用户名: 密码: 验证码:
HIF-1α在缺氧诱导的体外脉络膜新生血管生成中的调控作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景年龄相关性黄斑变性(age-related macular degeneration, AMD)是50岁以上人群引起视力损失的首要原因。渗出型AMD是以脉络膜新生血管形成(choroidal neovascularization, CNV)为特点,由脉络膜新生的血管在视网膜色素上皮层(retinal pigment epithelium, RPE)和神经视网膜下生长的一种严重影响视力的疾病。由于出血或者瘢痕形成,CNV会引起急性或亚急性的视力丧失。尽管在形态学上已经对AMD继发的CNV进行了广泛地研究,但其具体病理机制仍然不甚明朗。
     研究表明,黄斑部玻璃膜疣的堆积以及变性的色素上皮改变,会导致AMD黄斑部有限的血液供给和光感受器细胞之间高氧需求之间平衡的破坏,导致RPE层相对的缺氧,上调表达一些生长因子,如血管内皮细胞生长因子(vascular endothelial growth factor, VEGF)等,从而促进了CNV的形成。因此认为,缺氧在CNV的发生发展中具有重要的作用,而VEGF则是一个主要病理因子。已有证据提示AMD患者其RPE细胞VEGF水平升高。而缺氧条件下培养的RPE细胞,其VEGF的mRNA和蛋白表达都显著升高。近来,Ephrin/Eph受体家族——和VEGF/VEGFR同为受体酪氨酸激酶(receptor tyrosine kinase, RTK)家族,近来在血管发生中的作用也逐渐受到人们的重视。研究发现,EphrinB2/EphB4也参与了CNV的发生和发展。
     目前对于AMD的药物治疗,大多数是基于VEGF或者VEGF受体,如玻璃体内注射pegaptanib(Macugen)、ranibizumab (Lucentis),bevacizumab (avastin)以及全身应用的VEGF-trap。但这些抗VEGF的治疗方法都存在一个潜在的弊端,即它们的目标仅仅是多个重要血管发生因子中的一个。而其他的治疗,例如经瞳孔温热疗法(transpupillary thermotherapy, TTT)、光动力疗法(photodynamic therapy, PDT)或者玻璃体内注射曲安耐德(triamcinolone acetonide, TA),虽然可以通过部分地下调多种血管发生因子的表达而发挥抑制CNV的作用,但又存在较显著的副作用。
     近来,缺氧诱导因子1(hypoxia-inducible factor 1, HIF-1)逐渐被大家关注,被认为是治疗CNV的一个新靶点。HIF-1是一个异源二聚体,由组成表达的HIF-1β亚体以及氧调节的HIF-1α亚体构成。在缺氧条件下,稳定表达的HIF-1α能够诱导和血管发生、红细胞生成、糖代谢有关的多种基因表达,如VEGF、促红细胞生成素(erythropoietin,EPO)以及糖酵解酶。同时也有研究证明,在小鼠表皮皮瓣的缺氧模型上,缺氧不但可以上调HIF-1α和VEGF表达,而且也能够上调表皮上A和B类的Eph受体和Ephrin配体。在Hep3B细胞和PC-3细胞,通过针对HIF-1α的siRNA可以抑制缺氧诱导的Eph受体和Ephrin配体表达,证明HIF-1α也是缺氧条件下Ephrin/Eph受体表达的关键性因子。
     因此我们设想,基因缄默RPE细胞的HIF-1α表达有可能抑制血管发生。本研究中,我们利用RNA干扰(RNAi)技术,在RPE细胞上基因缄默HIF-1α,并和牛脉络膜微血管内皮细胞(choroidal microvascular endothelial cells, CEC)细胞共培养,观察其对CEC增生以及管腔形成的影响,探讨HIF-1α对血管发生的抑制作用。
     目的
     1.利用免疫磁珠法原代分离培养牛CEC,并进行鉴定;
     2.观察CEC上VEGFR2和EphrinB2/EphB4的表达以及缺氧对RPE细胞VEGF/VEGFR2以及EphrinB2/EphB4表达的影响;
     3.构建和筛选针对HIF-1α基因的shRNA载体,转染RPE细胞后检测缺氧条件下VEGF和EphrinB2/EphB4的表达;
     4.建立RPE/CEC共培养模型,并观察缺氧条件下RPE细胞对CEC增生、移行以及管腔形成的影响。
     方法
     1.显微分离牛脉络膜微血管,采用1 g·L-1胶原酶一步法消化,并采用免疫磁珠分选脉络膜微血管内皮细胞,使用内皮细胞培养基进行原代培养。利用光学和电子显微镜进行形态学观察,利用Von Willebrand因子免疫荧光染色及Dil-Ac-LDL吞噬实验进行细胞学鉴定,利用管腔形成实验观察内皮细胞形成管腔能力。
     2.在细胞培养液中加入200μM CoCl2建立人RPE细胞缺氧模型,培养0、1、
     3、6、12和24 h,利用免疫荧光染色观察RPE细胞及CEC上VEGFR2及EphrinB2/EphB4的表达,实时定量PCR以及Western blot观察缺氧条件下RPE细胞VEGF/VEGFR2以及EphrinB2/EphB4的表达,利用Western blot观察CEC上VEGFR2及EphrinB2/EphB4的表达,ELISA法观察RPE细胞上清中VEGF的含量;
     3.构建3条针对人HIF-1α基因的shRNA,利用实时定量PCR筛选抑制效率最高的shRNA。基因敲除RPE细胞HIF-1α后,利用实时定量PCR和Western blot观察缺氧条件下其对RPE细胞HIF-1α和VEGF以及EphrinB2/EphB4表达的影响,ELISA观察上清中VEGF的表达;
     4.利用Transwell共培养小室建立RPE细胞和CEC的增生、移行以及管腔形成模型,观察基因敲除HIF-1α后RPE细胞对CEC增生、移行以及管腔形成的影响。
     结果
     1.采用本研究改良的方法可以获得纯度高达95%的脉络膜微血管内皮细胞,外观呈细长、纺锤样,融合后呈典型铺路石样外观。电子显微镜观察可见胞浆内靠近核膜外的Weibel-Palade小体(棒状小体),免疫荧光显示Von Willebrand因子表达阳性,Dil-Ac-LDL吞噬试验阳性;在凝胶中可以形成明显管腔结构;
     2. (1)RPE细胞上除了存在VEGFR2表达,发现RPE细胞上存在EphB4和EphrinB2的表达(;2)化学缺氧能够以时间依赖性诱导HIF-1α在mRNA及蛋白水平的表达,在mRNA水平,HIF-1α在0 h时也有表达,3 h表达最高,随后逐渐降低,12 h时恢复到基础水平;其蛋白0 h时是没有表达的,3 h时表达到达峰值;其相应的转录产物VEGF同样也显示出呈时间依赖性表达;其mRNA水平也是在3 h时表达到达最大值,而蛋白水平则在12 h表达最高;缺氧对VEGFR2的表达也有诱导作用,其mRNA表达在3 h时达到峰值,而蛋白表达在6 h时表达最高,随后逐渐降低;(3)化学缺氧可以刺激RPE细胞表达能够上调EphB4受体转录和翻译水平的表达,在转录水平,缺氧3h时,EphB4表达增加了1.3倍;其蛋白表达也相应在6h时表达达到峰值,而随后降低。在缺氧条件下,相应EphrinB2受体在转录以及翻译水平下调表达;(2)CEC上存在VEGFR2、EphrinB2配体和EphB4受体的表达;
     3. (1)shRNA1、2、3的抑制效率分别为77%,62%和54%,选择shRNA1(pshHIF-1α)对RPE细胞进行基因干扰实验;(2)和pDNA转染对照组相比,3 h时相应HIF-1α及VEGF mRNA及蛋白水平表达均下降,其中HIF-1αmRNA和转染对照组相比下降了72.6%,而VEGF mRNA下降了75.6%;(3)pshHIF-1α转染组细胞上清中VEGF表达量最低,和pDNA对照转染组相比降低了58%(P<0.01);(4)3 h时,RPE细胞上EphB4受体的表达在经过RNAi处理后,和转染对照组相比其mRNA表达降低了73.2%,而对EphrinB2配体的mRNA表达影响不大。相应在蛋白水平上,可见RNAi处理后,在缺氧3h时EphB4受体的表达上调受到了抑制,表达降低;
     4.在共培养系统内,RPE细胞HIF-1α被基因敲除后, CEC的增生、移行以及管腔形成显著受到了抑制,和对照组转染组相比,第3、4及5天CEC的增生率分别下降了40.2%, 36.6%和36.8%;在5 h时移行下降了49.6%,48 h时管腔形成降低了40.4%。
     结论
     1.成功分离并纯化了牛CEC,可在短期内快速简便地获得足够数量的内皮细胞;
     2. RPE细胞存在VEGF/VEGFR2及EphrinB2/EphrB4系统的表达,缺氧条件下和HIF-1α的表达相关,提示EphirnB2/EphB4在CNV的发生中具有一定的作用;同时验证了CEC上VEGFR2的表达,是RPE细胞分泌VEGF的作用点;
     3.筛选出效率最高的pshHIF-1α,证实其可有效地抑制HIF-1α表达,从而降低VEGF表达,并提示EphB4的表达和HIF-1α相关;
     4.在体外对RPE细胞HIF-1α进行基因干扰可抑制血管发生,为治疗CNV性疾病提供了可能的治疗方向,其结果国内外未见报道。
Background
     Age-related macular degeneration (AMD) is the leading cause of visual loss in persons more than 50 years of age. The exudative form of the disease is, characterized by choroidal neovascularization (CNV), in which newly formed vessels from the underlying choroid grow beneath the retinal pigment epithelium (RPE) and the neuroretina. CNV may cause acute or subacute blindness because of bleeding or scar formation. Although the morphology of angiogenesis in CNV secondary to AMD has been described in detail, the pathogenesis is still poorly understood.
     The deposition of drusen, the basal liner deposit, and the degenerative pigmentary changes have all been shown to be closely associated with the increased risk of CNV. The relative hypoxia caused by the disturbed balance between the limited blood supply in the macula and the high oxygen demand by the photoreceptors may also contribute to the formation of CNV by up-regulating the expression of growth factors, such as VEGF. Therefore, hypoxia was considered to play an important role and VEGF is a major pathogenic factor in the development of CNV. Several lines of evidence implicate increased levels of VEGF in retinal pigment epithelium (RPE) from patients with AMD. In cultured RPE cells, the VEGF expression was significantly up-regulated at both the mRNA and protein levels after exposure to hypoxia. As one of RTKs families, Ephrin/Eph receptor family was paid more attentions in angiogenesis by researchers. It was said that this family took part in the development of CNV, too.
     At present, several novel therapies for CNV have emerged based on antagonism of VEGF or the VEGF receptor, such as intravitreal administration of pegaptanib (Macugen) or ranibizumab (Lucentis), bevacizumab (avastin) and a systemically delivered, modified VEGF receptor (VEGF-Trap). However, a potential drawback of these therapies is that only one of multiple potentially important angiogenic factors is targeted. Other therapies, such as thermal laser, photodynamic therapy (PDT) or intravitreal triamcinolone, are believed to exert their effects partly through the down-regulation of multiple angiogenic factors. These therapeutic methods, however, all have significant side effects.
     Recently, hypoxia-inducible factor 1 (HIF-1), which is a transcription factor that regulates genes such as VEGF and erythropoietin (EPO) involved in the response to hypoxia, has been proposed as a novel therapeutic target. HIF-1 is a heterodimer composed of HIF-1αand HIF-1βsubunits. HIF-1βis constitutively expressed, while HIF-1αis induced by hypoxia. HIF-1 transactivates a repertoire of genes, including VEGF, which mediate angiogenesis, cell proliferation/survival, and glucose/iron metabolism to hypoxia. At the same time, a study indicated that hypoxia up-regulates not only HIF-1αand VEGF expression, but also Ephs and ephrins of both A and B subclasses in the mouse skin. In addition, in Hep3B and PC-3 cells, the hypoxia-induced up-regulation of Ephs and ephrins was abrogated by siRNA-mediated down-regulation of HIF-1α. These novel findings show that HIF-1αis also a key factor for expression of Ephrin/Eph.
     Therefore, we hypothesized that silencing the HIF-1αin RPE cells could inhibited angiogenesis. In the present study, we used coculture systems to investigate the effect of RPE cells knocked down HIF-1αon the proliferation, migration and tube formation of CECs.
     Purpose
     1. To establish a rapid and convenient method for purification and primary culture of bovine CEC in vitro and provide an in vitro model for CNV diseases.
     2. To observe expressions of VEGFR2, EphrinB2/EphB4 in CECs and observe VEGF/VEGFR2, EphrinB2/EphB4 expressions in RPE cells under hypoxia.
     3. To construct and select the most efficient short hairpin RNA (shRNA)-expressing plasmid DNA (pDNA) (pshHIF-1α) shRNA vector and observe the expressions of corresponding ligands and receptors after RPE cells were transfected by pshHIF-1α.
     4. To observe the effects of RPE cells transfected by pshHIF-1αon the proliferation, migration and tube formation of CECs, respectively.
     Methods
     1. Bovine choroidal microvascular vessels were isolated from choroidal tissues by microdissection and digested with 1 g?L-1 collagenase. CECs were purified selectively by immunomagnetic beads and were cultured with endothelial culture medium. The characteristics of CECs were observed by light and electron microscopy and were identified by immunofluorescence of Von Willebrand factor and Dil-Ac-LDL phagocytosis. CECs grew as tubes in a collagen gel.
     2. RPE cells were cultured under chemical hypoxia. Immunofluorescence was used to test the EphrinB2/EphB4 expression on RPE cells. Real-time RT-PCR and Western blot were used to observe the effect of hypoxia on expression of EphrinB2/EphB4 on RPE cells. ELISA measured the secreted VEGF in supernatant of RPE cells.
     3. Three RNAi vectors targeting HIF-1αwere constructed and Real-time PCR selected the most efficient shRNA. Real-time RT-PCR and Western blot were used to observe the effect of hypoxia on expression of HIF-1α, VEGF and EphrinB2/EphB4 in RPE cells transfected by pshHIF-1α. ELISA was used to measure the secreted VEGF in supernatant of the RPE cells.
     4. Three kinds of coculture models were used to observe the effects of RPE cells transfected by pshHIF-1αon the proliferation, migration and tube formation of CECs, respectively.
     Results
     1. 95% of the cultured cells were CECs affirmed by immunofluorescence of Von Willebrand factor and Dil-Ac-LDL phagocytosis. The cultured CECs were slender and spindle-shaped. After confluence, the cells had cobblestone appearance. Weibel-Palade body was found near nuclear membrane by electron microscopy. The staining of Von Willebrand factor was positive and the cells can phagocytose the Dil-Ac-LDL.
     2. Human RPE cells could express EphrinB2/EphB4 and chemical hypoxia could up-regulate EphB4 receptor expression at mRNA and protein levels. At mRNA level, EphB4 receptor expression increased 2.3 fold and its protein expression reach peak value at 6 h. Correspondingly, the EphrinB2 ligand expression was down-regulated under hypoxia. Bovine CECs could express EphrinB2/EphB4.
     3. RPE cells were cultured under hypoxia and RNAi technique was used to knock down the HIF-1αgene by pshHIF-1αin RPE cells. mRNA and protein expression of HIF-1αand VEGF in RPE cells were investigated by real-time RT-PCR and Western blot. ELISA measured the secreted VEGF in supernatant of the three experiment groups.
     4. Proliferation, migration and tube formation of CECs were significantly inhibited by the knocked down RPE cells compared with the control in the coculture system. Proliferation rates of CECs decreased by 40.2%, 36.6% and 36.8% on day 3, 4 and 5, respectively. Migration reduced by 49.6% at 5 h and tube formation decreased by 40.4% at 48 h.
     Conclusions
     1. Bovine CECs can be successfully isolated and purified with this modified method by which enough CEC can be got easily for CNV study;
     2. Human RPE cells could express EphrinB2/EphB4, which were related with HIF-1αexpression. It suggested the role of EphrinB2/EphB4 in CNV.
     3. The most efficient pshHIF-1αwas selected and was used for transfection, which could inhibit expression of HIF-1αand VEGF. Expression of EphB4 receptor was related with HIF-1α.
     4. RNAi of HIF-1αin RPE cells can inhibit angiogenesis in vitro and provide a possible strategy for treatment of choroidal neovascularization diseases by targeting HIF-1α. Similar research has not been reported yet at home and abroad.
引文
[1] Risau W. Mechanisms of angiogenesis. Nature, 1997,386(6626):671-674.
    [2] Hanahan D. Signaling vascular morphogenesis and maintenance. Science, 1997,277(5322):48-50.
    [3] Vihanto MM, Plock J, Erni D, Frey BM, Frey FJ, Huynh-Do U. Hypoxia up-regulates expression of Eph receptors and ephrins in mouse skin. Faseb J, 2005,19(12):1689-1691.
    [4] Heroult M, Schaffner F, Augustin HG. Eph receptor and ephrin ligand-mediated interactions during angiogenesis and tumor progression. Exp Cell Res, 2006,312(5):642-650.
    [5] 党涛, 卞修武, 赵雯, 戴超, 蒋雪峰. VEGF 诱导人脐静脉内皮细胞体外三维成型和对 EphrinB2/EphB4 表达的影响. 第三军医大学学报, 2006,28(10):1077-1079.
    [6] Pfaff D, Fiedler U, Augustin HG. Emerging roles of the Angiopoietin-Tie and the ephrin-Eph systems as regulators of cell trafficking. J Leukoc Biol, 2006.
    [7] Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A, 1995,92(12):5510-5514.
    [8] Semenza G. Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol, 2002,64(5-6):993-998.
    [9] Semenza GL. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med, 2001,7(8):345-350.
    [10] Lutty G, Grunwald J, Majji AB, Uyama M, Yoneya S. Changes in choriocapillaris and retinal pigment epithelium in age-related macular degeneration. Mol Vis, 1999,5:35.
    [11] 杨秀梅, 王雨生, 惠延年. 内源性脉络膜新生血管抑制因子的研究进展. 国际眼科杂志, 2004(2):307-311.
    [12] 朱洁 , 王雨生 , 惠延年 . 脉络膜新生血管的生成和抑制 . 眼科新进展 , 2004(1):57-60.
    [13] 侯慧媛, 王雨生. 血管内皮生长因子诱发脉络膜新生血管的分子机制. 中华眼底病杂志, 2005(6):409-412.
    [14] Korff T, Dandekar G, Pfaff D, Fuller T, Goettsch W, Morawietz H, Schaffner F, Augustin HG. Endothelial ephrinB2 is controlled by microenvironmental determinants and associates context-dependently with CD31. Arterioscler Thromb Vasc Biol, 2006,26(3):468-474.
    [15] Geisen P, McColm JR, Hartnett ME. Choroidal endothelial cells transmigrate across the retinal pigment epithelium but do not proliferate in response to soluble vascular endothelial growth factor. Exp Eye Res, 2006,82(4):608-619.
    [16] Suenobu S, Takakura N, Inada T, Yamada Y, Yuasa H, Zhang XQ, Sakano S, Oike Y,Suda T. A role of EphB4 receptor and its ligand, ephrin-B2, in erythropoiesis. Biochem Biophys Res Commun, 2002,293(3):1124-1131.
    [17] Brantley-Sieders D, Schmidt S, Parker M, Chen J. Eph receptor tyrosine kinases in tumor and tumor microenvironment. Curr Pharm Des, 2004,10(27):3431-3442.
    [18] Gale NW, Yancopoulos GD. Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes Dev, 1999,13(9):1055-1066.
    [19] Wang HU, Chen ZF, Anderson DJ. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell, 1998,93(5):741-753.
    [20] He S, Ding Y, Zhou J, Krasnoperov V, Zozulya S, Kumar SR, Ryan SJ, Gill PS, Hinton DR. Soluble EphB4 regulates choroidal endothelial cell function and inhibits laser-induced choroidal neovascularization. Invest Ophthalmol Vis Sci, 2005,46(12):4772-4779.
    [21] Hoffmann S, Spee C, Murata T, Cui JZ, Ryan SJ, Hinton DR. Rapid isolation of choriocapillary endothelial cells by Lycopersicon esculentum-coated Dynabeads. Graefes Arch Clin Exp Ophthalmol, 1998,236(10):779-784.
    [22] Sakamoto T, Sakamoto H, Hinton DR, Spee C, Ishibashi T, Ryan SJ. In vitro studies of human choroidal endothelial cells. Curr Eye Res, 1995,14(8):621-627.
    [23] Sakamoto T, Ishibashi T, Kimura H, Yoshikawa H, Spee C, Harris MS, Hinton DR, Ryan SJ. Effect of tecogalan sodium on angiogenesis in vitro by choroidal endothelial cells. Invest Ophthalmol Vis Sci, 1995,36(6):1076-1083.
    [24] Sakamoto T, Sakamoto H, Murphy TL, Spee C, Soriano D, Ishibashi T, Hinton DR, Ryan SJ. Vessel formation by choroidal endothelial cells in vitro is modulated by retinal pigment epithelial cells. Arch Ophthalmol, 1995,113(4):512-520.
    [25] Morse LS, Terrell J, Sidikaro Y. Bovine retinal pigment epithelium promotes proliferation of choroidal endothelium in vitro. Arch Ophthalmol, 1989,107(11):1659-1663.
    [26] Morse LS, Sidikaro Y. Isolation and characterization of bovine choroidal microvessel endothelium and pericytes in culture. Curr Eye Res, 1990,9(7):631-642.
    [27] Folkman J, Haudenschild CC, Zetter BR. Long-term culture of capillary endothelial cells. Proc Natl Acad Sci U S A, 1979,76(10):5217-5221.
    [28] Liu X, Li W. Isolation, culture and characterization of bovine choriocapillary endothelial cells. Exp Eye Res, 1993,57(1):37-44.
    [29] Kimura H, Harris MS, Sakamoto T, Gopalakrishna R, Gundimeda U, Cui JZ, Spee C, Hinton DR, Ryan SJ. Hypericin inhibits choroidal endothelial cell proliferation and cord formation in vitro. Curr Eye Res, 1997,16(10):967-972.
    [30] Shen WY, Constable IJ, Chelva E, Rakoczy PE. Inhibition of diclofenac formulated in hyaluronan on angiogenesis in vitro and its intraocular tolerance in the rabbit eye. Graefes Arch Clin Exp Ophthalmol, 2000,238(3):273-282.
    [31] Wang YS, Friedrichs U, Eichler W, Hoffmann S, Wiedemann P. Inhibitory effects of triamcinolone acetonide on bFGF-induced migration and tube formation in choroidal microvascular endothelial cells. Graefes Arch Clin Exp Ophthalmol, 2002,240(1):42-48.
    [32] Sakamoto T, Oshima Y, Ishibashi T, Inomata H. [Inhibitory effect of vitamin E succinate on the proliferation of cultured bovine choroidal endothelial cells]. Nippon Ganka Gakkai Zasshi, 1996,100(10):777-782.
    [33] Eter N, Spitznas M. DMSO mimics inhibitory effect of thalidomide on choriocapillary endothelial cell proliferation in culture. Br J Ophthalmol, 2002,86(11):1303-1305.
    [34] Murata T, He S, Hangai M, Ishibashi T, Xi XP, Kim S, Hsueh WA, Ryan SJ, Law RE, Hinton DR. Peroxisome proliferator-activated receptor-gamma ligands inhibit choroidal neovascularization. Invest Ophthalmol Vis Sci, 2000,41(8):2309-2317.
    [35] Hamdi HK, Castellon R. ACE inhibition actively promotes cell survival by altering gene expression. Biochem Biophys Res Commun, 2003,310(4):1227-1235.
    [36] Spitzer MS, Yoeruek E, Sierra A, Wallenfels-Thilo B, Schraermeyer U, Spitzer B, Bartz-Schmidt KU, Szurman P. Comparative antiproliferative and cytotoxic profile of bevacizumab (Avastin), pegaptanib (Macugen) and ranibizumab (Lucentis) on different ocular cells. Graefes Arch Clin Exp Ophthalmol, 2007,245(12):1837-1842.
    [37] Fan W, Zheng JJ, McLaughlin BJ. An in vitro model of the back of the eye for studying retinal pigment epithelial-choroidal endothelial interactions. In Vitro Cell Dev Biol Anim, 2002,38(4):228-234.
    [38] Hoffmann S, Friedrichs U, Eichler W, Rosenthal A, Wiedemann P. Advanced glycation end products induce choroidal endothelial cell proliferation, matrix metalloproteinase-2 and VEGF upregulation in vitro. Graefes Arch Clin Exp Ophthalmol, 2002,240(12):996-1002.
    [39] Anand-Apte B, Pepper MS, Voest E, Montesano R, Olsen B, Murphy G, Apte SS, Zetter B. Inhibition of angiogenesis by tissue inhibitor of metalloproteinase-3. Invest Ophthalmol Vis Sci, 1997,38(5):817-823.
    [40] Murata T, Cui J, Taba KE, Oh JY, Spee C, Hinton DR, Ryan SJ. The possibility of gene therapy for the treatment of choroidal neovascularization. Ophthalmology, 2000,107(7):1364-1373.
    [41] Steinle JJ, Granger HJ. Nerve growth factor regulates human choroidal, but not retinal, endothelial cell migration and proliferation. Auton Neurosci, 2003,108(1-2):57-62.
    [42] He S, Jin ML, Worpel V, Hinton DR. A role for connective tissue growth factor in the pathogenesis of choroidal neovascularization. Arch Ophthalmol, 2003,121(9):1283-1288.
    [43] Zubilewicz A, Hecquet C, Jeanny JC, Soubrane G, Courtois Y, Mascarelli F. Two distinct signalling pathways are involved in FGF2-stimulated proliferation ofchoriocapillary endothelial cells: a comparative study with VEGF. Oncogene, 2001,20(12):1403-1413.
    [44] Uhlmann S, Friedrichs U, Eichler W, Hoffmann S, Wiedemann P. Direct measurement of VEGF-induced nitric oxide production by choroidal endothelial cells. Microvasc Res, 2001,62(2):179-189.
    [45] McLaughlin AP, De Vries GW. Role of PLCgamma and Ca(2+) in VEGF- and FGF-induced choroidal endothelial cell proliferation. Am J Physiol Cell Physiol, 2001,281(5):C1448-1456.
    [46] Hirai H, Maru Y, Hagiwara K, Nishida J, Takaku F. A novel putative tyrosine kinase receptor encoded by the eph gene. Science, 1987,238(4834):1717-1720.
    [47] Zhang J, Hughes S. Role of the ephrin and Eph receptor tyrosine kinase families in angiogenesis and development of the cardiovascular system. J Pathol, 2006,208(4):453-461.
    [48] Smith T. Picture story. Ephrin receptors divided. Nat Struct Biol, 1999,6(1):17.
    [49] Dodelet VC, Pasquale EB. Eph receptors and ephrin ligands: embryogenesis to tumorigenesis. Oncogene, 2000,19(49):5614-5619.
    [50] Davis S, Gale NW, Aldrich TH, Maisonpierre PC, Lhotak V, Pawson T, Goldfarb M, Yancopoulos GD. Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science, 1994,266(5186):816-819.
    [51] Zamora DO, Davies MH, Planck SR, Rosenbaum JT, Powers MR. Soluble forms of EphrinB2 and EphB4 reduce retinal neovascularization in a model of proliferative retinopathy. Invest Ophthalmol Vis Sci, 2005,46(6):2175-2182.
    [52] Shen J, Xie B, Hatara CM, Hackett SF, Campochiaro PA. Vegf or EphA2 Antisense Polyamide-nucleic acids; Vascular Localization and Suppression of Retinal Neovascularization. Mol Ther, 2007.
    [53] Ojima T, Takagi H, Suzuma K, Oh H, Suzuma I, Ohashi H, Watanabe D, Suganami E, Murakami T, Kurimoto M, Honda Y, Yoshimura N. EphrinA1 inhibits vascular endothelial growth factor-induced intracellular signaling and suppresses retinal neovascularization and blood-retinal barrier breakdown. Am J Pathol, 2006,168(1):331-339.
    [54] Kojima T, Chung TY, Chang JH, Sayegh R, Casanova FH, Azar DT. Comparison of EphA receptor tyrosine kinases and ephrinA ligand expression to EphB-ephrinB in vascularized corneas. Cornea, 2007,26(5):569-578.
    [55] Steinle JJ, Meininger CJ, Chowdhury U, Wu G, Granger HJ. Role of ephrin B2 in human retinal endothelial cell proliferation and migration. Cell Signal, 2003,15(11):1011-1017.
    [56] Martiny-Baron G, Korff T, Schaffner F, Esser N, Eggstein S, Marme D, Augustin HG. Inhibition of tumor growth and angiogenesis by soluble EphB4. Neoplasia, 2004,6(3):248-257.
    [57] Zamora DO, Babra B, Pan Y, Planck SR, Rosenbaum JT. Human leukocytes expressephrinB2 which activates microvascular endothelial cells. Cell Immunol, 2006,242(2):99-109.
    [58] Umeda N, Ozaki H, Hayashi H, Oshima K. Expression of ephrinB2 and its receptors on fibroproliferative membranes in ocular angiogenic diseases. Am J Ophthalmol, 2004,138(2):270-279.
    [59] Kojima T, Chang JH, Azar DT. Proangiogenic role of ephrinB1/EphB1 in basic fibroblast growth factor-induced corneal angiogenesis. Am J Pathol, 2007,170(2):764-773.
    [60] Chen J, Hicks D, Brantley-Sieders D, Cheng N, McCollum GW, Qi-Werdich X, Penn J. Inhibition of retinal neovascularization by soluble EphA2 receptor. Exp Eye Res, 2006,82(4):664-673.
    [61] Holzman LB, Marks RM, Dixit VM. A novel immediate-early response gene of endothelium is induced by cytokines and encodes a secreted protein. Mol Cell Biol, 1990,10(11):5830-5838.
    [62] Shao H, Pandey A, O'Shea KS, Seldin M, Dixit VM. Characterization of B61, the ligand for the Eck receptor protein-tyrosine kinase. J Biol Chem, 1995,270(10):5636-5641.
    [63] McBride JL, Ruiz JC. Ephrin-A1 is expressed at sites of vascular development in the mouse. Mech Dev, 1998,77(2):201-204.
    [64] Miao H, Wei BR, Peehl DM, Li Q, Alexandrou T, Schelling JR, Rhim JS, Sedor JR, Burnett E, Wang B. Activation of EphA receptor tyrosine kinase inhibits the Ras/MAPK pathway. Nat Cell Biol, 2001,3(5):527-530.
    [65] Fuller T, Korff T, Kilian A, Dandekar G, Augustin HG. Forward EphB4 signaling in endothelial cells controls cellular repulsion and segregation from ephrinB2 positive cells. J Cell Sci, 2003,116(Pt 12):2461-2470.
    [66] Hamada K, Oike Y, Ito Y, Maekawa H, Miyata K, Shimomura T, Suda T. Distinct roles of ephrin-B2 forward and EphB4 reverse signaling in endothelial cells. Arterioscler Thromb Vasc Biol, 2003,23(2):190-197.
    [67] Maekawa H, Oike Y, Kanda S, Ito Y, Yamada Y, Kurihara H, Nagai R, Suda T. Ephrin-B2 induces migration of endothelial cells through the phosphatidylinositol-3 kinase pathway and promotes angiogenesis in adult vasculature. Arterioscler Thromb Vasc Biol, 2003,23(11):2008-2014.
    [68] Oike Y, Ito Y, Hamada K, Zhang XQ, Miyata K, Arai F, Inada T, Araki K, Nakagata N, Takeya M, Kisanuki YY, Yanagisawa M, Gale NW, Suda T. Regulation of vasculogenesis and angiogenesis by EphB/ephrin-B2 signaling between endothelial cells and surrounding mesenchymal cells. Blood, 2002,100(4):1326-1333.
    [69] Helbling PM, Saulnier DM, Brandli AW. The receptor tyrosine kinase EphB4 and ephrin-B ligands restrict angiogenic growth of embryonic veins in Xenopus laevis. Development, 2000,127(2):269-278.
    [70] Zhang XQ, Takakura N, Oike Y, Inada T, Gale NW, Yancopoulos GD, Suda T.Stromal cells expressing ephrin-B2 promote the growth and sprouting of ephrin-B2(+) endothelial cells. Blood, 2001,98(4):1028-1037.
    [71] Kim I, Ryu YS, Kwak HJ, Ahn SY, Oh JL, Yancopoulos GD, Gale NW, Koh GY. EphB ligand, ephrinB2, suppresses the VEGF- and angiopoietin 1-induced Ras/mitogen-activated protein kinase pathway in venous endothelial cells. Faseb J, 2002,16(9):1126-1128.
    [72] Steinle JJ, Meininger CJ, Forough R, Wu G, Wu MH, Granger HJ. Eph B4 receptor signaling mediates endothelial cell migration and proliferation via the phosphatidylinositol 3-kinase pathway. J Biol Chem, 2002,277(46):43830-43835.
    [73] Bicknell R, Harris AL. Novel angiogenic signaling pathways and vascular targets. Annu Rev Pharmacol Toxicol, 2004,44:219-238.
    [74] Campochiaro PA. Retinal and choroidal neovascularization. J Cell Physiol, 2000,184(3):301-310.
    [75] Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U, Risau W, Klein R. Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev, 1999,13(3):295-306.
    [76] Forooghian F, Razavi R, Timms L. Hypoxia-inducible factor expression in human RPE cells. Br J Ophthalmol, 2007,91(10):1406-1410.
    [77] Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem, 2000,275(33):25130-25138.
    [78] Porwol T, Ehleben W, Zierold K, Fandrey J, Acker H. The influence of nickel and cobalt on putative members of the oxygen-sensing pathway of erythropoietin-producing HepG2 cells. Eur J Biochem, 1998,256(1):16-23.
    [79] Jewell UR, Kvietikova I, Scheid A, Bauer C, Wenger RH, Gassmann M. Induction of HIF-1alpha in response to hypoxia is instantaneous. Faseb J, 2001,15(7):1312-1314.
    [80] Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell, 2001,107(1):43-54.
    [81] Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG, Jr. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science, 2001,292(5516):464-468.
    [82] Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science, 2001,292(5516):468-472.
    [83] Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science, 2002,295(5556):858-861.
    [84] Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q, Dillehay LE, Madan A, Semenza GL, Bedi A. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev, 2000,14(1):34-44.
    [85] Bae MK, Ahn MY, Jeong JW, Bae MH, Lee YM, Bae SK, Park JW, Kim KR, Kim KW. Jab1 interacts directly with HIF-1alpha and regulates its stability. J Biol Chem, 2002,277(1):9-12.
    [86] Osada M, Imaoka S, Sugimoto T, Hiroi T, Funae Y. NADPH-cytochrome P-450 reductase in the plasma membrane modulates the activation of hypoxia-inducible factor 1. J Biol Chem, 2002,277(26):23367-23373.
    [87] Napoli C, Lemieux C, Jorgensen R. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell, 1990,2(4):279-289.
    [88] Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998,391(6669):806-811.
    [89] Tang G, Galili G. Using RNAi to improve plant nutritional value: from mechanism to application. Trends Biotechnol, 2004,22(9):463-469.
    [90] Tijsterman M, Plasterk RH. Dicers at RISC; the mechanism of RNAi. Cell, 2004,117(1):1-3.
    [91] Hannon GJ. RNA interference. Nature, 2002,418(6894):244-251.
    [92] Maine EM. RNAi As a tool for understanding germline development in Caenorhabditis elegans: uses and cautions. Dev Biol, 2001,239(2):177-189.
    [93] Bargmann CI. High-throughput reverse genetics: RNAi screens in Caenorhabditis elegans. Genome Biol, 2001,2(2):REVIEWS1005.
    [94] Timmons L, Court DL, Fire A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene, 2001,263(1-2):103-112.
    [95] Williams NS, Gaynor RB, Scoggin S, Verma U, Gokaslan T, Simmang C, Fleming J, Tavana D, Frenkel E, Becerra C. Identification and validation of genes involved in the pathogenesis of colorectal cancer using cDNA microarrays and RNA interference. Clin Cancer Res, 2003,9(3):931-946.
    [96] Mousses S, Caplen NJ, Cornelison R, Weaver D, Basik M, Hautaniemi S, Elkahloun AG, Lotufo RA, Choudary A, Dougherty ER, Suh E, Kallioniemi O. RNAi microarray analysis in cultured mammalian cells. Genome Res, 2003,13(10):2341-2347.
    [97] Dorsett Y, Tuschl T. siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov, 2004,3(4):318-329.
    [98] Mousa SA, Mousa AS. Angiogenesis inhibitors: current & future directions. CurrPharm Des, 2004,10(1):1-9.
    [99] Wall NR, Shi Y. Small RNA: can RNA interference be exploited for therapy? Lancet, 2003,362(9393):1401-1403.
    [100] Griffioen AW, Molema G. Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev, 2000,52(2):237-268.
    [101] Schlingemann RO. Role of growth factors and the wound healing response in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol, 2004,242(1):91-101.
    [102] Sato Y. Molecular diagnosis of tumor angiogenesis and anti-angiogenic cancer therapy. Int J Clin Oncol, 2003,8(4):200-206.
    [103] Suhardja A, Hoffman H. Role of growth factors and their receptors in proliferation of microvascular endothelial cells. Microsc Res Tech, 2003,60(1):70-75.
    [104] Tsopanoglou NE, Maragoudakis ME. Role of thrombin in angiogenesis and tumor progression. Semin Thromb Hemost, 2004,30(1):63-69.
    [105] Jin H, Varner J. Integrins: roles in cancer development and as treatment targets. Br J Cancer, 2004,90(3):561-565.
    [106] Seiki M, Mori H, Kajita M, Uekita T, Itoh Y. Membrane-type 1 matrix metalloproteinase and cell migration. Biochem Soc Symp, 2003(70):253-262.
    [107] Scavelli C, Weber E, Agliano M, Cirulli T, Nico B, Vacca A, Ribatti D. Lymphatics at the crossroads of angiogenesis and lymphangiogenesis. J Anat, 2004,204(6):433-449.
    [108] Lohela M, Saaristo A, Veikkola T, Alitalo K. Lymphangiogenic growth factors, receptors and therapies. Thromb Haemost, 2003,90(2):167-184.
    [109] Shu X, Wu W, Mosteller RD, Broek D. Sphingosine kinase mediates vascular endothelial growth factor-induced activation of ras and mitogen-activated protein kinases. Mol Cell Biol, 2002,22(22):7758-7768.
    [110] Petrovic N, Bhagwat SV, Ratzan WJ, Ostrowski MC, Shapiro LH. CD13/APN transcription is induced by RAS/MAPK-mediated phosphorylation of Ets-2 in activated endothelial cells. J Biol Chem, 2003,278(49):49358-49368.
    [111] Sowter HM, Raval RR, Moore JW, Ratcliffe PJ, Harris AL. Predominant role of hypoxia-inducible transcription factor (Hif)-1alpha versus Hif-2alpha in regulation of the transcriptional response to hypoxia. Cancer Res, 2003,63(19):6130-6134.
    [112] Zhang L, Yang N, Mohamed-Hadley A, Rubin SC, Coukos G. Vector-based RNAi, a novel tool for isoform-specific knock-down of VEGF and anti-angiogenesis gene therapy of cancer. Biochem Biophys Res Commun, 2003,303(4):1169-1178.
    [113] Mazzanti CM, Tandle A, Lorang D, Costouros N, Roberts D, Bevilacqua G, Libutti SK. Early genetic mechanisms underlying the inhibitory effects of endostatin and fumagillin on human endothelial cells. Genome Res, 2004,14(8):1585-1593.
    [114] Naik MU, Vuppalanchi D, Naik UP. Essential role of junctional adhesionmolecule-1 in basic fibroblast growth factor-induced endothelial cell migration. Arterioscler Thromb Vasc Biol, 2003,23(12):2165-2171.
    [115] Nagashima K, Endo A, Ogita H, Kawana A, Yamagishi A, Kitabatake A, Matsuda M, Mochizuki N. Adaptor protein Crk is required for ephrin-B1-induced membrane ruffling and focal complex assembly of human aortic endothelial cells. Mol Biol Cell, 2002,13(12):4231-4242.
    [116] Sullivan DC, Huminiecki L, Moore JW, Boyle JJ, Poulsom R, Creamer D, Barker J, Bicknell R. EndoPDI, a novel protein-disulfide isomerase-like protein that is preferentially expressed in endothelial cells acts as a stress survival factor. J Biol Chem, 2003,278(47):47079-47088.
    [117] Baldanzi G, Mitola S, Cutrupi S, Filigheddu N, van Blitterswijk WJ, Sinigaglia F, Bussolino F, Graziani A. Activation of diacylglycerol kinase alpha is required for VEGF-induced angiogenic signaling in vitro. Oncogene, 2004,23(28):4828-4838.
    [118] Bruhl T, Urbich C, Aicher D, Acker-Palmer A, Zeiher AM, Dimmeler S. Homeobox A9 transcriptionally regulates the EphB4 receptor to modulate endothelial cell migration and tube formation. Circ Res, 2004,94(6):743-751.
    [119] Zhou X, Stuart A, Dettin LE, Rodriguez G, Hoel B, Gallicano GI. Desmoplakin is required for microvascular tube formation in culture. J Cell Sci, 2004,117(Pt 15):3129-3140.
    [120] Arts GJ, Langemeijer E, Tissingh R, Ma L, Pavliska H, Dokic K, Dooijes R, Mesic E, Clasen R, Michiels F, van der Schueren J, Lambrecht M, Herman S, Brys R, Thys K, Hoffmann M, Tomme P, van Es H. Adenoviral vectors expressing siRNAs for discovery and validation of gene function. Genome Res, 2003,13(10):2325-2332.
    [121] Sugimoto A. High-throughput RNAi in Caenorhabditis elegans: genome-wide screens and functional genomics. Differentiation, 2004,72(2-3):81-91.
    [122] Shibuya M. VEGF-receptor inhibitors for anti-angiogenesis. Nippon Yakurigaku Zasshi, 2003,122(6):498-503.
    [123] Zachary I. VEGF signalling: integration and multi-tasking in endothelial cell biology. Biochem Soc Trans, 2003,31(Pt 6):1171-1177.
    [124] Harry LE, Paleolog EM. From the cradle to the clinic: VEGF in developmental, physiological, and pathological angiogenesis. Birth Defects Res C Embryo Today, 2003,69(4):363-374.
    [125] Ueda Y, Yamagishi T, Ikeya H, Hirayama N, Itokawa T, Aozuka Y, Samata K, Nakaike S, Tanaka M, Ono M, Saiki I. VGA1155, a novel binding antagonist of VEGF, inhibits angiogenesis in vitro and in vivo. Anticancer Res, 2004,24(5A):3009-3017.
    [126] Inai T, Mancuso M, Hashizume H, Baffert F, Haskell A, Baluk P, Hu-Lowe DD, Shalinsky DR, Thurston G, Yancopoulos GD, McDonald DM. Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membraneghosts. Am J Pathol, 2004,165(1):35-52.
    [127] Filleur S, Courtin A, Ait-Si-Ali S, Guglielmi J, Merle C, Harel-Bellan A, Clezardin P, Cabon F. SiRNA-mediated inhibition of vascular endothelial growth factor severely limits tumor resistance to antiangiogenic thrombospondin-1 and slows tumor vascularization and growth. Cancer Res, 2003,63(14):3919-3922.
    [128] Duxbury MS, Matros E, Ito H, Zinner MJ, Ashley SW, Whang EE. Systemic siRNA-mediated gene silencing: a new approach to targeted therapy of cancer. Ann Surg, 2004,240(4):667-674; discussion 675-666.
    [129] Aharinejad S, Paulus P, Sioud M, Hofmann M, Zins K, Schafer R, Stanley ER, Abraham D. Colony-stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice. Cancer Res, 2004,64(15):5378-5384.
    [130] Lakka SS, Gondi CS, Yanamandra N, Olivero WC, Dinh DH, Gujrati M, Rao JS. Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene, 2004,23(27):4681-4689.
    [131] Chae SS, Paik JH, Furneaux H, Hla T. Requirement for sphingosine 1-phosphate receptor-1 in tumor angiogenesis demonstrated by in vivo RNA interference. J Clin Invest, 2004,114(8):1082-1089.
    [132] Takei Y, Kadomatsu K, Yuzawa Y, Matsuo S, Muramatsu T. A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res, 2004,64(10):3365-3370.
    [133] Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang Q, Storm G, Molema G, Lu PY, Scaria PV, Woodle MC. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res, 2004,32(19):e149.
    [134] Kim B, Tang Q, Biswas PS, Xu J, Schiffelers RM, Xie FY, Ansari AM, Scaria PV, Woodle MC, Lu P, Rouse BT. Inhibition of ocular angiogenesis by siRNA targeting vascular endothelial growth factor pathway genes: therapeutic strategy for herpetic stromal keratitis. Am J Pathol, 2004,165(6):2177-2185.
    [135] Sledz CA, Williams BR. RNA interference and double-stranded-RNA-activated pathways. Biochem Soc Trans, 2004,32(Pt 6):952-956.
    [136] Persengiev SP, Zhu X, Green MR. Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). Rna, 2004,10(1):12-18.
    [137] Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol, 2003,21(6):635-637.
    [138] Saxena S, Jonsson ZO, Dutta A. Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNAin mammalian cells. J Biol Chem, 2003,278(45):44312-44319.
    [139] Snove O, Jr., Holen T. Many commonly used siRNAs risk off-target activity. Biochem Biophys Res Commun, 2004,319(1):256-263.
    [140] Abbas-Terki T, Blanco-Bose W, Deglon N, Pralong W, Aebischer P. Lentiviral-mediated RNA interference. Hum Gene Ther, 2002,13(18):2197-2201.
    [141] Tomar RS, Matta H, Chaudhary PM. Use of adeno-associated viral vector for delivery of small interfering RNA. Oncogene, 2003,22(36):5712-5715.
    [142] Chiu YL, Rana TM. siRNA function in RNAi: a chemical modification analysis. Rna, 2003,9(9):1034-1048.
    [143] Layzer JM, McCaffrey AP, Tanner AK, Huang Z, Kay MA, Sullenger BA. In vivo activity of nuclease-resistant siRNAs. Rna, 2004,10(5):766-771.
    [144] Amarzguioui M, Holen T, Babaie E, Prydz H. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res, 2003,31(2):589-595.
    [145] Wang YS, Eichler W, Friedrichs U, Yafai Y, Hoffmann S, Yasukawa T, Hui YN, Wiedemann P. Impact of endostatin on bFGF-induced proliferation, migration, and matrix metalloproteinase-2 expression/secretion of bovine choroidal endothelial cells. Curr Eye Res, 2005,30(6):479-489.
    [146] Bhutto IA, McLeod DS, Hasegawa T, Kim SY, Merges C, Tong P, Lutty GA. Pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor (VEGF) in aged human choroid and eyes with age-related macular degeneration. Exp Eye Res, 2006,82(1):99-110.
    [147] Bora NS, Kaliappan S, Jha P, Xu Q, Sohn JH, Dhaulakhandi DB, Kaplan HJ, Bora PS. Complement activation via alternative pathway is critical in the development of laser-induced choroidal neovascularization: role of factor B and factor H. J Immunol, 2006,177(3):1872-1878.
    [148] Cashman SM, Bowman L, Christofferson J, Kumar-Singh R. Inhibition of choroidal neovascularization by adenovirus-mediated delivery of short hairpin RNAs targeting VEGF as a potential therapy for AMD. Invest Ophthalmol Vis Sci, 2006,47(8):3496-3504.
    [149] Zhu J, Wang Y, Hui Y. Formation of choroidaI neovascularization and its inhibition. Yanke Xinjinzhan 2004(1):57-60.
    [150] Zhao W, Wang Y, Hui Y. Culture of choroidal microvascular endothelial cells and related study. Yanke Xinjinzhan, 2004(3):227-230.
    [151] Bachetti T, Morbidelli L. Endothelial cells in culture: a model for studying vascular functions. Pharmacol Res, 2000,42(1):9-19.
    [152] Hoffmann S, Balthasar S, Friedrichs U, Ehren M, Ryan SJ, Wiedemann P. Inhibitory effects of verapamil isomers on the proliferation of choroidal endothelial cells. Graefes Arch Clin Exp Ophthalmol, 2006,244(3):376-381.
    [153] Peterson LJ, Wittchen ES, Geisen P, Burridge K, Hartnett ME. Heterotypic RPE-choroidal endothelial cell contact increases choroidal endothelial celltransmigration via PI 3-kinase and Rac1. Exp Eye Res, 2007,84(4):737-744.
    [154] Zhang SX, Wang JJ, Gao G, Parke K, Ma JX. Pigment epithelium-derived factor downregulates vascular endothelial growth factor (VEGF) expression and inhibits VEGF-VEGF receptor 2 binding in diabetic retinopathy. J Mol Endocrinol, 2006,37(1):1-12.
    [155] Chen H, Dong X, Chen N, Wang Y, Wang Y. Isolation and culture of rat retinal capillary endothelial cells in vitro. Yanke Xinjinzhan, 2005,25(5):396-399.
    [156] Thornton SC, Mueller SN, Levine EM. Human endothelial cells: use of heparin in cloning and long-term serial cultivation. Science, 1983,222(4624):623-625.
    [157] Liu H, Hui Y, Liu J, Wang Y. Primary culture and characterization of microvascular endothelial cells from human retina by modified method. Yanke Xinjinzhan, 2005,25(3):197-200.
    [158] Wang YS, Hui YN, Wiedemann P. Role of apoptosis in the cytotoxic effect mediated by daunorubicin in cultured human retinal pigment epithelial cells. J Ocul Pharmacol Ther, 2002,18(4):377-387.
    [159] Yoshida D, Kim K, Noha M, Teramoto A. Anti-Apoptotic Action by Hypoxia Inducible Factor 1-Alpha in Human Pituitary Adenoma Cell Line, HP-75 in Hypoxic Condition. J Neurooncol, 2006,78(3):217-225.
    [160] Liu XH, Yu EZ, Li YY, Kagan E. HIF-1alpha has an anti-apoptotic effect in human airway epithelium that is mediated via Mcl-1 gene expression. J Cell Biochem, 2006,97(4):755-765.
    [161] Yu EZ, Li YY, Liu XH, Kagan E, McCarron RM. Antiapoptotic action of hypoxia-inducible factor-1 alpha in human endothelial cells. Lab Invest, 2004,84(5):553-561.
    [162] Hariya Y, Shirakawa S, Yonekura N, Yokosawa N, Kohama GI, Fujii N. Augmentation of verotoxin-induced cytotoxicity/apoptosis by interferon is repressed in cells persistently infected with mumps virus. J Interferon Cytokine Res, 1999,19(5):479-485.
    [163] van de Wiel PA, van der Pijl A, Bloksma N. Role of tumour necrosis factor in the tumour-necrotizing activity of agents with diverging toxicity. Cancer Immunol Immunother, 1991,33(2):115-120.
    [164] Harary R, Gonsky R, Itamar D, Kaempfer R. Relief of cytotoxicity and enhancement of interferon inducer activity of double-stranded RNA by eukaryotic initiation factor 2. Virology, 1990,174(2):494-503.
    [165] Fremont M, Vaeyens F, Herst CV, De Meirleir KL, Englebienne P. Double-stranded RNA-dependent protein kinase (PKR) is a stress-responsive kinase that induces NFkappaB-mediated resistance against mercury cytotoxicity. Life Sci, 2006,78(16):1845-1856.
    [166] Caplen NJ, Taylor JP, Statham VS, Tanaka F, Fire A, Morgan RA. Rescue of polyglutamine-mediated cytotoxicity by double-stranded RNA-mediated RNAinterference. Hum Mol Genet, 2002,11(2):175-184.
    [167] Zhang P, Wang Y, Hui Y, Hu D, Wang H, Zhou J, Du H. Inhibition of VEGF expression by targeting HIF-1 alpha with small interference RNA in human RPE cells. Ophthalmologica, 2007,221(6):411-417.
    [168] Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods, 1983,65(1-2):55-63.
    [169] Fine SL, Berger JW, Maguire MG, Ho AC. Age-related macular degeneration. N Engl J Med, 2000,342(7):483-492.
    [170] Bressler NM, Silva JC, Bressler SB, Fine SL, Green WR. Clinicopathologic correlation of drusen and retinal pigment epithelial abnormalities in age-related macular degeneration. Retina, 1994,14(2):130-142.
    [171] Green WR, Enger C. Age-related macular degeneration histopathologic studies. The 1992 Lorenz E. Zimmerman Lecture. Ophthalmology, 1993,100(10):1519-1535.
    [172] Bressler SB, Maguire MG, Bressler NM, Fine SL. Relationship of drusen and abnormalities of the retinal pigment epithelium to the prognosis of neovascular macular degeneration. The Macular Photocoagulation Study Group. Arch Ophthalmol, 1990,108(10):1442-1447.
    [173] Zhang SX, Ma JX. Ocular neovascularization: Implication of endogenous angiogenic inhibitors and potential therapy. Prog Retin Eye Res, 2007,26(1):1-37.
    [174] Zarbin MA. Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol, 2004,122(4):598-614.
    [175] Ciulla TA, Danis RP, Harris A. Age-related macular degeneration: a review of experimental treatments. Surv Ophthalmol, 1998,43(2):134-146.
    [176] Lopez PF, Sippy BD, Lambert HM, Thach AB, Hinton DR. Transdifferentiated retinal pigment epithelial cells are immunoreactive for vascular endothelial growth factor in surgically excised age-related macular degeneration-related choroidal neovascular membranes. Invest Ophthalmol Vis Sci, 1996,37(5):855-868.
    [177] Kliffen M, Sharma HS, Mooy CM, Kerkvliet S, de Jong PT. Increased expression of angiogenic growth factors in age-related maculopathy. Br J Ophthalmol, 1997,81(2):154-162.
    [178] Kvanta A, Algvere PV, Berglin L, Seregard S. Subfoveal fibrovascular membranes in age-related macular degeneration express vascular endothelial growth factor. Invest Ophthalmol Vis Sci, 1996,37(9):1929-1934.
    [179] Mizuno T, Nagao M, Yamada Y, Narikiyo M, Ueno M, Miyagishi M, Taira K, Nakajima Y. Small interfering RNA expression vector targeting hypoxia-inducible factor 1 alpha inhibits tumor growth in hepatobiliary and pancreatic cancers. Cancer Gene Ther, 2006,13(2):131-140.
    [180] Jensen RL, Ragel BT, Whang K, Gillespie D. Inhibition of hypoxia inducible factor-1alpha (HIF-1alpha) decreases vascular endothelial growth factor (VEGF) secretion and tumor growth in malignant gliomas. J Neurooncol, 2006,78(3):233-247.
    [181] Reich SJ, Fosnot J, Kuroki A, Tang W, Yang X, Maguire AM, Bennett J, Tolentino MJ. Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol Vis, 2003,9:210-216.
    [182] Tolentino MJ, Brucker AJ, Fosnot J, Ying GS, Wu IH, Malik G, Wan S, Reich SJ. Intravitreal injection of vascular endothelial growth factor small interfering RNA inhibits growth and leakage in a nonhuman primate, laser-induced model of choroidal neovascularization. Retina, 2004,24(1):132-138.
    [183] Campochiaro PA. Potential applications for RNAi to probe pathogenesis and develop new treatments for ocular disorders. Gene Ther, 2006,13(6):559-562.
    [184] Forooghian F, Das B. Anti-Angiogenic Effects of Ribonucleic Acid Interference Targeting Vascular Endothelial Growth Factor and Hypoxia-Inducible Factor-1alpha. Am J Ophthalmol, 2007.
    [185] Schwesinger C, Yee C, Rohan RM, Joussen AM, Fernandez A, Meyer TN, Poulaki V, Ma JJ, Redmond TM, Liu S, Adamis AP, D'Amato RJ. Intrachoroidal neovascularization in transgenic mice overexpressing vascular endothelial growth factor in the retinal pigment epithelium. Am J Pathol, 2001,158(3):1161-1172.
    [186] Holekamp NM, Bouck N, Volpert O. Pigment epithelium-derived factor is deficient in the vitreous of patients with choroidal neovascularization due to age-related macular degeneration. Am J Ophthalmol, 2002,134(2):220-227.
    [187] Notari L, Miller A, Martinez A, Amaral J, Ju M, Robinson G, Smith LE, Becerra SP. Pigment epithelium-derived factor is a substrate for matrix metalloproteinase type 2 and type 9: implications for downregulation in hypoxia. Invest Ophthalmol Vis Sci, 2005,46(8):2736-2747.
    [188] Spaide RF. Rationale for combination therapies for choroidal neovascularization. Am J Ophthalmol, 2006,141(1):149-156.
    [189] Saishin Y, Silva RL, Saishin Y, Kachi S, Aslam S, Gong YY, Lai H, Carrion M, Harris B, Hamilton M, Wei L, Campochiaro PA. Periocular gene transfer of pigment epithelium-derived factor inhibits choroidal neovascularization in a human-sized eye. Hum Gene Ther, 2005,16(4):473-478.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700