用户名: 密码: 验证码:
功能磁共振成像评价肝癌化疗栓塞疗效的临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     及时、有效评价肿瘤治疗疗效在判断治疗是否成功和指导后续治疗方面是相当重要的。目前应用于临床的监测肿瘤治疗反应的方式较多,包括组织学检查、肿瘤标志物监测和影像学方法等。其中,组织学检查是评价的金标准,然而使用组织学评价只有当取得的标本是活性肿瘤组织时才能得到肯定性的结果,因此,即使反复出现的阴性活检结果也不能排除肿瘤残留的可能;而在评价肿瘤的治疗反应中,单独使用肿瘤标记物的临床应用价值也非常有限。各种影像学成像方法,包括多普勒超声(Doppler ultrasonography)、血管造影(angiography)、CT(computedtomography)和磁共振成像(magnetic resonance imaging,MRI)都可以用于评价治疗反应。
     目前临床上应用的实体瘤疗效评价标准(WHO标准和RECIST标准)是基于影像学上病灶治疗前后的大小变化来评价肿瘤疗效,因治疗后病灶的形态学在一定时间内可能并没有发生改变,所以这种形态学评价方法结果具有滞后性和欠准确性。临床工作者开始将注意力集中到开发一些新的更能真实反映疗效的影像学评价方法。这些新的方法包括评价肿瘤血管和细胞的完整性,水分子的运动和肿瘤内化合物的浓度变化等。
     本研究运用磁共振功能成像技术预测和早期评价肝癌化疗栓塞疗效。
     研究目的
     1、评价不同扩散梯度系数(b值)条件下肝癌化疗栓塞术后病灶磁共振扩散加权成像(DWI)的图像质量,筛选肝癌化疗栓塞术后磁共振扩散加权成像的最佳扩散梯度系数/1)值。
     2、评价肝癌化疗栓塞术后病灶的DWI图像的信号特点,定量分析肿瘤内部各组织成分的ADC值,探讨ADC值鉴别肿瘤内部不同组织成分的能力。
     3、定量分析肝癌化疗栓塞术前、术后病灶ADC值,探讨病灶术前ADC值在预测肝癌化疗栓塞疗效中的价值和病灶术后ADC变化值早期评价肝癌化疗栓塞疗效价值。
     4、初步观察原发性肝癌~(31)P-MRS的特点,并初步探讨~(31)P-MRS在早期评价原发性肝癌化疗栓塞治疗疗效的临床价值。
     研究方法
     1、采用SS-SE-EPI序列、弥散系数b分别为150、350、500、800 s/mm~2对肝脏进行扩散加权成像,计算T2WI和不同b值DWI中病灶信号-噪声比(signal-noise-ratio,SNR),病灶-肝脏对比信噪比(contrast signal-noise-ratio,CNR),不同b值DWI中病灶ADC值,通过观察CT和DSA造影图像,分析病灶内部碘化油沉积、液化坏死和肿瘤残留或复发的活组织情况,定性分析在不同b值下DWI图像上区分病灶内部各种组织成分的能力。
     2、采用SS-SE-EPI序列、弥散系数b=0和500s/mm~2对肝脏进行扩散加权成像,计算DWI、T2WI序列中观察到的新发肿瘤病灶与周围肝组织之间的CNR,观察上腹部CT增强检查和肝脏DSA造影图像,分析病灶内部碘化油沉积情况,肿瘤血供、肿瘤染色和肿瘤坏死情况,并与DWI图像相对照,分析碘化油沉积区、肿瘤坏死区和肿瘤复发/残留区等在DWI图像上的信号特点,并测量上述区域ADC值,用ROC曲线分析(receiver operating curve analysis)ADC值鉴别肿瘤活性和坏死组织的价值。
     3、采用SS-SE-EPI序列、弥散系数b=0和500s/mm~2对肝脏进行扩散加权成像,分别于化疗栓塞术前24小时内和化疗栓塞术后24-48小时内完成DWI检查,计算病灶术前ADC值和术后%ADC值,与栓塞效果比较,用ROC曲线分析术前病灶ADC值预测肝癌化疗栓塞治疗疗效和术后%ADC值早期评价肝癌化疗栓塞治疗疗效的临床价值。
     4、初步观察正常肝脏组织和肝癌组织的~(31)P-MRS主要特点,比较肝癌组织和正常肝组织中的代谢物变化情况;定量分析原发性肝细胞肝癌化疗栓塞治疗前后~(31)P-MRS中各化合物变化情况;同时,通过与这些病例的临床随访结果对照,初步评价~(31)P-MRS在早期评价肿瘤疗效中的价值。
     研究结果
     1、化疗栓塞后病灶在T2WI、DWI_(150)、DWI_(350)、DWI_(500)和DWI_(800)的SNR分别为:(69.81±18.99)、(59.33±32.66)、(59.23±32.94)、(54.25±19.71)和(39.43±11.67),差异有统计学意义(F=4.43,P=0.0024<0.05);病灶.肝脏CNR分别为:(19.11±11.33)、(17.69±9.20)、(21.38±10.10)、(19.90±13.75)和(13.24±11.02),差异没有统计学意义(F=1.70,P=0.1556>0.05);b=150,350,500和800s/mm~2的ADC图中测得病灶ADC值分别为:(2.35±0.80)×10~(-3)mm~2/s、(1.95±0.59)×10~(-3)mm~2/s、(1.78±0.44)×10~(-3)mm~2/s和(1.54±0.37)×10~(-3)mm~2/s,差异有统计学意义(F=21.96,P=0.0001<0.05)。使用b=500和800s/mm~2的DWI图像能有效区分肿瘤内部坏死和活性肿瘤组织。
     2、新发病灶在DWI图像中的CNR为46.36±19.49,在T2WI图像上的CNR为33.24±17.26,两者差异有统计学意义(t=2.400,P=0.025<0.05);在DWI图像上,肿瘤坏死组织呈低信号,肿瘤活性组织呈高信号,而碘油沉积区呈低、等或稍高信号。DWI和ADC值能有效区分肿瘤内的坏死组织和活组织,用ROC曲线分析,以ADC值为1.84×10~(-3)mm~2/s为域值,诊断坏死组织的敏感度为92.3%,特异度为100%。
     3、栓塞良好组术前病灶ADC值中位数为1.278×10~(-3)mm~2/s(范围:0.989×10~(-3)mm~2/s~1.768×10~(-3)mm~2/s);栓塞不良组中位数为1.687×10~(-3)mm~2/s(范围:1.24×10~(-3)mm~2/s~2.20×10~(-3)mm~2/s)(P<0.05)。用ROC曲线分析,以ADC值为1.618×10~(-3)mm~2/s为预测栓塞不良域值,敏感度为96%,特异度为77.8%;栓塞良好组治疗前后病灶%ADC值中位数为32.63%(范围:11.15%~182.16%),栓塞不良组%ADC中位数为5.24%(范围:-11.06%~15.50%)(P<0.05);用ROC曲线分析,以%ADC值为16.21%为预测栓塞效果良好域值,敏感度为72%,特异度为100%。非治疗叶段肝实质ADC值(t=0.174,P=0.862)和脾脏治疗前后ADC值(t=1.964,P=0.052)变化无统计学意义。
     4、在原发性肝癌中,磷酸单酯(PME)水平中位数为2.98×10~7(范围:0.846×10~7~102.5×10~7),高于正常肝实质中PME水平(中位数:1.81×10~7;范围:0.734×10~7~2.38×10~7):HCC中磷酸二酯(PDE)水平中位数为1.94×10~7(范围:0.384×10~7~5.24×10~7),低于正常肝实质(中位数:3.39×10~7;范围:0.661×10~7~3.55×10~7);治疗后PME水平(中位数:1.38×10~7;范围:0.665×10~7~6.21×10~7)低于治疗前(中位数:2.98×10~7;范围:0.846×10~7~102.5×10~7)(P<0.05)。临床随访发现治疗有效病灶,其~(31)P-MRS中,PME/NPT(P<0.01)和PDE/NPT(P<0.01)比值治疗后与治疗前相比均下降;而临床随访中疗效归为治疗无效的病灶,治疗后24-48h内与治疗前相比,PME/NPT比值下降(P<0.05),而PDE/NPT比值轻度上升,但差异无统计学意义(P>0.05)。
     结论
     1、在肝癌化疗栓塞后DWI中,选择合适的扩散梯度系数能够得到较佳的信号对比,同时也能较准确地区分坏死组织和活性肿瘤。
     2、磁共振扩散加权成像能敏感检出肝癌化疗栓塞术后病人肝内新发肿瘤,ADC值能有效区分肿瘤内部坏死和活性肿瘤成分,可用于肝癌化疗栓塞术后病人的临床随访。
     3、肝癌化疗栓塞术前病灶ADC值能预测栓塞效果,化疗栓塞治疗后癌灶ADC值有不同程度上升并能反应癌灶的栓塞效果,对指导临床治疗方式的选择和个性化治疗方案的制定有一定意义。
     4、在原发性肝癌化疗栓塞术前和术后48h内~(31)P-MRS中PME/NPT和PDE/NPT的比值变化对早期评价疗效和后续治疗有指导意义。
Background
     Assessment of tumor response after therapies is important in determining treatment success and in guiding future therapy.Several monitors of tumor response have been used,including histology,tumor markers,and imaging.However,histologic evaluation using tissue biopsy can only be conclusive when it shows viable malignancy.Therefore, repeated negative biopsies do not exclude the presence of residual tumor.Tumor markers sorely are of limited use in assessing tumor response.Various imaging modalities,including Doppler ultrasonography,angiography,computed tomography (CT),and magnetic resonance imaging(MRI) have been used to evaluate therapeutic response.
     In clinic,standardized criteria for measuring therapeutic response have been established in 1981 by the World Health Organization(WHO).In 2000,the Response Evaluation Criteria in Solid Tumors(RECIST) was introduced to unify response assessment criteria.However,these methods rely on size change of lesions to assess response.Therefore,the early effects of some therapies would not be detected and occasionally patients may not be considered to have exhibited a response despite the presence of tumor necrosis.This realization that anatomy may not change after therapies moved the focus toward new evaluation methods.These include assessment of tumor vascular and cellular integrity,motion of water molecules,and biochemical concentration.
     In this article we discuss the role of functional MRI in assessing treatment response after transarterial chemoembolization in patients with liver cancer.
     Objective
     1.To assess the diffusion-weighted MR image quality with different b values in the follow-up after transarterial chemoembolization for liver cancer.
     2.To evaluate the feasibility and capability of diffusion-weighted MR imaging technique in follow-up after transarterial chemoembolization for liver cancer.
     3.To determine whether the pretreatment apparent diffusion coefficients(ADCs) of liver cancer are predictive of response to transarterial chemoembolization and to compare the ADCs of tumors before and after transarterial chemoembolization.
     4.To investigate the value of ~(31)p MR spectroscopy in monitoring the early response of therapy for hepatocellular carcinoma.
     Methods
     1.Diffusion-weighted MR imaging and routine non-enhanced MR imaging were performed in patients with liver cancer after transarterial chemoembolization at 1.5T MRI.DWI were performed with the same SS-SE-EPI sequence and different b value, b=0 and b≠0(b=150,350,500 and 800s/mm~2,respectively).The signal-noise-ration (SNR) of the lesions after transarterial chemoembolization and the contrast noise ratio (CNR) between the lesion and liver tissue on diffusion-weighted images with different b values and T2-weighted images were measured.The lesion apparent diffusion coefficient(ADC) values were measured on functional diffusion maps.Qualitative evaluations the capability of identification the viable and necrotic tissue in tumor were performed on diffusion-weighted imaging with different diffusion coefficients comparing with DSA and enhanced-CT.
     2.Diffusion-weighted MR imaging and routine non-enhanced MR imaging were performed in patients with liver cancer after transarterial chemoembolization with the same SS-SE-EPI sequence(b=500s/mm~2 and 0) at 1.5T MRI.Contrast noise ratio(CNR) between new lesions and liver for diffusion-weighted MR image and T_2WI were measured.The characteristics of the treated lesion on diffusion-weighted image were evaluated.And the capability of discriminating the remaining or recurrent viable tumor and necrotic tissue were evaluated and compared with DSA and enhanced-CT.
     3.Liver cancers were prospectively evaluated with diffusion-weighted imaging at two b values before and after transarterial chemoemblization.Quantitative ADC maps were calculated with images with b values of 0,and 500s/mm~2.The mean ADC values of lesions before and after transarterial chemoemblization were compared according to response defined by the effect of transarterial chemoembolization.
     4.Phosphorus-31 MR spectra of hepatocellular carcinoma obtained before and at 24-48h after transarterial chemoemblization in 15 patients with 17 hepatocellular carcinomas.Alterations of phosphorus metabolism between before and after transarterial chemoembolization were compared with tumor responses evaluated by means of long-term follow-up.
     Results
     1.The SNR of the treated lesions were 69.81±18.99,59.33±32.66,59.23±32.94, 54.25±19.71,39.43±11.67 on T2WI,DWI(b=150s/mm~2),DWI(b=350s/mm~2), DWI(b=500s/mm~2) and DWI(b=800s/mm~2),respectively(F=4.43,P=0.0024<0.05). And CNR between the treated lesion and liver were 19.11±11.33,17.69±9.20, 21.38±10.10,19.90±13.75 and 13.24±11.02 on T2WI,DWI(b=150s/mm~2), DWI(b=350s/mm~2),DWI(b=500s/mm~2) and DWI(b=800s/mm~2),respectively(F=1.70, P=0.1556>0.05).The treated lesion ADC values were(2.35±0.80)×10~(-3)mm~2/s,(1.95±0.59)×10~(-3)mm~2/s,(1.78±0.44)×10~(-3)mm~2/s and(1.54±0.37)×10~(-3)mm~2/s on functional diffusion maps with b=150,350,500 and 800s/mm~2,respectively(F=21.96, P=0.0001<0.05).The viable and necrotic tissue in treated lesion can be identified more clearly on diffusion-weighted images with b=500s/mm~2 and with b=800s/mm~2 than diffusion-weighted images with b=150s/mm~2 and with b=350s/mm~2.
     2.There was significant difference in CNR between new cancer lesion and liver tissue on diffusion-weighted and T2-weighted images(46.36±19.49 vs.33.24±17.26, t=2.400,P=0.025).Liver cancer after transarterial chemoemblization has variable signal intensity on diffusion-weighted MR image.On diffusion-weighted image,the hypo-intensity regions in the treated lesions correspond to regional no enhancement on enhanced-CT or no tumor stain tissue on angiogram that means necrotic tissue because of decreased cellular density;and the hyper-intensity regions in the treated lesions mean the viable tissue because of higher cellular density and hyper-vascular which enhancement on enhanced-CT and tumor stain on angiogram.The results of receiver operator characteristic(ROC) analysis for differentiation of viable and necrotic tumor tissue with mean apparent diffusion coefficients for images with b values of 0 and 500 s/mm~2 showed that threshold ADC value of 1.84×10~(-3)mm~2/s had 92.3%sensitivity and 100%specificity for identification of necrotic tumor tissue.
     3.Nonresponding lesions had a significantly higher pretreatment mean ADC than did responding lesions(1.687×10~(-3) mm~2/s vs.1.278×10~(-3) mm~2/s,P<0.05).The results of receiver operator characteristic(ROC) analysis for differentiation of nonresponding and responding lesions with mean apparent diffusion coefficients for images with b values of 0 and 500 s/mm~2 showed that threshold ADC value of 1.618×10~(-3) mm~2/s had 96.0%sensitivity and 77.8%specificity for identification of nonresponding lesions. After transarterial chemoembolization,responding lesions had a significant increase in %ADC values than did nonresponding lesions(32.63%vs.5.24%,P=0.025).The results of receiver operator characteristic(ROC) analysis for differentiation of nonresponding and responding lesions with mean apparent diffusion coefficients changes for images with b values of 0 and 500 s/mm~2 before and after transarterial chemoembolization showed that threshold%ADC value of 16.21%had 72%sensitivity and 100%specificity for identification of responding lesions.No significant ADC value change was observed in normal liver parenchyma(t=0.174,P=0.862) and spleen (t=1.964,P=0.052) after transarterial chemoembolization.
     4.For alterations in phosphorus metabolism in HCCs,the median phosphomonoesters(PME) level in 17 HCCs after treatment was 1.38×10~7(range, 0.665×10~7-6.21×10~7),which was significantly decreased than that before treatment (median,2.98×10~7;range,0.846×10~7-102.5×10~7)(P<0.05).In long-term follow-up studies,the ratio of phosphomonoester to nucleoside triphosphate(PME/NPT)(P<0.01) and the ratio of phosphodiester to nucleoside triphosphate(PDE/NPT)(P<0.01) was remarkable decreased before and after treatment in the HCCs(11/17) which showed a response to therapy;in other 6 HCCs classified as no response,each PME/NPT ratio significantly diminished(P<0.05),while the PDE/NPT ratio rose slightly,but no significant(P>0.05).
     Conclusions
     1.In the follow-up after transarterial chemoembolization for liver cancer with DWI, diffusion coefficient influences the image quality.The diffusion-weighted MR imaging with suitable diffusion coefficient can achieve high image quality and identify viable and necrotic tissue in tumor more clearly.
     2.Diffusion-weighted MR imaging is a sensitive and useful method for detecting new lesion and the remaining or recurrent viable tumor for liver cancer after transarterial chemoembolization.
     3.High pretreatment mean ADC of liver cancers was predictive of poor response to chemoembolization.A significant increase in mean ADC was observed in lesions that responded to chemoembolization.These findings may have implications for development of individualized therapy.
     4.The results demonstrate ~(31)P MR spectroscopy is a suitable method for monitoring the early response of HCC to transarterial chemoembolization.
引文
1 Moseley ME,Kucharczyk J,Mintorovitch J,et al.Diffusion-weighted MR imaging of acute stroke:correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats.AJNR Am J Neuroradiol 1990;11:423-429.
    2.Ichikawa T,Haradome H,Hachiya J,et al.Diffusion weighted MR imaging with a single-shot echoplanar sequence:detection and characterization of focal hepatic lesions.AJR 1998;170:397-402.
    3.Kamel IR,Bluemke DA,Ramsey D,et al.Role of diffusion-weighted imaging in estimating tumor necrosis after chemoembolization of hepatocellular carcinoma.AJR 2003;18:708-710.
    4.Chen CY,Li CW,Kuo YT,et al.Early response of hepatocellular carcinoma to transcatheter arterial chemoembolization:choline levels and MR diffusion constants-initial experience.Radiology 2006;239:448-456.
    5.Lencioni RA,Allgaier HP,Cioni D,et al.Small hepatocellular carcinoma in cirrhosis:randomized comparison of radio-frequency thermal ablation versus percutaneous ethanol injection.Radiology 2003;228:235-240.
    6.Geschwind JF,Ramsey DE,Choti MA,et al.Chemoembolization of hepatocellular carcinoma:results of a metaanalysis.Am J Clin Oncol 2003; 26:344-349.
    7.Salem R,Lewandowski RJ,Atassi B,et al.Treatment of unresectable hepatocellular carcinoma with use of 90Y microspheres(TheraSphere):safety,tumor response,and survival.J Vasc Interv Radiol 2005;16:1627-1639.
    8.Takayasu K,Arii S,Matsuo N,et al.Comparison of CT findings with resected specimens after chemoembolization with iodized oil for hepatocellular carcinoma.AJR 2000;175:699-704.
    9.Kubota K,Hisa N,Nishikawa T,et al.Evaluation of hepatocellular carcinoma after treatment with transcatheter arterial chemoembolization:comparison of Lipiodol-CT,power Doppler sonography,and dynamic MRI.Abdom Imaging 2001;26:184-190.
    10.Lira HS,Jeong YY,Kang HK,et al.Imaging features of hepatocellular carcinoma after transcatheter arterial chemoembolization and radiofrequency ablation.AJR 2006;187:W341-349.
    11.袁正,肖湘生,刘士远,等.磁共振扩散加权成像在肝癌经导管动脉化疗栓塞术后随访中的初步临床应用.第二军医大学学报2007;28:983-987.
    12.中国抗癌协会肝癌专业委员会.原发性肝癌诊断标准.中华肝脏病杂志2000;8:135.
    13.贺佳,陆健主编.医学统计学中的SAS统计分析.上海:第二军医大学出版社.2002,49
    14.Chenevert TL,Stegman LD,Taylor JM,et al.Diffusion magnetic resonance imaging:an early surrogate marker of therapeutic efficacy in brain tumors.J-Natl-Cancer-Inst 2000;92:2029-2036.
    15.Chen CY,Li C W,Kuo Y T,et al.Early response of hepatocellular carcinoma to transcatheter arterial chemoembolization:choline levels and MR diffusion constants-initial experience.Radiology 2006;239:448-456.
    16.Theilmann R J,Borders R,Trouard TP,et al.Changes in water mobility measured by diffusion MRI predict response of metastatic breast cancer to chemotherapy.Neoplasia 2004;6:831-837.
    17.Naganawa S,Kawai H,Fukatsu H,,et al.Diffusion-weighted imaging of the liver:technical challenges and prospects for the future.Magn Reson Med Sci 2005;4:175-186.
    18.Naganawa S,Sato C,Kumada H,et al.Apparent diffusion coefficient in cervical cancer of the uterus:comparison with the normal uterine cervix.Eur Radiol 2005;15:71-78.
    19.Sato C,Naganawa S,Nakamura T,et al.Differentiation of noncancerous tissue and cancer lesions by apparent diffusion coefficient values in transition and peripheral zones of the prostate.J Magn Reson Imaging 2005;21:258-262.
    20.Naganawa S,Sato C,Nakamura T,et al.diffusion-weighted images of the liver:comparison of tumor detection before and after contrast enhancement with superparamagnetic iron oxide.J Magn Reson Imaging 2005;21:836-840.
    21.Geschwind JF,Artemov D,Abraham S,et al.Chemoembolization of liver tumor in a rabbit model:assessment of tumor cell death with diffusion-weighted MR imaging and histologic analysis.J Vase Interv Radiol 2000;11:1245-1255.
    22.尚全良,肖恩华,贺忠,等.肝癌经导管动脉灌注化疗栓塞术疗效的MR 扩散加权成像动态研究.中华放射学杂志2006:40:235-240.
    23.Okada Y,Ohtomo K,Kiryu S,et al.breath-hold T2-weighted MRI of hepatic tumors:value of echo planar imaging with diffusion-sensitizing gradient.J Comput Assist Tomogr 1998;22:364-371
    24.Gupta RK,Cloughesy TF,Sinha U,et al.relationships between choline magnetic resonance spectroscopy,apparent diffusion coefficient and quantitative histopathology in human glioma.J Neurooncol 2000;50:215-226.
    25.Issa B.In vivo measurement of the apparent diffusion coefficient in normal and malignant prostatic tissue using echo-planar imaging.J Magn Reson Imaging 2002;16:196-200.
    26.Iehikawa T,Haradome H,Hachiya J,et al.Diffusion-weighted MR imaging with single-shot echo-planar imaging in the upper abdomen:preliminary clinical experience in 61 patients.Abdom Imaging 1999;24:456-461.
    27.Le Bihan D,Breton E,Lallemand D,et al.Separation of diffusion and perfusion in intra-voxel incohhrentmotion MR imaging.Radiology 1988;168:497-450.
    1 Parkin DM,Bray F,Ferlay J,et al:Estimating the world cancer burden:Globocan 2000.Int J Cancer 94:153-156,2001
    2.Lin DY,Liaw YF,Lee TY,et al:Hepatic arterial embolization in patients with unresectable hepatocellular carcinoma:A randomized controlled trial.Gastroenterology 94:453-456,1988
    3.Pelletier G,Roche A,Ink O,et al:A randomized trial of hepatic arterial chemoembolization in patients with unresectable hepatocellular carcinoma.J Hepatol 11:181-184,1990
    4.A comparison of lipiodol chemoembolization and conservative treatment for unresectable hepatocellular carcinoma.Groupe d'Etude et de Traitement du Carcinome Hepatocellulaire.N Engl J Med 332:1256-1261,1995
    5.Bruix J,Llovet JM,Castells A,et al:Transarterial embolization versus symptomatic treatment in patients with advanced hepatocellular carcinoma:Results of a randomized,controlled trial in a single institution.Hepatology 27:1578-1583,1998
    6 Kamel IR,Bluemke DA,Eng J,et al:The role of functional MR imaging in the assessment of tumor response after chemoembolization in patients with hepatocellular carcinoma.J Vasc Interv Radiol 17:505-512,2006
    7 中国抗癌协会肝癌专业委员会.原发性肝癌诊断标准.中华肝脏病杂志,2000,8:135
    8 Geschwind JF,Ramsey DE,van der Wal BC,et al.Transcatheter arterial chemoembolization of liver tumors:effects of embolization protocol on injectable volume of chemotherapy and subsequent arterial patency.Cardiovasc Intervent Radiol,2003,26:111-7
    9 Lim HS,Jeong YY,Kang HK,et al.Imaging features of hepatocellular carcinoma after transcatheter arterial chemoembolization and radiofrequency ablation.AJR,2006,187:W341-9.
    10 Kubota K,Hisa N,Nishikawa T,et al.Evaluation of hepatocellular carcinoma after treatment with transcatheter arterial chemoembolization:comparison of Lipiodol-CT,power Doppler sonography,and dynamic MRI.Abdom Imaging,2001,26:184-90.
    11 Anderson GS,Brinkmann F,Soulen MC,et al.FDG positron emission tomography in the surveillance of hepatic tumors treated with radiofrequency ablation.Clin Nucl Med,2003,28:192-7.
    12 陈炜,倪城,蔡杰,等.肝癌介入治疗后复发的CT表现及临床意义.现代中西医结合杂志,2002,11:75-76.
    13 韩铭钧,杨海君,赵钟春,等.肝癌介入治疗中的门静脉和肝动脉造影CT 检查及其意义.中华放射学杂志,2000,34:58-60.
    14 Lou CY,Feng YM,Qian AR,et al:Establishment and characterization of human hepatocellular carcinoma cell line FHCC-98.World J Gastroenterol 10:1462-1465,2004
    15 尚全良,肖恩华,贺忠等。肝癌经导管动脉灌注化疗栓塞术疗效的MR扩散加权成像动态研究。中华放射学杂志,2006,40:235-240
    16 Chen CY,Li CW,Kuo YT,et al.Early response of hepatocellular carcinoma to transcatheter arterial chemoembolization:choline levels and MR diffusion constants-initial experience.Radiology,2006,239:448-456.
    17 Geschwind JF,Artemov D,Abraham S,et al.Chemoembolization of liver tumor in a rabbit model:assessment of tumor cell death with diffusion-weighted MR imaging and histologic analysis.J Vasc Interv Radiol,2000,11:1245-1255.
    18 Theilmann RJ,Borders R,Trouard TP,et al.Changes in water mobility measured by diffusion MRI predict response of metastatic breast cancer to chemotherapy.Neoplasia,2004,6:831-837.
    19 Ichikawa T,Haradome H,Hachiya J,et al.Diffusion weighted MR imaging with a single-shot echoplanar sequence:detection and characterization of focal hepatic lesions.AJR 1998,170:397-402.
    20 郑晓林,徐辉雄,吕明德,等.磁共振弥散加权成像检测肝内小病灶的临床应用。中国医学影像技术,2004,2:1510-1512.
    1.Rees M,Plant G,Bygrave S.Late results justify resection for multiple hepatic metastases from colorectal cancer.Br J Surg 1997;84:1136-1140
    2.Poston GJ.Surgical strategies for colorectal liver metastases.Surg Oncol 2004;13:125-136
    3.袁正,肖湘生.肺癌非手术治疗疗效的影像学评价[J].放射学实践,2004,19(增):93-94.
    4.Goshen E,Davidson T,Zwas ST,Aderka D.PET/CT in the evaluation of response to treatment of liver metastases from colorectal cancer with bevacizumab and irinotecan.Technol Cancer Res Treat 2006;5:37-43
    5.Dimitrakopoulou-Strauss A,Strauss LG,Rudi J.PET-FDG as predictor of therapy response in patients with colorectal carcinoma.Q J Nucl Med 2003;47:8-13
    6.Nasu K,Kuroki Y,Nawano S,et al.Hepatic metastases:Diffusion weighted sensitivity-encoding versus SPIO-enhanced MR imaging.Radiology 2006;239:122-130.
    7.Chenevert TL,Stegman LD,Taylor JM,et al.Diffusion magnetic resonance imaging:an early surrogate marker of therapeutic efficacy in brain tumors[J].J-Natl-Cancer-Inst,2000,92(24):2029-2036.
    8.Theilmann RJ,Borders R,Trouard TP,et al.Changes in water mobility measured by diffusion MRI predict response of metastatic breast cancer to chemotherapy[J].Neoplasia,2004,6(6):831-837.
    9.中国抗癌协会肝癌专业委员会.原发性肝癌诊断标准.中华肝脏病杂志, 2000; 8:135.
    10. DeVries AF, Kremser C, Hein PA, et al. Tumor microcirculation and diffusion predict therapy outcome for primary rectal carcinoma. Int J Radiat Oncol Biol Phys 2003; 56:958-965
    11. Dzik-Jurasz A, Domenig C, George M, et al. Diffusion MRI for prediction of response of rectal cancer to chemoradiation. Lancet 2002; 360:307-308
    12. Koh DW, Scurr E, Collins D, et al. Predicting response of colorectal hepatic metastasis: Value of pretreatment apparent diffusion coefficients. AJR 2007; 188:1001-1008.
    13. Chen CY, Li CW, Kuo YT, et al. Early response of hepatocellular carcinoma to transcatheter arterial chemoembolization: choline levels and MR diffusion constants-initial experience. Radiology, 2006, 239:448-56.
    14. Kamel IR, Bluemke DA, Eng J, et al: The role of functional MR imaging in the assessment of tumor response after chemoembolization in patients with hepatocellular carcinoma. J Vasc Interv Radiol 17:505-512, 2006
    15. Harrison L, Blackwell K. Hypoxia and anemia: factors in decreased sensitivity to radiation therapy and chemotherapy? Oncologist 2004; 9[supp 15]:31—40
    [1].Colombo M.Nonpercutaneous therapies of hepatocellular carcinoma.Hepatogastroenterology 2001;48:25-28.
    [2].Ramsey DE,Kernagis LY,Soulen MC,et al.Chemoembolization of hepatocellular carcinoma. J Vasc Interv Radio 2002; 113(suppl 2):S211-S221.
    [3]. Solomon B, Soulen MC, Baum RA, et al. Chemoembolization of hepatocellular carcinoma with cisplatin, doxorubicin, mitomycin-C, ethiodol, and polyvinyl alcohol: prospective evaluation of response and survival in a U.S. population. J Vasc Interv Radio 1999; 110:793-798.
    [4]. Vogl TJ, Trapp M, Schroeder H, et al. Transarterial chemoembolization for hepatocellular carcinoma: volumetric and morphologic CT criteria for assessment of prognosis and therapeutic success-results from a liver transplantation center. Radiology 2000; 214:349-357.
    [5]. Ngan H, Lai CL, Fan ST, et al. Transcatheter arterial chemoembolization in inoperable hepatocellular carcinoma: 4-year follow-up. J Vasc Interv Radio 1996; 17:419-425.
    [6]. Imaeda T, Yamawaki Y, Seki M, et al. Lipiodol retention and massive necrosis after lipiodol-chemoembolization of hepatocellular carcinoma: correlation between computed tomography and histopathology. Cardiovasc Intervent Radiol 1993; 16:209-213.
    [7]. Ito K, Honjo K, Fujita T, et al. Therapeutic efficacy of transcatheter arterial chemoembolization for hepatocellular carcinoma: MRI and pathology. J Comput Assist Tomogr 1995; 19:198-203.
    [8]. De Santis M, Alborino S, Tartoni PL, et al. Effects of lipiodol retention on MRI signal intensity from hepatocellular carcinoma and surrounding liver treated by chemoembolization. Eur Radiol 1997; 7:10-16.
    [9]. Lang P, Wendland MF, Saeed M, et al. Osteogenic sarcoma: noninvasive in vivo assessment of tumor necrosis with diffusion-weighted MR imaging. Radiology 1998; 206:227-235.
    [10]. Ding H, Kudo M, Onda H, et al. Evaluation of posttreatment response of hepatocellular carcinoma with contrast-enhanced coded phase-inversion harmonic US: comparison with dynamic CT. Radiology 2001; 221:721-730.
    [11]. Chen CY, Li CW, Kuo YT, et al. Early response of hepatocellular carcinoma to transcatheter arterial chemoembolization: choline levels and MR diffusion constants-initial experience. Radiology 2006; 239:448-456.
    [12]. Kamel IR, Bluemke DA, Ramsey D, et al. Role of diffusion-weighted imaging in estimating tumor necrosis after chemoembolization of hepatocellular carcinoma. AJR 2003; 18:708-710.
    [13]. Griffiths JR, Tate AR, Howe FA, et al. Magnetic Resonance Spectroscopy of cancer-practicalities of multi-centre trials and early results in non-Hodgkin's lymphoma. Eur J Cancer 2002; 38:2085-2093.
    [14]. Van den Bosch H. Phosphoglyceride metabolism. Annu Rev Biochem 1974; 43: 243-77
    [15]. Kristjansen PE, Pedersen EJ, Quistorff B, et al. Early effects of radiotherapy in small cell lung cancer xenografts monitored by ~(31)P magnetic resonance spectroscopy and biochemical analysis. Cancer Res 1990; 50:4880-4.
    [16]. Mahmood U, Altieri AA, Ballon D, et al. In vitro and in vivo ~(31)P nuclear magnetic resonance measurements of metabolic changes post radiation. Cancer Res 1995; 55:1248-54.
    [17]. Merchant TE, Altieri AA, Glonek T, et al. Comparison of relative changes in phosphatic metabolites and phospholipids after irradiation. Radiat Res 1995; 142:29-38.
    [18]. Murata O, Sakurai H, Mitsuhashi N, et al. ~(31)P NMR spectroscopy can predict the optimum interval between fractionated irradiation doses. Anticancer Res 1998; 18:4297-301.
    [19]. Sakurai H, Mitsuhashi N, Murata O, et al. Early radiation effects in highly apoptotic murine lymphoma xenografts monitored by ~(31)P magnetic resonance spectroscopy. Int J Radiat Oncol Biol Phys 1998; 41:1157-62.
    [20]. Sijens PE, Baldwin NJ, Ng TC. ~(31)P magnetic resonance spectroscopy detection of response-predictive adenosine triphosphate decrease in irradiated radiation-induced fibrosarcoma-1 tumors. Invest Radiol 1997; 32:39-43.
    [21]. Fu KK, Wendland MF, Iyer SB, et al. Correlations between in vivo ~(31)P NMR spectroscopy measurements, tumor size, hypoxic fraction and cell survival after radiotherapy. Int J Radiat Oncol Biol Phys 1990; 18:1341-50.
    [22].Li S J,Jin GY,Fish BL,et al.Correlation of radiobiological assays of hypoxic fraction with phosphorus-31 magnetic resonance spectroscopy across multiple tumor lines.Radiat Res 1995;143:45-53.
    [23].Schilling A,Gewiese B,Berger G,et al.Liver tumors:follow-up with P-31 MR spectroscopy after local chemotherapy and chemoembolization.Radiology 1992;182:887-90.
    [24].Meyerhoff D J,Karczmar GS,Valone F,et al.Hepatic cancers and their response to chemoembolization therapy.Quantitative image-guided ~(31)P magnetic resonance spectroscopy.Invest Radiol 1992;27:456-64.
    [25].Cox IJ,Menon DK,Sargentoni J,et al.Phosphorus-31 magnetic resonance spectroscopy of the human liver using chemical shift imaging techniques.J Hepatol 1992;14:265-75.
    [26].中国抗癌协会肝癌专业委员会.原发性肝癌诊断标准.中华肝脏病杂志2000;8:135.
    [27].Salem R,Lewandowski RJ,Atassi B,et al.Treatment of unresectable hepatocellular carcinoma with use of 90Y microspheres(TheraSphere):safety,tumor response,and survival.J Vasc Interv Radiol 2005;16:1627-39.
    [28].Majors AW,Ng TC,Karalis IM,et al.Phosphorus metabolites and the distribution of cell cycle phase of RIF-1 tumors in response to 14 Gy irradiation.Magn Reson Med 1990;16:425-30.
    [29].Sijens PE,Bovee WM,Seijkens D,et al.In vivo ~(31)P-nuclear magnetic resonance study of the response of a murine mammary tumor to different doses of gamma-radiation.Cancer Res 1986;46:1427-32.
    [30].Street JC,Koutcher JA.Effect of radiotherapy and chemotherapy on composition of tumor membrane phospholipids.Lipids 1997;32:45-9.
    [31].Ng TC,Grundfest S,Vijayakumar S,et al.Therapeutic response of breast carcinoma monitored by ~(31)P MRS in situ.Magn Reson Med 1989;10:125-34.
    [32].Jackel MC,Kopf-Maier P,Baumgart F,et al.Value of ~(31)P NMR spectroscopy in predicting the response of a xenografted human hypopharynx carcinoma to irradiation.J Cancer Res Clin Oncol 2000;126:325-31.
    [33]. Solga SF, Horska A, Clark JM, et al. Hepatic ~(31)P magnetic resonance spectroscopy: a hepatologist's user guide. Liver Int 2005; 25:490-500.
    [34]. Buchli R, Meier D, Martin E, et al. Assessment of absolute metabolite concentrations in human tissue by P MRS in vivo. Part II: Muscle, liver, kidney. Magn Reson Med 1994; 32:453-8.
    [35]. Wolf RF, Haagsma EB, Kamman RL, et al. Noninvasive metabolic assessment of human donor livers: prognostic value of P-magnetic resonance spectroscopy for early graft function. Transplantation 1997; 64:147-52.
    1 袁正,肖湘生.肺癌非手术治疗疗效的影像学评价[J].放射学实践,2004,19:93-94.
    2 Leach MO,Verrill M,Glaholm J,et al.Measurements of human breast cancer using magnetic resonance spectroscopy:a review of clinical measurements and a report of localized 31P measurements of response to treatment[J].NMR Biomed,1998,11(7):314-340.
    3 Roebuck JR,Cecil KM,Schnall MD,et al.Human breast lesions:characterization with proton MR spectroscopy[J].Radiology,1998,209(1):269-275.
    4 Katz-Brull R,Lavin PT,Lenkinski RE,et al.Clinical utility of proton magnetic resonance spectroscopy in characterizing breast lesions[J].J Natl Cancer Inst,2002,94(16):1197-1203.
    5 Kurhanewicz J,Swanson M G,Nelson S J,et al.Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer[J].J Magn Reson Imaging,2002,16(4):451-463.
    6 Beloueche-Babari M,Jackson L E,Al-Saffar N M,et al.Magnetic resonance spectroscopy monitoring of mitogen-activated protein kinase signaling inhibition[J].Cancer-Res,2005,65(8):3356-3363.
    7 Mansson S, Johansson E, Magnusson P, et al. 13C imaging-a new diagnostic platform[J]. Eur-Radiol, 2006, 16(1): 57-67.
    
    8 Olsson LE, Chai CM, Axelsson O, et al. MR coronary angiography in pigs with intraarterial injections of a hyperpolarized 13C substance[J]. Magn-Reson-Med. 2006, 55(4): 731-737.
    
    9 Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases[J]. Nature, 2000,407 (6801):249-257.
    
    10 O'Hanlon LH. Taking down tumors: vascular disrupting agents entering clinical trials[J]. J-Natl-Cancer-Inst, 2005, 97(17): 1244-1245
    
    11 Brasch R, Turetschek K. MRI characterization of tumors and grading angiogenesis using macromolecular contrast media: status report[J]. Eur-J-Radiol, 2000, 34(3): 148-155.
    
    12 Dark GG, Hill SA, Prise VE, et al. Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature[J]. Cancer Res, 1997 (57):1829-1834.
    
    13 Beauregard DA, Hill SA, Chaplin DJ, et al. The susceptibility of tumors to the antivascular drug combretastatin A4 phosphate correlates with vascular permeability[J]. Cancer-Res, 2001, 61(18): 6811-6815.
    
    14 Rustin GJ, Galbraith SM, Anderson H, et al. Phase I clinical trial of weekly combretastatin A4 phosphate: clinical and pharmacokinetic results[J]. J-Clin-Oncol, 2003, 21(15): 2815-2822.
    
    15 Stevenson JP, Rosen M, Sun W, et al. Phase I trial of the antivascular agent combretastatin A4 phosphate on a 5-day schedule to patients with cancer: magnetic resonance imaging evidence for altered tumor blood flow[J]. J-Clin-Oncol, 2003, 21(23): 4428-4238.
    
    16 Jin H, Varner J. Integrins: roles in cancer development and as treatment targets[J]. Br-J-Cancer, 2004, 90(3): 561-565.
    
    17 Schmieder AH, Winter PM, Caruthers SD, et al. Molecular MR imaging of melanoma angiogenesis with alphanubeta3-targeted paramagnetic nanoparticles[J]. Magn-Reson-Med, 2005, 53(3): 621 -627.
    18 Leach MO, Brindle KM, Evelhoch JL, et al. The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations[J]. Br-J-Cancer, 2005, 92(9): 1599-1610
    19 Louie AY, Huber MM, Ahrens ET, et al. In vivo visualization of gene expression using magnetic resonance imaging[J]. Nat-Biotechnol, 2000, 18(3): 321-325.
    20 Weissleder R, Moore A, Mahmood U, et al. In vivo magnetic resonance imaging of transgene expression[J]. Nat-Med, 2000, 6(3): 351-355.
    21 Genove G, DeMarco U, Xu H, et al. A new transgene reporter for in vivo magnetic resonance imaging[J]. Nat-Med, 2005, 11(4): 450-454.
    22 Lum LG. T cell-based immunotherapy for cancer: a virtual reality?[J] CA Cancer J Clin. 1999, 49(2): 74-100, 65.
    23 Modo M, Hoehn M, Bulte JW. Cellular MR imaging[J]. Mol-Imaging, 2005, 4(3): 143-164.
    24 Kircher MF, Allport JR, Graves EE, et al. In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors[J]. Cancer-Res, 2003, 63(20): 6838-6846.
    25 Hu DE, Kettunen MI, Brindle KM. Monitoring T-lymphocyte trafficking in tumors undergoing immune rejection[J]. Magn-Reson-Med, 2005, 54(6): 1473-1479.
    26 Hu DE, Beauregard DA, Bearchell MC, et al. Early detection of tumour immune-rejection using magnetic resonance imaging[J]. Br-J-Cancer, 2003, 88(7): 1135-1142.
    27 de-Vries IJ, Lesterhuis WJ, Barentsz JO, et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy[J]. Nat-Biotechnol, 2005, 23(11): 1407-1413.
    28 Zhang Z, Jiang Q, Jiang F, et al. In vivo magnetic resonance imaging tracks adult neural progenitor cell targeting of brain tumor[J]. Neuroimage, 2004, 23(1): 281-287.
    29 Grotzinger C, Wiedenmann B. Somatostatin receptor targeting for tumor imaging and therapy[J]. Ann-N-Y-Acad-Sci, 2004, 1014: 258-264.
    30 刘士远,袁正.叶酸受体介导肿瘤靶向的研究进展[J].现代医学成像,2005,3(6):29-32.
    31 袁正,刘士远,肖湘生,等.磁共振肿瘤靶向对比剂叶酸-PL-Gd-DTPA的实验研究[J].中华医学杂志,2007,87(10):673-678
    32 Ross JS,Fletcher JA,Bloom KJ,et al.Targeted therapy in breast cancer:the HER-2/neu gene and protein[J].Mol-Cell-Proteomics,2004,3(4):379-398.
    33 Artemov D,Mori N,Ravi R,et al.Magnetic resonance molecular imaging of the HER-2/neu receptor[J].Cancer-Res,2003,63(11):2723-2727.
    34 Kim R,Emi M,Tanabe K,et al.The role of apoptotic or nonapoptotic cell death in determining cellular response to anticancer treatment[J].Eur-J-Surg-Oncol,2006,32(3):269-277.
    35 Corsten MF,Hofstra L,Narula J,et al.Counting heads in the war against cancer:defining the role of annexin A5 imaging in cancer treatment and surveillance[J].Cancer-Res,2006,66(3):1255-1260.
    36 Buchholz TA,Davis DW,McConkey DJ,et al.Chemotherapy-induced apoptosis and Bcl-2 levels correlate with breast cancer response to chemotherapy[J].Cancer-J,2003,9(1):33-41.
    37 Anthony ML,Zhao M,Brindle KM.Inhibition of phosphatidylcholine biosynthesis following induction of apoptosis in HL-60 cells[J].J Biol Chem,1999(274):19686-19692.
    38 Williams SN,Anthony ML,Brindle KM.Induction of apoptosis in two mammalian cell lines results in increased levels of fructose-l,6-bisphosphate and CDP-choline as determined by 31P MRS[J].Magn Reson Med,1998(40):411-420.
    39 Schmitz JE,Kettunen MI,Hu DE,et al.1H MRS-visible lipids accumulate during apoptosis of lymphoma cells in vitro and in vivo[J].Magn-Reson-Med,2005,54(1):43-50
    40 Chenevert TL,Stegman LD,Taylor JM,et al.Diffusion magnetic resonance imaging:an early surrogate marker of therapeutic efficacy in brain tumors[J].J-Natl-Cancer-Inst,2000,92(24):2029-2036.
    41 Theilmann RJ,Borders R,Trouard TP,et al.Changes in water mobility measured by diffusion MRI predict response of metastatic breast cancer to chemotherapy[J].Neoplasia,2004,6(6):831-837.
    42 袁正,肖湘生,刘士远,等.磁共振扩散加权成像在肝癌经导管动脉化疗栓塞术后随访中的初步临床应用[J].第二军医大学学报,2007,28(9):983-987.
    43 袁正,肖湘生,刘士远,等.磁共振扩散加权成像在肝癌TACE术后随访中的定性和定量应用[J].介入放射学杂志,2007,16(12):822-826.
    44 Kartachova M,Haas RL,Ohnos RA,et al.In vivo imaging of apoptosis by 99mTc-Annexin V scintigraphy:visual analysis in relation to treatment response[J].Radiother-Oncol,2004,72(3):333-339.
    45 Massoud TF,Gambhir SS.Molecular imaging in living subjects:seeing fundamental biological processes in a new light[J].Genes-Dev,2003,17(5):545-580
    46 Aime S,Cabella C,Colombatto S,et al.Insights into the use of paramagnetic Gd(Ⅲ)complexes in MR-molecular imaging investigations[J].J-Magn-Reson-Imaging,2002,16(4):394-406.
    47 van-Tilborg GA,Mulder WJ,Deckers N,et al.Annexin A5-functionalized bimodal lipid-based contrast agents for the detection of apoptosis[J].Bioconjug-Chem,2006,17(3):741-749.
    48 Konda SD,Aref M,Wang S,et al.Specific targeting of folate-dendrimer MRI contrast agents to the high affinity folate receptor expressed in ovarian tumor xenografts[J].MAGMA,2001,12(2-3):104-13
    49 钟露苗.关于含钆造影剂的风险评估报告[J].中国药物警戒,2007,4(3):180-185
    50.Weissleder R,Mahmood U.Molecular imaging(Review)[J].Radiology,2001,219(2):316-333.
    51.Wu JC,Chen IY,Wang Y,et al.Molecular imaging of the kinetics of vascular endothelial growth factor gene expression in ischemic myocardium[J].Circulation 2004.110(6):685-691.
    52.Massoud TF,Gambhir SS.Molecular imaging in living subjects:seeing fundamental biological processes in a new light[J].Genes Dev,2003,17(5):545-580
    53.Simon BA.Non-invasive imaging of regional lung function using x-ray computed tomography[J].J Clin Monit Comput,2000.16(5-6):433-442.
    54. Mai VM. Hyperpolarized gas and oxygen-enhanced magnetic resonance imaging[J]. Methods Mol Med, 2006.124:325-345
    55. van Beek EJ, Wild JM. Hyperpolarized 3-helium magnetic resonance imaging to probe lung function[J]. Proc Am Thorac Soc, 2005.2(6):528-532, 510
    56. de Lange EE, Altes TA,Patrie JT, et al. Evaluation of asthma with hyperpolarized helium-3 MRI: correlation with clinical severity and spirometry[J]. Chest, 2006,130(4): 1055-1062
    57. Chen BT, Brau AC, Johnson GA. Measurement of regional lung function in rats using hyperpolarized 3helium dynamic MRI[J]. Magn Reson Med, 2003.49(1):78-88
    58. Trampel R,Jensen JH,Lee RF, et al. Diffusional kurtosis imaging in the lung using hyperpolarized 3He[J]. Magn Reson Med. 2006.56(4):733-737
    59. Morbach AE, Gast KK, Schmiedeskamp J, et al. [Microstructure of the lung: diffusion measurement of hyperpolarized 3Helium] [J]. Z Med Phys, 2006.16(2): 114-122.
    60. Hedlund LW,Johnson GA. Mechanical ventilation for imaging the small animal lung[J]. ILAR J, 2002. 43(3):159-174
    61. Chen XJ,Hedlund LW,Mller HE, et al. Detection of emphysema in rat lungs by using magnetic resonance measurements of 3He diffusion[J]. Proc Natl Acad Sci USA, 2000.97(21):11478-11481
    62. Yablonskiy DA, Sukstanskii AL, Leawoods JC, et al. Quantitative in vivo assessment of lung microstructure at the alveolar level with hyperpolarized 3He diffusion MRI[J]. Proc. Natl. Acad. Sci. USA. 2002.99(5):3111-3116
    63. Richard JC,Janier M,Lavenne F, et al. Quantitative assessment of regional alveolar ventilation and gas volume using 13N-N2 washout and PET[J]. J Nucl Med, 2005.46(8):1375-1383
    64. Schuster DP, Kozlowski J, Hogue L. Imaging lung inflammation in a murine model of Pseudomonas infection: a positron emission tomography study[J]. Exp Lung Res, 2003.29(1):45-57.
    65. Dharmarajan S, Schuster DP. Molecular imaging of pulmonary gene expression with positron emission tomography[J]. Proc Am Thorac Soc, 2005.2(6):549-552, 514-516
    66. Weissleder R, Scaling down imaging: molecular mapping of cancer in mice[J]. Nat Rev Cancer, 2002.2(1):11-18
    67. Contag CH, Bachmann MH. Advances in in vivo bioluminescence imaging of gene expression[J]. Annu Rev Biomed Eng, 2002.4:235-260
    68. Lin Y, Weissleder R, Tung CH. Novel near-infrared cyanine fluorochromes: synthesis, properties, and bioconjugation[J]. Bioconjug Chem 2002.13(3):605-610
    69. Peters AM, Saverymuttu SH, Reavy HJ, et al. Imaging of inflammation with indium-111 tropolonate labeled leukocytes[J]. J Nucl Med 1983; 24(1):39-44.
    70. Currie DC, Saverymuttu SH, Peters AM, et al. Indium-111-labeled granulocyte accumulation in the respiratory tract of patients with bronchiectasis[J].Lancet 1987; 1(8546):1335-1339.
    71. Haslett C. Resolution of acute inflammation and the role of apoptosis in the tissue fate of granulocytes[J]. Clin Sci (Lond) 1992; 83(6):639-648.
    72. Weiner RE, Sasso DE, Gionfriddo MA, et al. Early detection of oleic acid-induced lung injury in rats using (111)In-labeled anti-rat intercellular adhesion molecular-1[J]. J Nucl Med 2001; 42(7):1109 -1115.
    73. Rennen HJ, Bleeker-Rovers CP, van Eerd JE, et al. 99mTc-labeled interleukin-8 for scintigraphic detection of pulmonary infections[J]. Chest.2004; 126(6): 1954-1961.
    74. Rhodes CG, Hughes JM. Pulmonary studies using positron emission tomography[J]. Eur Respir J 1995; 8(6):1001-1017.
    75. Jones H, Sriskandan S, Peters A, et al. Dissociation of neutrophil emigration and metabolic activity in lobar pneumonia and bronchiectasis[J]. Eur Respir J 1997; 10(4):795-803.
    76. Jones HA, Clark RJ, Rhodes CG, et al. In vivo measurement of neutrophil activity in experimental lung inflammation[J]. Am J Respir Crit Care Med 1994; 149(6): 1635-1639.
    77. Jones H, Marino P, Shakur B, et al. In vivo assessment of lung inflammatory cell activity in patients with COPD and asthma[J]. Eur Respir J 2003; 21(4):567-573.
    78. Zhou Z, Kozlowski J, Goodrich AL, et al. Molecular imaging of lung glucose uptake after endotoxin in mice[J]. Am J Physiol Lung Cell Mol Physiol 2005; 289(5): L760-768.
    79. Blasberg RG, Tjuvajev JG. Molecular-genetic imaging: current and future perspectives[J]. J Clin Invest 2003; 111(11):1620—1629.
    80. Tjuvajev JG, Stockhammer G, Desai R, et al. Imaging the expression of transfected genes in vivo[J]. Cancer Res. 1995; 55(24):6126-6132.
    81. Groot-Wassink T, Aboagye EO, Glaser M, et al. Adenovirus biodistribution and noninvasive imaging of gene expression in vivo by positron emission tomography using human sodium/iodide symporter as reporter gene[J]. Hum Gene Ther 2002; 13(14):1723-1735.
    82. Richard JC, Zhou Z, Ponde DE, et al. Imaging pulmonary gene expression with positron emission tomography[J]. Am J Respir Crit Care Med 2003; 167(9):1257-1263.
    83. Richard JC, Factor P, Welch LC, et al. Imaging the spatial distribution of transgene expression in the lungs with positron emission tomography[J]. Gene Ther 2003; 10(25):2074-2080.
    84. Ponde DE, Dence CS, Schuster DP, et al. Microwave mediated rapid and reproducible biosynthesis of [18F]FHBG[J]. Nucl Med Biol 2004; 31(1): 133—138.
    85. Richard J, Factor P, Welch LC, et al. Repetitive imaging of reporter gene expression in the lungs[J]. Mol Imaging 2003; 2(4):1- 8.
    86. Dharmarajan S, Hayama M, Kozlowski J, et al. In vivo molecular imaging characterizes pulmonary gene expression during experimental lung transplantation[J]. Am J Transplant 2005; 5(6):1216-1225.
    87. Inubushi M, Wu JC, Gambhir SS, et al. Positron-emission tomography reporter gene expression imaging in rat myocardium [J]. Circulation 2003;107(2):326-332.
    88. Richard JC, Zhou Z, Chen DL, et al. Quantitation of pulmonary transgene expression with PET imaging[J]. J Nucl Med 2004; 45(4):644-654.
    89. Lyons SK, Meuwissen R, Krimpenfort P, et al. The generation of a conditional reporter that enables bioluminescence imaging of Cre/lox P-dependent tumorigenesis in mice[J]. Cancer Res 2003; 63(21):7042-7046.
    90. Dharaiarajan S, Hayama M, Kozlowski J, et al. In vivo molecular imaging characterizes pulmonary gene expression during experimental lung transplantation[J]. Am J Transplant 2005; 5(6):1216-1225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700