growth Des.,2008,8,957.
    38 M. Shang, W. Z. Wang, S. M. Sun, L. Zhou and L. Zhang, J. Phys. Chem. C,2008,112, 10407.
    39 S. M. Sun, W. Z. Wang, L. Zhang and M. Shang, J. Phys. Chem. C,2009,113,12826.
    40 Y. M. Sui, W. Y. Fu, Y. Zeng, H. B. Yang, Y. Y. Zhang, H. Chen, Y. X. Li, M. H. Li and G. T. Zou, Angew. Chem.-Int. Edit.,2010,49,4282.
    41 Z. Y. Liu, D. D. Sun, P. Guo and J. O. Leckie, Chem. Eur. J.,2007,13,1851.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700