用户名: 密码: 验证码:
胰腺癌甲基化异化基因的检测、芯片筛查和诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究胰腺癌SPARC、SARP2基因CpG岛的甲基化分布特征及其与临床生物学特点的关系,以及定量检测方法的建立,并用甲基化基因芯片筛查胰腺癌新的高甲基化异化基因。
     方法:首先收集23例胰腺及癌旁组织、6例慢性胰腺炎和7例正常胰腺组织作为研究对象,健康成人外周血液标本6例作为对照组。抽提上述标本DNA进行重亚硫酸盐修饰,然后进行PCR扩增SPARC、SARP2基因第一外显子区CpG岛区域,测序明确该区域CpG位点甲基化情况,并与相应的临床生物学特征的关系进行分析。另收集原发性胰腺癌10例、慢性胰腺炎10例和健康志愿者6例外周静脉血10ml,取血清提取所有研究对象的血清DNA,重亚硫酸盐修饰后,行SARP2基因BSP扩增测序。其后制备SPARC和ACTB基因检测标准品,同时设计其定量检测引物和探针,建立SPARC基因定量检测方法。最后用甲基化基因芯片筛查胰腺癌高甲基化异化基因。
     结果:1.健康人白细胞、正常胰腺、慢性胰腺炎、胰腺癌及癌旁组织SPARC基因第一外显子区CpG位点甲基化率分别0%、12.4%、25.1%、56.8%、37.8%。胰腺癌SPARC基因甲基化率与正常、慢性胰腺炎比较均差别非常显著(P<0.001),与癌旁比较差别不显著。2.健康人白细胞、正常胰腺、慢性胰腺炎、胰腺癌及癌旁组织DNA中SARP2基因第一外显子区CpG位点甲基化率分别为5.7%、0%、2.5%、37.9%、14.1%;胰腺癌组织与慢性胰腺炎、白细胞及正常胰腺胰组织比较CpG位点甲基化率差别非常显著(P<0.01),而与癌旁比较差别显著(P<0.05)。并且这两个基因均有部分CpG位点具有较高的甲基化率。3.在健康对照者、慢性胰腺炎及胰腺癌患者外周循环核酸中也能检测到SARP2基因甲基化,其CpG位点平均甲基化化率分别为:2.2%、10.4%、16.0%,胰腺癌与健康对照组比较差别非常显著(P<0.01),与慢性胰腺炎比较差别不显著(P>0.05)。4.制备了SPARC基因甲基化标准品和内参ACTB标准品,初步建立了SPARC基因实时定量检测方法(QMT)。5.初步筛查出了部分胰腺癌高甲基化基因。
     结论:1.胰腺癌SPARC、SPAR2基因第一外显子区CpG位点具有较高的甲基化率,并且CpG位点甲基化的分布具有不均衡性,部分位点具有胰腺癌特异性,可作为胰腺癌基因诊断的靶点。2.在胰腺癌外周血循环核酸中可以检测到甲基化异化的SARP2基因,因此循环核酸中甲基化异化基因的检测可以用于胰腺癌的基因诊断。3.SPARC基因的甲基化实时定量检测方法稳定、敏感,可用于胰腺癌的基因诊断。4.甲基化基因芯片筛查到了部分胰腺癌高甲基化基因,对于胰腺癌的诊断和防治具有较大意义。
Objective:To study CpG island's methylated character of SPARC and SARP2 gene in pancreatic cancer and the relationship between it and clinical biology feature,establish a stable method about quantitatve detecting methylated abbrrent genes,and screen methylated aberrant gene by microarray.
     Method:To collect 23 pancreatic cancer and tissues by the side of the cancer、6 chronic pancreatitis and 7 normal pancreatic tissues as research object,6 health adult peripheral blood preparations as control group.The specimen's DNA was extracted and modified by bisulfite,then SPARC,SARP2 gene extron 1 region's CpG island was amplified by PCR.The PCR products were sequenced to identify CpG site methylation situation.The relationship between it and corresponding clinical biology features was analyzed respectively.On the other hand,10 primarily pancreatic cancers、10 chronic pancreatitis and 6 health volunteers were taken 10ml peripheral vein blood respectively. Circulating nucleic acid was extracted from blood serum,modified by bisulfite.Then BSP and sequence was finished for detecting SARP2 gene methylation.While,The quantitative primer and probe of SPARC and inner conferrence gene were designed on the base of the former research,we prepared the standard preparation of target's gene and inner conferrence,and established a method about quantitatve detecting methylated abbrrent genes by quantitative MethyLight technolgy(QMT).Finally,the hyper-methylated aberrant gene was screening by microarray.
     Results:1.The methylation rate of SPARC in health adult peripheral blood WBC, pancreatic normal tissues,chronic pancreatitis,pancreatic cancer and tissues surrounding cancer were 0%、12.4%、25.1%、56.8%、37.8%respectively.The difference of CpG methylation rate between pancreatic cancer and chronic pancreatitis,as well as normal pancreatic tissues is very obvious(P<0.001),while compared with the surrounding's of cancer,the difference is not obvious(P>0.05).2.The methylation rate of SARP2 in health adult peripheral blood WBC,pancreatic normal tissues,chronic pancreatitis, pancreatic cancer and tissues surrounding cancer were 5.7%、0%、2.5%、37.9%、14.1% respectively.The difference of CpG sites methylation rate between pancreatic cancer and chronic pancreatitis,leukocyte as well as normal pancreatic tissues is very obvious (P<0.01),while compared with tissues surrounding cancer,it's difference is also obvious (P<0.05).Some CpG sites in the two genes have higher methylation rate.3.The methylation of SARP2 gene was detected in peripheral blood circulating nucleic acid of health adult,chronic pancreatitis and pancreatic cancer.Their methylation rate was 2.2%、10.4%、16.0%,respectively.There was a obvious difference between pancreatic cancer and healthy contrast(P<0.01),but between pancreatic cancer and chronic pancreatitis(P>0.05).4.We had prepared SPARC and inner reference(ACTB) gene's standard preparation.The quantitative detection of standard preparation is stable and sensitive.5. Some hyper-methylation gene in pancreatic cancer were found through microarray hybridization.
     Conclusion:1.Hypermethylation of a part of SPARC and SARP2 extronl region's CpG sites in pancreatic cancer has tumor specific,and can be used as the target of gene diagnosis of pancreatic cancer.2.Abbrrent methylated of SARP2 gene can be detected in circulating nucleic acid of peripheral blood of pancreatic cancer,the methylation detection of SARP2 gene can be used for diagnosis and differential diagnosis of pancreatic cancer.3. The QMT is stable and reliable.The methylated detective sensitivity in tissue is up to 2.0 copy/μl,this method can be used for gene diagnosis of pancreatic cancer.4.Some hypermethylated aberrant CpG regions were found by methylated gene microarray screening.This will establish the foundation for looking for specific hypermethylated aberrant gene in pancreatic cancer.
引文
[1] Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy.Nature, 2004,429 (6990):457-463
    [2] Issa JP. CpG island methylator phenotype in cancer. Nat Rev Cancer, 2004, 4(12):988-993
    [3] Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet, 2002, 3(6):415-428
    [4] Fukushima N, Sato N, Ueki T, Rosty C, Walter KM, Wilentz RE, Yeo CJ, Hruban RH, Goggins M. Aberrant methylation of preproenkephalin and p16 genes in pancreatic intraepithelial neoplasia and pancreatic ductal adenocarcinoma. Am J Pathol, 2002, 160(5):1573-1581
    [5] Kim SG, Wu TT, Lee JH, Yun YK, Issa JP, Hamilton SR, Rashid A. Comparison of epigenetic and genetic alterations in mucinous cystic neoplasm and serous microcystic adenoma of pancreas. Mod Pathol, 2003, 16(11):1086-1094
    [6] Ohtsubo K, Watanabe H, Yao F, Okada G, Mouri H, Yamaguchi Y, Sawabu N. Preproenkephalin hypermethylation in the pure pancreatic juice compared with p53 mutation in the diagnosis of pancreatic carcinoma. J Gastroenterol, 2006, 41(8):791-797
    [7] Sato N, Goggins M. The role of epigenetic alterations in panceratic cancer. J Hepatobiliary Pancreat Surg, 2006,13(4):286-295
    [8] Fukushima N, Walter KM, Uek T, Sato N, Matsubayashi H, Cameron JL, Hruban RH, Canto M, Yeo CJ, Goggins M. Diagnosing pancreatic cancer using methylation specific PCR analysis of pancreatic juice. Cancer Biol Ther, 2003 , 2(1):78-83
    [9] Goelz SE, Vogelstein B, Hamilton SR, Feinberg AP. Hypomethylation of DNA from benign and malignant human colon neoplasmas. Science, 1985, 228(4696): 187-190
    [10] Wainfan E, Poirier LA. Methylgroups in carcinogenesis: effects on DNA methylation and gene expression. Cancer Res, 1992, 52 (7 Suppl): 2071s-2077s
    
    [11] Costello JF, Friihwald MC, Smiraglia DJ, Rush LJ, Robertson GP, Gao X, Wright FA, Feramisco JD, Peltomaki P, Lang JC, Schuller DE, Yu L, Bloomfield CD,Caligiuri MA, Yates A, Nishikawa R, Su Huang H, Petrelli NJ, Zhang X, O'Dorisio MS, Held WA, Cavenee WK, Plass C. Aberrant CpG-island methylation has non-random and tumour-type specific patterns. Nature Genet, 2000, 24 (2): 132-138
    [12] Costello JF, Plass C. Methylation maters. J Med Genet, 2001, 38(2):285-303
    [13] Sato N, Fukushima N, Maehara N, Matsubayashi H, Koopmann J, Su GH, Hruban RH, Goggins M. SPARC/osteonectin is a frequent target for aberrant methylation in pancreatic adenocarcinoma and a mediator of tumor-stromal interactions. Oncogene, 2003,22(32):5021-5030
    [14] Matsubayashi H, Canto M, Sato N, Klein A, Abe T, Yamashita K, Yeo CJ, Kalloo A, Hruban R, Goggins M. DNA methylation alterations in the pancreatic juice of patients with suspected pancreatic disease. Cancer Res, 2006, 66(2): 1208-1217
    [15] Eads CA, Danenberg KD, Kawakami K, Saltz LB, Blake C, Shibata D, Danenberg PV,Laird PW. MethyLight : a high-throughput assay to measure DNA methylation. Nucleic Acids Res, 2000, 28(8):e32.
    [16] Zeschnigk M, Bohringer S, Price EA, Onadim Z, Masshofer L, Lohmann DR.A novel real-time PCR assay for quantitative analysis of methylated alleles (QAMA): analysis of the retinoblastoma locus. Nucleic Acids Res, 2004,32(16):el25
    [17] Sano A, Kage H, Sugimoto K, Kitagawa H, Aki N, Goto A, Fukayama M, Nakajima J,Takamoto S, Nagase T, Yatomi Y, Ohishi N, Takai D.A second-generation profiling system for quantitative methylation analysis of multiple gene promoters: application to lung cancer. Oncogene, 2007, 26(45):6518-6525
    [18] Slattery ML, Curtin K, Sweeney C, Levin TR, Potter J, Wolff RK, Albertsen H,Samowitz WS. Diet and lifestyle factor associations with CpG island methylator phenotype and BRAF mutations in colon cancer. Int J Cancer. 2007, 120(3):656-663
    [19] Jiao L, Zhu J, Hassan MM, Evans DB, Abbruzzese JL, Li D. K-ras mutation and pl6 and preproenkephalin promoter hypermethylation in plasma DNA of pancreatic cancer patients: in relation to cigarette smoking. Pancreas, 2007, 34(1):55-62.
    [20] Sato N, Fukushima N, Maitra A, Matsubayashi H, Yeo CJ, Cameron JL, Hruban RH, Goggins M.Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays. Cancer Res, 2003, 63(13):3735-3742
    [21] Watanabe H, Okada G, Ohtsubo K, Yao F, Jiang PH, Mouri H, Wakabayashi T,Sawabu N. Aberrant methylation of secreted apoptosis-related protein 2 (SARP2) in pure pancreatic juice in diagnosis of pancreatic neoplasms. Pancreas, 2006, 32(4):382-389
    [22] Toyota M, Ohe-Toyota M, Ahuja N, Issa JP.Distinct genetic profilesin colorectal tumors with or with out the CpG island methylator phenotype. Proc Natl Acad Sci USA, 2000, 97 (2):710-715
    [23] Toyota M, Ahuja N, Suzuki H, Itoh F, Ohe-Toyota M, Imai K, Baylin SB, Issa JP. Aberrant methylationin gastric cancer associated with the CpG island methylator phenotype. Cancer Res, 1999, 59(21):5438-5442
    [24] Strathdee G, Appleton K, Illand M, Millan DW, Sargent J, Paul J, Brown R. Primary ovarian carcinomas display multiple methylator phenotypes involving known tumors uppressorg enes. Am J Pathol, 2001,158(3): 1121-1127.
    [25] Ueki T, Toyota M, Sohn T, Yeo CJ, Issa JP, Hruban RH, Goggins M. Hypermethylation of multiple genes In pancreaticadenocarcinoma. Cancer Res, 2000, 60(7):1835-1839
    [26] Fernandez-Vega C, Garcia-Olmo DC, Ballesteros MA, Garcia-Olmo D. Development of a simple and sensitive technique for detection of point mutations in the K-ras oncogene. Mol Biotechnol. 2002, 22(2) :115-121
    [27] Ito T, Kaneko K, Makino R, Konishi K, Kurahashi T, Ito H, Katagiri A, Kushima M, Kusano M, Mitamura K, Imawari M.Clinical significance in molecular detection of p53 mutation in serum of patients with colorectal carcinoma. Oncol Rep.2003,10(6): 1937-1942
    [28] Kanyama Y, Hibi K, Nakayama H, Kodera Y, Ito K, Akiyama S, Nakao A. Detection of p16 promoter hypermethylation in serum of gastric cancer patients. Cancer Sci. 2003,94(5):418-420
    [29] Nakayama H, Hibi K, Takase T, Yamazaki T, Kasai Y, Ito K, Akiyama S, Nakao A.Molecular detection of p16 promoter methylation in the serum of recurrent colorectal cancer patients. Int J Cancer. 2003,105(4):491-493
    [30] Grady WM, Rajput A, Lutterbaugh JD, Markowitz SD. Detection of aberrantly methyaated hMLH1 promoter DNA in the serum of patients with microsatellite unstable colon cancer. Cancer Res, 2001, 61(3):900-902.
    [31] Esteller M . Relevance of DNA methylation in the management of cancer. Lancet Oncol, 2003,4(6) :351-358.
    [32] Goessl C. Diagnostic potential of circulating nucleic acids for oncology.Expert Rev Mol Diagn, 2003, 3(4):431-42
    [33] Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res, 1977, 37(3):646-50
    [34] Stroun M, Anker P, Maurice P, Lyautey J, Lederrey C, Beljanski M. Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology. 1989,46(5):318-22
    [35] Sorenson GD, Pribish DM, Valone FH, Memoli VA, Bzik DJ, Yao SL. Soluble normal and mutated DNA sequences from single-copy genes in human blood. Cancer Epidemiol Biomarkers Prev. 1994, 3(1):67-71
    [36] Vasioukhin V, Anker P, Maurice P, Lyautey J, Lederrey C, Stroun M. Point mutations of the N-ras gene in the blood plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukaemia. Br J Haematol, 1994, 86(4):774-779
    [37] Taback B, O'Day SJ, Boasberg PD, Shu S, Fournier P, Elashoff R, Wang HJ, Hoon DS. Circulating DNA microsatellites: molecular determinants of response to biochemotherapy in patients with metastatic melanoma. J Natl Cancer Inst, 2004, 96(2): 152-156
    [38] Deligezer U, Yaman F, Erten N, Dalay N. Frequent copresence of methylated DNA and fragmented nucleosomal DNA in plasma of lymphoma patients. Clin Chim Acta, 2003,335(1-2):89-94.
    [39] Wang Q, Larson PS, Schlechter BL, Zahid N, Finnemore E, de las Morenas A,Blanchard RA, Rosenberg CL. Loss of heterozygosity in serial plasma DNA samples during follow-up of women with breast cancer. Int J Cancer,2003, 106(6):923-929
    [40] Sozzi G, Musso K, Ratcliffe C, Goldstraw P, Pierotti MA, Pastorino U. Detection of microsatellite alterations in plasma DNA of non-small cell lung cancer patients: a prospect for early diagnosis. Clin Cancer Res, 1999, 5(10):2689-2692
    [41] Sozzi G, Conte D, Leon M, Ciricione R, Roz L, Ratcliffe C, Roz E, Cirenei N,Bellomi M, Pelosi G, Pierotti MA, Pastorino U. Quantification of free circulating DNA as a diagnostic marker in lung cancer. J Clin Oncol, 2003,21(21):3902-3908
    [42] Chang HW, Lee SM, Goodman SN, Singer G, Cho SK, Sokoll LJ, Montz FJ, Roden R,Zhang Z, Chan DW, Kurman RJ, Shih IeM. Assessment of plasma DNA levels, allelic imbalance, and CA 125 as diagnostic tests for cancer. J Natl Cancer Inst,2002,94(22): 1697-703
    [43] Wong IH, Lo YM, Yeo W, Lau WY, Johnson PJ. Frequent p15 promoter methylation in tumor and peripheral blood from hepatocellular carcinoma patients.Clin Cancer Res, 2000,6(9):3516-3521
    [44] Hoque MO, Feng Q, Toure P, Dem A, Critchlow CW, Hawes SE, Wood T, Jeronimo C,Rosenbaum E,Stem J,Yu M,Yrink B,Kiviat NB,Sidransky D.Detection of aberrant methylation of four genes in plasma DNA for the detection of breast cancer.,2006,24(26):4262-4269
    [45]Korshunova Y,Maloney RK,Lakey N,Citek RW,Bacher B,Budiman A,Ordway JM,McCombie WR,Leon J,Jeddeloh JA,McPherson JD.Massively parallel bisulphite pyrosequencing reveals the molecular complexity of breast cancer-associated cytosine-methylation pattems obtained from tissue and serum DNA.Genome Res,2008,18(1):19-29.
    [46]Laird PW.The power and the promise of DNA methylation markers.Nat Rev Cancer,2003,3(4):253-266
    [47]Wu J,Issa JR Herman J,Bassett DE Jr,Nelkin BD,Baylin SB.Expression of an exogenous eukaryotic DNA methyltransferase gene induces transformation of NIH 3T3 cells.Proc Natl Acad Sci USA,1993,90(19):8891-8895
    [48]Oakeley E J,Schmitt F,Jost JP.Quantification of 5-methylcytosine in DNA by the chloroacetaldehyde reaction.Biotechnique,1999,27(4):744-746,748-750,752
    [49]Bensaada M,Kiefer H,Tachdjian G,Lapierre JM,Cacheux V,Niveleau A,Metezeau P.Altered patterns of DNA methylation on chromosomes from leukemia cell lines:identification of 5-methylcytosines by indirect immunodetection.Cancer Genet Cytogenet,1998,103(2):101-109
    [50]Frommer M,McDonald LE,Millar DS,Collis CM,Watt F,Grigg GW,Molloy PL,Paul CL.A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands.Proc Natl Acad Sci USA,1992,89(5):1827-1831
    [51]Herman JG,Graft JR,Myohanen S,Nelkin BD,Baylin SB.Methylation-specific PCR:a novel PCR assay for methylation status of CpG islands.Proc Natl Acad Sci USA,1996,93(18):9821-9826
    [52]Gonzalgo ML,Jones PA.Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension(Ms-SNuPE).Nucleic Acids Res,1997,25(12):2529-2531
    [53]Xiong Z,Laird PW.COBRA:a sensitive and quantitative DNA methylation assay.Nucleic Acids Res,1997,25(12):2532-2534
    [54]邓大君,邓国仁,吕有勇,等。变性高效液相色谱法检测CpG岛胞嘧啶甲基化.中华医学杂志,2001,80:158-161
    [55] Yan PS, Chen CM, Shi H, Rahmatpanah F, Wei SH, Caldwell CW, Huang TH. Dissecting complex epigenetic alterations in breast cancer using CpG island microarrays. Cancer Res, 2001, 61(23): 8375-8380
    [56] Gitan RS, Shi H, Chen CM, Yan PS, Huang TH. Methylation-specific oligonucleotides microarray: a new potential for high-throughput methylation analysis. Genome Res 2002, 12(1): 158-164
    
    [57] Ramsay G. DNA chips: state-of-the art. Nature Biotechnology, 1998, 16(1):40-44
    [58] Marshall A, Hodgson J. DNA chips: an array of possibilities. Nat Biotechno, 1998, 16(1):27-31
    [59] McGall GH, Christians FC.High-density genechip oligonucleotide probe arrays. Adv Biochem Eng Biotechnol,2002,77:21-42
    [60] Hughes TR, Mao M, Jones AR, Burchard J, Marton MJ, Shannon KW, Lefkowitz SM,Ziman M, Schelter JM, Meyer MR, Kobayashi S, Davis C, Dai H, He YD, Stephaniants SB, Cavet G, Walker WL, West A, Coffey E, Shoemaker DD, Stoughton R, Blanchard AP, Friend SH, Linsley PS.Expression profiling using microarrays fabricated by an Ink-Jet oligonucleotides synthesizer. Nature Biotechnology, 2001,19(4):342-347
    [61] Gitan RS, Shi H, Chen CM, Yan PS, Huang TH. Methylation-specific oligonucleotides microarray: a new potential for high-throughput methylation analysis. Genome Res, 2002, 12(1): 158-164.
    [62] Kirmizis A, Bartley SM, Kuzmichev A, Margueron R, Reinberg D, Green R, Farnham PJ. Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27.Genes Dev, 2004,18(13):1592-1605
    [63] Rauch TA, Zhong X, Wu X, Wang M, Kernstine KH, Wang Z, Riggs AD, Pfeifer GP. High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proc Natl Acad Sci USA. 2008,105(1):252-257
    [64] Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 2003,19(2):185-93
    [65] Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res, 2003, 31(4):e15
    [66] Wang X, He H, Li L, Chen R, Deng XW, Li S. NMPP: a user-customized NimbleGen microarray data processing pipeline. Bioinformatics, 2006,22(23):2955-2957
    [67] Ehrlich M. DNA methylation in cancer: too much but also too little. Oncogene, 2002, 21(35):5400-5413
    [68] Robertson KD. DNA methylation, methyltransferases, and cancer. Oncogene, 2001, 20(24): 3139-55
    [69] Ueki T, Toyota M, Skinner H, Walter KM, Yeo CJ, Issa JP, Hruban RH, Goggins M. Identification and characterization of differentially methylated CpG islands in pancreatic carcinoma. Cancer Res, 2001, 61(23):8540-8546
    [70] Dammann R, Schagdarsurengin U, Liu L, Otto N, Gimm O, Dralle H, Boehm BO, Pfeifer GP, Hoang-Vu C. Frequent RASSF1A promoter hypermethylation and K-ras mutations in pancreatic carcinoma. Oncogene, 2003, 22(24):3806-3812
    [71] Liu L, Broaddus RR, Yao JC, Xie S, White JA, Wu TT, Hamilton SR, Rashid A. Epigenetic alterations in neuroendocrine tumors: methylation of RAS-association domain family 1, isoform A and p16 genes are associated with metastasis. Mod Pathol,2005, 18(12):1632-1640
    [72] Pizzi S, Azzoni C, Bottarelli L, Campanini N, D'Adda T, Pasquali C, Rossi G, Rindi G, Bordi C. RASSF1A promoter methylation and 3p21.3 loss of heterozygosity are features of foregut, but not midgut and hindgut, malignant endocrine tumours. J Pathol,2005,206(4):409-416
    [73] House MG, Herman JG, Guo MZ, Hooker CM, Schulick RD, Lillemoe KD, Cameron JL, Hruban RH, Maitra A, Yeo CJ. Aberrant hypermethylation of tumor suppressor genes in pancreatic endocrine neoplasms. Ann Surg, 2003, 238(3):423-31; discussion 431-432
    [74] Suzuki M, Shigematsu H, Shames DS, Sunaga N, Takahashi T, Shivapurkar N,Iizasa T, Frenkel EP, Minna JD, Fujisawa T, Gazdar AF. DNA methylation-associated inactivation of TGFbeta-related genes DRM/Gremlin, RUNX3, and HPP1 in human cancers. Br J Cancer, 2005, 93(9):1029-1037
    [75] Matsubayashi H, Canto M, Sato N, Klein A, Abe T, Yamashita K, Yeo CJ, Kalloo A, Hruban R, Goggins M. DNA methylation alterations in the pancreatic juice of patients with suspected pancreatic disease. Cancer Res, 2006, 66(2):1208-1217
    
    [76] Peng DF, Kanai Y, Sawada M, Ushijima S, Hiraoka N, Kitazawa S, Hirohashi S. DNA methylation of multiple tumor-related genes in association with overexpression of DNA methyltransferase 1 (DNMT1) during multistage carcinogenesis of the pancreas. Carcinogenesis, 2006, 27(6): 1160-1168
    [77] Attri J, Srinivasan R, Majumdar S, Radotra BD, Wig J. Alterations of tumor suppressor gene p16INK4a in pancreatic ductal carcinoma. BMC Gastroenterol, 2005, 5:22
    [78] Yan L, McFaul C, Howes N, Leslie J, Lancaster G, Wong T, Threadgold J, Evans J, Gilmore I, Smart H, Lombard M, Neoptolemos J, Greenhalf W. Molecular analysis to detect pancreatic ductal adenocarcinoma in high-risk groups. Gastroenterology, 2005, 128(7):2124-2130
    [79] Gerdes B, Ramaswamy A, Ziegler A, Lang SA, Kersting M, Baumann R, Wild A, Moll R, Rothmund M, Bartsch DK. p16INK4a is a prognostic marker in resected ductal pancreatic cancer: an analysis of p16INK4a, p53, MDM2, and Rb. Ann Surg, 2002, 235(1):51-59
    [80] Gerdes B, Ramaswamy A, Kersting M, Ernst M, Lang S, Schuermann M, Wild A, Bartsch DK. p16(INK4a) alterations in chronic pancreatitis-indicator for high-risk lesions for pancreatic cancer. Surgery, 2001, 129(4):490-497
    [81] Klump B, Hsieh CJ, Nehls O, Dette S, Holzmann K, Kiesslich R, Jung M, Sinn U, Ortner M, Porschen R, Gregor M. Methylation status of p14ARF and p16INK4a as detected in pancreatic secretions. Br J Cancer, 2003, 88(2):217-222
    [82] Infante JR, Matsubayashi H, Sato N, Tonascia J, Klein AP, Riall TA, Yeo C,Iacobuzio-Donahue C, Goggins M. Peritumoral fibroblast SPARC expression and patient outcome with respectable pancreatic adenocarcinoma. J Clin Oncol, 2007, 25(3):319-325
    [83] Rosty C, Ueki T, Argani P, Jansen M, Yeo CJ, Cameron JL, Hruban RH, Goggins M. Overexpression of S100A4 in pancreatic ductal adenocarcinomas is associated with poor differentiation and DNA hypomethylation. Am J Pathol, 2002, 160(1):45-50
    [84] Sato N, Fukushima N, Maitra A, Iacobuzio-Donahue CA, van Heek NT, Cameron JL, Yeo CJ, Hruban RH, Goggins M. Gene expression profiling identifies genes associated with invasive intraductal papillary mucinous neoplasms of the pancreas. Am J Pathol, 2004,164(3):903-914
    [85] Matsubayashi H, Sato N, Fukushima N, Yeo CJ, Walter KM, Brune K, Sahin F, Hruban RH, Goggins M, Methylation of cyclin D2 is observed frequently in pancreatic cancer but is also an age-related phenomenon in gastrointestinal tissues. Clin Cancer Res, 2003, 9(4): 1446-1452
    [86] Hewitt KJ, Agarwal R, Morin PJ. The claudin gene family: expression in normal and neoplastic tissues. BMC Cancer, 2006, 6:186

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700