用户名: 密码: 验证码:
20S蛋白酶体在人视网膜色素上皮细胞老化中的改变及其在诱导衰老中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:年龄相关性黄斑变性(AMD)是全球范围内老年人群中的主要致盲性眼病,其发病机制尚不清楚。视网膜色素上皮细胞的老化及伴随发生的功能障碍被认为是AMD发生中关键的早期病变。20S蛋白酶体在维持细胞内环境平衡和调节细胞基本生理功能中具有重要作用,与细胞的老化和衰老有密切关系。已证明在多种细胞和组织的老化进程中,20S蛋白酶体活性、含量和表达水平发生改变,这些改变具有高度的细胞和组织特异性;同时,20S蛋白酶体活性受到特异性的抑制或加强时,可诱导细胞老化进程的加速或减缓。20S蛋白酶体在人RPE细胞的老化和衰老中很可能也具有相似的效应,但目前尚未见相关报道。
     目的:通过检测人RPE细胞老化中的20S蛋白酶体活性、含量和表达水平的变化,了解20S蛋白酶体的氧化蛋白质降解功能与人RPE细胞老化间的相关性;进一步通过特异性抑制20S蛋白酶体活性,分析其对RPE细胞老化进程的影响及可能的机制。
     方法:(1)参照本实验室已有方法,建立原代培养的人RPE细胞体外复制衰老模型,常规传代并记录传代次数,选择第2~4代、12~14代和22~24代细胞分别作为RPE细胞体外老化的少年期、中年期和老年期细胞,对各期细胞的老化和衰老特征进行如下鉴定:倒置相差显微镜观察形态特征、电子显微镜观察亚细胞特征、XTT法检测增生活性、β-半乳糖苷酶染色检测衰老细胞比例和流式细胞仪检测自发荧光水平。(2)在经鉴定的人RPE细胞复制衰老模型中,研究20S蛋白酶体的年龄相关性改变,包括:荧光标记蛋白质底物法测定20S蛋白酶体的降解活性,DNPH比色法检测细胞内氧化蛋白质水平,western blot检测20S蛋白酶体的含量,细胞免疫荧光法分析RPE细胞内的氧化蛋白质和20S蛋白酶体的分布和相对定量,以及real-time PCR分析20S蛋白酶体活性亚基的表达水平。(3)用不同浓度的蛋白酶体特异性抑制剂MG132处理少年期RPE细胞,检测短暂抑制、持续抑制或抑制后恢复三种情况下的RPE细胞的老化和衰老特征,并进一步测定MG132干预后RPE细胞的蛋白酶体活性和氧化蛋白质水平,分析20S蛋白酶体活性抑制对人RPE细胞老化进程的影响效应及其可能的作用机理。
     结果:(1)以少年期细胞作为对照,随着RPE细胞体外传代次数的增加,中年期和老年期RPE细胞部分出现体积变大、形态和排列失规则;电子显微镜观察可见老年期的细胞胞浆中有空泡形成、尘样致密物聚集和细胞器结构模糊等改变;同时细胞增生活性明显降低,β-半乳糖苷酶染色阳性细胞比例显著增加,细胞内自发荧光水平升高。提示人RPE细胞经过重复的体外传代后逐渐老化,具备衰老表型。(2)蛋白酶体活性检测发现,老年期RPE细胞中20S蛋白酶体的PGPH、CT-L和T-L三种特异性水解活性较少年期均显著降低,蛋白酶体对FITC-酪蛋白的降解能力也减弱至少年期细胞活性的50%左右。蛋白酶体功能的削弱伴随着细胞内氧化蛋白质水平显著升高,然而,细胞内20S蛋白酶体的含量无显著改变。进一步的细胞免疫荧光定位和定量分析提示,RPE细胞内的氧化蛋白质随着老化由细胞核周区域重分布至核内,老化相关的氧化蛋白质水平升高在细胞核周区域和核内最为显著;而20S蛋白酶体的分布始终以细胞核内为主。20S蛋白酶体比氧化蛋白质的比率反映了蛋白酶体的水解效率,少年期RPE细胞核中这一比率的值最大,到老年期降低至不到50%,而细胞浆中的这一比率较为低且稳定。实时定量PCR分析显示RPE细胞中,20S蛋白酶体β5亚基的基因表达随老化呈双相改变,老年期表达水平显著降低,分别是少年期和中年期的83%和68%。(3)亚毒性剂量的MG132处理后,年轻RPE细胞出现不可逆的生长停滞、形态和排列失规则、胞浆空泡化和β-半乳糖苷酶染色增强的衰老表型,这一诱导衰老效应具有剂量和时间依赖性。进一步的蛋白酶体功能检测和细胞内氧化蛋白质定量分析提示,5μM浓度的MG132首先抑制RPE细胞中的PGPH活性和CT-L活性,并显著降低20S蛋白酶体对FITC标记酪蛋白的降解能力,但T-L活性对这一浓度的MG132较为不敏感。同时,这一浓度的MG132并不引起RPE细胞内氧化蛋白质水平的明显增加。10μM浓度的MG132可显著抑制蛋白酶体的3种水解活性,并使RPE细胞内的氧化蛋白质含量显著升高。
     结论:(1)体外培养的RPE细胞经过重复多次的传代后表现出典型的衰老表型,提示RPE细胞的复制衰老模型可用于老化和衰老相关研究;(2)人RPE细胞中的20S蛋白酶体功能随着老化而降低,伴随细胞内氧化蛋白质含量升高。这一蛋白酶体功能的老化相关性减弱可能是活性亚基的表达水平改变和/或发生氧化性修饰造成的。RPE细胞中的20S蛋白酶体集中分布在细胞核内,细胞核内的蛋白酶体降解效率随老化显著降低,提示蛋白酶体在细胞核中的作用与RPE细胞的老化进程关系最为密切。(3)蛋白酶体特异性抑制剂MG132可诱导年轻RPE细胞出现不可逆的衰老表型,这一诱导效应的原因至少包括氧化蛋白质聚集和蛋白酶体对多种细胞因子调节障碍,后者所占的比重很可能超过预期,仍待进一步探索。
     总之,我们的实验提示蛋白酶体在RPE细胞老化、功能失调和AMD的发病中具有重要的调节效应。这些研究结果目前尚未见于报道。
Background: Age-related macular degeneration (AMD) remains high incidence and accounts for a main cause of blindness in aging people, but its mechanism is still poorly understood. Aging and associated dysfunction of retinal pigment epithelial (RPE) cells are believed to be the pathological onset of AMD. The 20S proteasome has been tightly correlated with cell aging due to its fundamental role in maintaining cellular homeostasis, but its implication in human RPE cell aging was seldom concerned.
     Purpose: This study aimed to demonstrate the interconnections between proteasome and RPE aging by characterizing age-dependent changes of the 20S proteasome in primarily cultured human RPE cells, and further investigate the impact of specific proteasome inhibition on RPE aging process.
     Methods: (1) A replicative aging RPE cell model was established based on previous work of our lab. The primarily cultured human RPE cells were maintained and subcultured as usual. Passages 2~4, 12~14 and 22~24 were selected and defined as the young, middle and old passage group, respectively. For each passage group, RPE cells went through inverted phase contrast microscope and electro-microscope observation, XTT test for cell viability,β-galactosidase staining for senescence detection, and flow cytometry assay for cellular autofluorescence intensity. (2) The fluorogenic substrates (LLE-AMC, suc-LLVY-AMC, LSTR-AMC and FITC-casein) were used to determine the proteolytic activities of the 20S proteaosome in RPE lysates. Colorimetric carbonyl assay and western blot were employed for measurement of oxidized protein and 20S proteasome content, respectively. Immunofluorescence assay was applied for intracellular localization and quantification of both the oxidized proteins and 20S proteasome. Real-time PCR was used to detect the gene expression of the proteasomal proteolytic subunits. (3) RPE cells of early passage group were treated with MG132, a specific proteasome inhibitor, and the age-related characters were investigated through microscope observation, XTT test andβ-galactosidase staining. The proteasome function and intracellular oxidized protein content was determined with aforementioned methods.
     Results: (1) RPE cells in culture exhibited typical features of senescent at the late stage of cell growth, as they were enlarged, did not line up in parallel arrays, showed plasmic vaculation, had reduced cell viability, turned positive toβ-galactosidase senescence biomarker, and had elevated cellular autofluorescence. (2) Significant decline in all the three specific activities and degradation of FITC-casein of the 20S proteasome was found in aging RPE cells. The malfunctions were accompanied with remarkably increased content of oxidized proteins in the old RPE cells, and stable content of the 20S core. Immunofluorescence assay revealed that a most significant elevation of the oxidized proteins content occurred in the peri-nuclear regions and nucleus, while the 20S proteasome was concentrated in RPE nucleus regardless of passages. Proteasome-to-oxidized protein ratio indicated functional efficiency of the 20S proteasome. The highest value of this ratio was found in the nucleus of young RPE passages, which declined to less than 50% in the old passages. Real-time PCR assay revealed an up-regulated expression of the proteasomalβ5 subunit followed by a down-regulated level during RPE aging process. (3) Treatment with sub-toxic dose of MG132 elicited irreversible senescence-like features in young RPE cells, including growth arrest, typical senescence morphology, plasmic vaculation, and enhancedβ-galactosidase staining. These inducible features appeared to be dose- and time-dependent. While 5μM of MG132 inhibited a large part of PGPH activity, CT-L activity and FITC-casein degradation of the proteasome, the same dosage exhibited little effect on T-L activity and intracellular oxidized protein level. 10μM of MG132 diminished proteasomal activities and lead to significantly higher content of oxidized proteins in young RPE cells.
     Conclusions: An aging model of human RPE cells was validated for age- and senescence-related investigation in vitro. In such a model, we testified age-related malfunction of the 20S proteasome, concomitant with increased oxidized protein level. Partial inhibition of proteasomes in young RPE cells caused by treatment with specific inhibitors induced a senescence-like phenotype. Thus we demonstrated the fundamental importance of the proteasome in human RPE cells aging. Future researches on the mechanism of these events are still strongly recommended.
     To sum up, our research supported a fundmental role of the proteasome in RPE cell aging. To the best of our knowledge, similar findings have not been reported yet at home and abroad.
引文
1王雨生.脉络膜新生血管性疾病.北京:人民卫生出版社. 2007; 465-467.
    2 Boulton M, Róanowska M, Wess T. Ageing of the retinal pigment epithelium: implications for transplantation. Graefes Arch Clin Exp Ophthalmol. 2004; 242(1): 76-84.
    3 Zarbin, MA. Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol. 2004; 122(4): 598-614.
    4 Boulton M, Dayhaw-Barker P. The role of the retinal pigment epithelium: topographical variation and ageing changes. Eye. 2001; 15 (Pt 3): 384-389.
    5 Chondrogianni N, Gonos ES.Proteasome dysfunction in mammalian aging: steps and factors involved. Exp Gerontol. 2005; 40(12): 931-938.
    6 Torres CA, Perez VI. Proteasome modulates mitochondrial function during cellular senescence. Free Radic Biol Med. 2008; 44 (3): 403-414.
    7 Szweda PA, CM, Lundberg KC, Oberley TD, Szweda LI.Aging, lipofuscin formation, and free radical-mediated inhibition of cellular proteolytic systems. Ageing Res Rev. 2003; 2(4): 383-405.
    8 Vernace VA, Schmidt-Glenewinkel T, Figueiredo-Pereira ME.Aging and regulated protein degradation: who has the UPPer hand? Aging Cell. 2007; 6(5): 599-606.
    9 Reinstein E, Ciechanover A. Narrative review: protein degradation and human diseases: the ubiquitin connection. Ann Intern Med. 2006; 145(9): 676-684.
    10 Davies KJ. Degradation of oxidized proteins by the 20S proteasome. Biochimie. 2001; 83(3-4): 301-310.
    11 Hyun DH, Lee M, Halliwell B, Jenner P.Proteasomal inhibition causes the formation of protein aggregates containing a wide range of proteins, including nitrated proteins. J Neurochem. 2003; 86(2): 363-373.
    12 Chondrogianni N, Fragoulis EG, Gonos ES. Protein degradation during aging: the lysosome-, the calpain- and the proteasome-dependent cellular proteolytic systems. Biogerontology. 2002; 3(1-2): 121-123.
    13 Shringarpure R, Grune T, Mehlhase J, Davies KJ. Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome. J Biol Chem. 2003; 278(1): 311-318.
    14 Powell SR, Wang P, Divald A, Teichberg S, Haridas V, McCloskey TW, Davies KJ, Katzeff H. Aggregates of oxidized proteins (lipofuscin) induce apoptosis through proteasome inhibition and dysregulation of proapoptoticproteins. Free Radic Biol Med. 2005; 38(8): 1093-1101.
    15 Viteri G, Carrard G, Birlouez-Aragón I, Silva E, Friguet B. Age-dependent protein modifications and declining proteasome activity in the human lens. Arch Biochem Biophys. 2004; 427(2): 197-203.
    16 Ferrington DA, Husom A, Thompson LV, Altered proteasome structure, function, and oxidation in aged muscle. FASEB J. 2005; 19(6): 644-646.
    17 Carrard G, Dieu M, Raes M, Toussaint O, Friguet B. Impact of ageing on proteasome structure and function in human lymphocytes. Int J Biochem Cell Biol. 2003; 35(5): 728-739.
    18 Hwang JS, Hwang JS, Chang I, Kim S. Age-associated decrease in proteasome content and activities in human dermal fibroblasts: restoration of normal level of proteasome subunits reduces aging markers in fibroblasts from elderly persons. J Gerontol A Biol Sci Med Sci. 2007; 62(5): 490-499.
    19 Hope AD, de Silva R, Fischer DF, Hol EM, van Leeuwen FW, Lees AJ. Alzheimer's associated variant ubiquitin causes inhibition of the 26S proteasome and chaperone expression. J Neurochem. 2003; 86(2): 394-404.
    20 Awasthi N, Wagner BJ. Suppression of human lens epithelial cell proliferation by proteasome inhibition, a potential defense against posterior capsular opacification. Invest Ophthalmol Vis Sci. 2006; 47(10): 4482-4489.
    21 Chondrogianni N, Gonos ES. Proteasome inhibition induces a senescence-like phenotype in primary human fibroblasts cultures. Biogerontology. 2004; 5(1): 55-61.
    22 Stapnes C, D?skeland AP, Hatfield K, Ersvaer E, Ryningen A, Lorens JB, Gjertsen BT, Bruserud O. The proteasome inhibitors bortezomib and PR-171 have antiproliferative and proapoptotic effects on primary human acute myeloid leukaemia cells. Br J Haematol. 2007; 136(6): 814-828.
    23 Chondrogianni N, Stratford FL, Trougakos IP, Friguet B, Rivett AJ, Gonos ES. Central role of the proteasome in senescence and survival of human fibroblasts: induction of a senescence-like phenotype upon its inhibition and resistance to stress upon its activation. J Biol Chem. 2003; 278(30): 28026-28037.
    24 Liu Y, Liu X, Zhang T, Luna C, Liton PB, Gonzalez P. Cytoprotective effects of proteasome beta5 subunit overexpression in lens epithelial cells. Mol Vis. 2007; (13): 31-38.
    25 Chondrogianni N, Gonos ES. Overexpression of hUMP1/POMP proteasome accessory protein enhances proteasome-mediated antioxidant defence. Exp Gerontol. 2007; 42 (9): 899-903.
    26 FerrèS, Mazur A, Maier JA. Low-magnesium induces senescent features in cultured human endothelial cells. Magnes Res. 2007; 20(1): 66-71.
    27 Katsiki M, Chondrogianni N, Chinou I, Rivett AJ, Gonos ES. The olive constituent oleuropein exhibits proteasome stimulatory properties in vitro and confers life span extension of human embryonic fibroblasts. Rejuvenation Res. 2007; 10(2):157-172.
    28 Dikshit P, Chatterjee M, Goswami A, Mishra A, Jana NR. Aspirin induces apoptosis through the inhibition of proteasome function. J Biol Chem. 2006; 281(39): 29228-29235.
    29 Haines JL, Schnetz-Boutaud N, Schmidt S, Scott WK, Agarwal A, Postel EA, Olson L, Kenealy SJ, Hauser M, Gilbert JR, Pericak-Vance MA. Functional Candidate Genes in Age-Related Macular Degeneration: Significant Association with VEGF,VLDLR, and LRP6. Invest Ophthalmol Vis Sci. 2006; 47(1): 329-335.
    30 Mitchell P, Smith W, Attebo K, Wang JJ. Prevalence of age-related maculopathy in Australia. The Blue Mountains Eye Study. Ophthalmology. 1995; 102(10): 1450-1460.
    31 Kornzweig AL. Changes in the choriocapillaris associated with senile macular degeneration. Ann Ophthalmol. 1977; 9(6): 753-6, 759-62.
    32惠延年.眼科学(第五版).北京:人民卫生出版社. 2001; 151-152.
    33何世坤,姜岩.衰老与年龄相关性黄斑变性.中华眼科杂志. 2006; 42(3): 278-283.
    34 Weeks DE, Conley YP, Mah TS, Paul TO, Morse L, Ngo-Chang J, Dailey JP, Ferrell RE, Gorin MB. A full genome scan for age-related maculopathy. Hum Mol Genet. 2000; 9(9): 1329-1349.
    35 Tomany SC, Wang JJ, Van Leeuwen R, Klein R, Mitchell P, Vingerling JR, Klein BE, Smith W, De Jong PT. Risk factors for incident age-related macular degeneration: pooled findings from 3 continents. Ophthalmology. 2004; 111(7): 1280-1287.
    36 Seddon JM, Cote J, Page WF, Aggen SH, Neale MC. The US twin study of age-related macular degeneration: relative roles of genetic and environmental influences. Arch Ophthalmol. 2005; 123(3): 321-327.
    37 Seddon JM, Ajani UA, Mitchell BD. Familial aggregation of age-related maculopathy. Am J Ophthalmol. 1997; 123(2): 199-206.
    38 Gottfredsdottir MS, Sverrisson T, Musch DC, Stefánsson E. Age related macular degeneration in monozygotic twins and their spouses in Iceland. Acta Ophthalmol Scand. 1999; 77(4): 422-425.
    39 Klein ML, Mauldin WM, Stoumbos VD. Heredity and age-related macular degeneration. Observations in monozygotic twins. Arch Ophthalmol. 1994; 112(7): 932-937.
    40 Bressler SB, Mu?oz B, Solomon SD, West SK; for the Salisbury EyeEvaluation (SEE) Study Team. Racial Differences in the Prevalence of Age-Related Macular Degeneration: The Salisbury Eye Evaluation (SEE) Project. Arch Ophthalmol. 2008; 126(2): 241-245.
    41 Santangelo SL, Yen CH, Haddad S, Fagerness J, Huang C, Seddon JM. A discordant sib-pair linkage analysis of age-related macular degeneration. Ophthalmic Genet. 2005; 26(2): 61-67.
    42 Barral S, Francis PJ, Schultz DW, Schain MB, Haynes C, Majewski J, Ott J, Acott T, Weleber RG, Klein ML. Expanded genome scan in extended families with age-related macular degeneration. Invest Ophthalmol Vis Sci. 2006; 47(12): 5453-5459.
    43 Majewski J, Schultz DW, Weleber RG, Schain MB, Edwards AO, Matise TC, Acott TS, Ott J, Klein ML. Age-related macular degeneration--a genome scan in extended families. Am J Hum Genet.Sep. 2003; 73(3): 540-550.
    44 Kenealy SJ, Schmidt S, Agarwal A, Postel EA, De La Paz MA, Pericak-Vance MA, Haines JL. Linkage analysis for age-related macular degeneration supports a gene on chromosome 10q26. Mol Vis. 2004(10): 57-61.
    45 Kanda A, Chen W, Othman M, Branham KE, Brooks M, Khanna R, He S, Lyons R, Abecasis GR, Swaroop A. A variant of mitochondrial protein LOC387715/ARMS2, not HTRA1, is strongly associated with age-related macular degeneration. Proc Natl Acad Sci U S A. 2007; 104(41): 16227-16232.
    46 Fisher SA, Abecasis GR, Yashar BM, Zareparsi S, Swaroop A, Iyengar SK, Klein BE, Klein R, Lee KE, Majewski J, Schultz DW, Klein ML, Seddon JM, Santangelo SL, Weeks DE, Conley YP, Mah TS, Schmidt S, Haines JL, Pericak-Vance MA, Gorin MB, Schulz HL, Pardi F, Lewis CM, Weber BH. Meta-analysis of genome scans of age-related macular degeneration. Hum Mol Genet. 2005; 14(15): 2257-2264.
    47 Haddad S, Chen CA, Santangelo SL, Seddon JM. The genetics of age-related macular degeneration: a review of progress to date. Surv Ophthalmol. 2006; 51(4): 316-363.
    48 Seddon JM, Francis PJ, George S, Schultz DW, Rosner B, Klein ML. Association of CFH Y402H and LOC387715 A69S with progression of age-related macular degeneration. JAMA. 2007; 297(16): 1793-800.
    49 Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J. Complement Factor H Polymorphism in Age-Related Macular Degeneration. Science. 2005; 308(5720): 385-389.
    50 Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, SpencerKL, Kwan SY, Noureddine M, Gilbert JR, Schnetz-Boutaud N, Agarwal A, Postel EA, Pericak-Vance MA. Complement factor H variant increases the risk of age-related macular degeneration. Science. 2005; 308(5720): 419-421.
    51 Edwards AO, Ritter R 3rd, Abel KJ, Manning A, Panhuysen C, Farrer LA. Complement factor H polymorphism and age-related macular degeneration. Science. 2005; 308 (5720): 421-424.
    52 Droz I, Mantel I, Ambresin A, Faouzi M, Schorderet DF, Munier FL. Genotype-Phenotype correlation of age-related macular degeneration: influence of complement factor H Polymorphism. Br J Ophthalmol. 2008; 92(4):513-517.
    53 Shuler RK Jr, HM, Caldwell J, Gallins P, Schmidt S, Scott WK, Agarwal A, Haines JL, Pericak-Vance MA, Postel EA., Neovascular age-related macular degeneration and its association with LOC387715 and complement factor H polymorphism. Arch Ophthalmol. 2007; 125(1): 63-67.
    54 Francis PJ, George S, Schultz DW, Rosner B, Hamon S, Ott J, Weleber RG, Klein ML, Seddon JM. The LOC387715 gene, smoking, body mass index, environmental associations with advanced age-related macular degeneration. Hum Hered. 2007; 63(3-4): 212-218.
    55 Ross RJ, Bojanowski CM, Wang JJ, Chew EY, Rochtchina E, Ferris FL 3rd, Mitchell P, Chan CC, Tuo J. The LOC387715 polymorphism and age-related macular degeneration: replication in three case-control samples. Invest Ophthalmol Vis Sci. 2007; 48(3): 1128-1132.
    56 Lin JM, Wan L, Tsai YY, Lin HJ, Tsai Y, Lee CC, Tsai CH, Tsai FJ, Tseng SH. HTRA1 Polymorphism in dry and wet age-related macular degeneration. Retina. 2008; 28(2): 309-313.
    57 Mata NL, Tzekov RT, Liu X, Weng J, Birch DG, Travis GH. Delayed dark-adaptation and lipofuscin accumulation in abcr+/- mice: implications for involvement of ABCR in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2001; 42(8): 1685-1690.
    58 Mata NL, Weng J, Travis GH. Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration. Proc Natl Acad Sci U S A. 2000; 97(13): 7154-7159.
    59 Molday RS. ATP-binding cassette transporter ABCA4: molecular properties and role in vision and macular degeneration. J Bioenerg Biomembr. 2007; 39(5-6): 507-517.
    60 Tuo J, Bojanowski CM, Zhou M, Shen D, Ross RJ, Rosenberg KI, Cameron DJ, Yin C, Kowalak JA, Zhuang Z, Zhang K, Chan CC. Murine ccl2/cx3cr1 deficiency results in retinal lesions mimicking human age-related maculardegeneration. Invest Ophthalmol Vis Sci. 2007; 48(8): 3827-3836.
    61 Justilien V, Pang JJ , Renganathan K, Zhan X, Crabb JW, Kim SR, Sparrow JR, Hauswirth WW, Lewin AS. SOD2 knockdown mouse model of early AMD. Invest Ophthalmol Vis Sci. 2007; 48(10): 4407-4420.
    62 Chakravarthy U, Augood C, Bentham GC, de Jong PT, Rahu M, Seland J, Soubrane G, Tomazzoli L, Topouzis F, Vingerling JR, Vioque J, Young IS, Fletcher AE. Cigarette smoking and age-related macular degeneration in the EUREYE Study. Ophthalmology. 2007; 114(6): 1157-1163.
    63 Thornton J, Edwards R, Mitchell P, Harrison RA, Buchan I, Kelly SP. Smoking and age-related macular degeneration: a review of association. Eye. 2005; 19(9): 935-944.
    64 Seddon JM, George S, Rosner B. Cigarette smoking, fish consumption, omega-3 fatty acid intake, and associations with age-related macular degeneration: the US Twin Study of Age-Related Macular Degeneration. Arch Ophthalmol. 2006; 124(7): 995-1001.
    65 Whetzel CA, Corwin EJ, Klein LC. Disruption in Th1/Th2 immune response in young adult smokers. Addict Behav. 2007; 32(1): 1-8.
    66 Klein R, Klein BE, Tomany SC, Moss SE. Ten-year incidence of age-related maculopathy and smoking and drinking: the Beaver Dam Eye Study. Am J Epidemiol. 2002; 156(7): 589-598.
    67 Clemons TE, Milton RC, Klein R, Seddon JM, Ferris FL 3rd; Age-Related Eye Disease Study Research Group. Risk factors for the incidence of Advanced Age-Related Macular Degeneration in the Age-Related Eye Disease Study (AREDS) AREDS report no. 19. Ophthalmology. 2005; 112(4): 533-539.
    68 Snodderly DM. Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. Am J Clin Nutr. 1995; (6 Suppl): 1448S-1461S.
    69 Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol. 2001; 119(10): 1417-1436.
    70 van Leeuwen R, Boekhoorn S, Vingerling JR, Witteman JC, Klaver CC, Hofman A, de Jong PT. Dietary intake of antioxidants and risk of age-related macular degeneration. JAMA. 2005; 294 (24): 3101-3107.
    71 Age-Related Eye Disease Study Research Group, SJ, Chew EY, Clemons TE, Ferris FL 3rd, Gensler G, Lindblad AS, Milton RC, Seddon JM, Sperduto RD. The relationship of dietary carotenoid and vitamin A, E, and C intakewith age-related macular degeneration in a case-control study: AREDS Report No. 22. Arch Ophthalmol. 2007 125(9): 1225-1232.
    72 Thies F, Miles EA, Nebe-von-Caron G, Powell JR, Hurst TL, Newsholme EA, Calder PC. Influence of dietary supplementation with long-chain n-3 or n-6 polyunsaturated fatty acids on blood inflammatory cell populations and functions and on plasma soluble adhesion molecules in healthy adults. Lipids. 2001; 36(11): 1183-1193.
    73 Simopoulos AP. Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed Pharmacother. 2006; 60(9): 502-507.
    74 Kanan Y, Moiseyev G , Agarwal N, Ma JX, Al-Ubaidi MR. Light induces programmed cell death by activating multiple independent proteases in a cone photoreceptor cell line. Invest Ophthalmol Vis Sci. 2007; 48(1): 40-51.
    75 Dunaief JL, Dentchev T, Ying GS, Milam AH. The role of apoptosis in age-related macular degeneration. Arch Ophthalmol. 2002; 120(11): 1435-1442.
    76徐格致,李维英,曹安民.老年黄斑变性中感光细胞的凋亡.中华眼科杂志. 1998; 34(1): 59-61.
    77 Winkler BS, Boulton ME, Gottsch JD, Sternberg P. Oxidative damage and age-related macular degeneration. Mol Vis. 1999; (5): 32-42.
    78 Beatty S, Koh H, Phil M, Henson D, Boulton M. The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol. 2000; 45(2): 115-134.
    79 Hollyfield JG, Bonilha VL, Rayborn ME, Yang X, Shadrach KG, Lu L, Ufret RL, Salomon RG, Perez VL. Oxidative damage-induced inflammation initiates age-related macular degeneration. Nat Med. 2008; 14(2): 194-198.
    80 Howes KA, Liu Y, Dunaief JL, Milam A, Frederick JM, Marks A, Baehr W. Receptor for advanced glycation end products and age-related macular degeneration. Invest Ophthalmol Vis Sci. 2004; 45(10): 3713-3720.
    81 Kopitz J, Holz FG, Kaemmerer E, Schutt F. Lipids and lipid peroxidation products in the pathogenesis of age-related macular degeneration. Biochimie. 2004; 86(11): 825-831.
    82 Decanini A, Nordgaard CL, Feng X, Ferrington DA, Olsen TW. Changes in select redox proteins of the retinal pigment epithelium in age-related macular degeneration. Am J Ophthalmol. 2007; 143(4): 607-615.
    83 Ethen CM, Reilly C, Feng X, Olsen TW, Ferrington DA. Age-related macular degeneration and retinal protein modification by 4-hydroxy- 2-nonenal. Invest Ophthalmol Vis Sci. 2007; 48(8): 3469-3479.
    84 Kapphahn RJ, Giwa BM, Berg KM, Roehrich H, Feng X, Olsen TW,Ferrington DA. Retinal proteins modified by 4-hydroxynonenal: identification of molecular targets. Exp Eye Res. 2006; 83(1): 165-175.
    85 Ishibashi T, Murata T, Hangai M, Nagai R, Horiuchi S, Lopez PF, Hinton DR, Ryan SJ. Advanced glycation end products in age-related macular degeneration. Arch Ophthalmol. 1998; 116(12): 1629-1632.
    86 Terman A, Brunk UT. Ceroid/lipofuscin formation in cultured human fibroblasts: the role of oxidative stress and lysosomal proteolysis. Mech Ageing Dev. 1998; 104(3): 277-291.
    87 Schutt F, Bergmann M, Holz FG, Kopitz J. Proteins modified by malondialdehyde, 4-hydroxynonenal, or advanced glycation end products in lipofuscin of human retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2003; 44(8): 3663-3668.
    88 Crabb JW, Miyagi M, Gu X, Shadrach K, West KA, Sakaguchi H, Kamei M, Hasan A, Yan L, Rayborn ME, Salomon RG, Hollyfield JG. Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci U S A. 2002; 99(23): 14682-14687.
    89 Ebrahem Q, Renganathan K, Sears J, Vasanji A, Gu X, Lu L, Salomon RG, Crabb JW, Anand-Apte B. Carboxyethylpyrrole oxidative protein modifications stimulate neovascularization: Implications for age-related macular degeneration. Proc Natl Acad Sci U S A. 2006; 103(36): 13480-13484.
    90 Nordgaard CL, Berg KM, Kapphahn RJ, Reilly C, Feng X, Olsen TW, Ferrington DA. Proteomics of the retinal pigment epithelium reveals altered protein expression at progressive stages of age-related macular degeneration. Invest Ophthalmol Vis Sci. 2006; 47(3): 815-822.
    91 Ethen CM, Reilly C, Feng X, Olsen TW, Ferrington DA. The proteome of central and peripheral retina with progression of age-related macular degeneration. Invest Ophthalmol Vis Sci. 2006; 47(6): 2280-2290.
    92 Suzuki M, Kamei M, Itabe H, Yoneda K, Bando H, Kume N, Tano Y. Oxidized phospholipids in the macula increase with age and in eyes with age-related macular degeneration. Mol Vis. 2007; 13: 772-778.
    93 Suter M, ReméC, Grimm C, Wenzel A, J??ttela M, Esser P, Kociok N, Leist M, Richter C. Age-related macular degeneration. The lipofusion component N-retinyl-N-retinylidene ethanolamine detaches proapoptotic proteins from mitochondria and induces apoptosis in mammalian retinal pigment epithelial cells. J Biol Chem. 2000; 275(50): 39625-39630.
    94牛超,惠延年,王雨生.脂褐素与年龄相关性黄斑变性.眼科新进展. 2006; 26(1): 60-63.
    95 Liang FQ, Godley BF. Oxidative stress-induced mitochondrial DNA damagein human retinal pigment epithelial cells: a possible mechanism for RPE aging and age-related macular degeneration. Exp Eye Res. 2003; 76(4): 397-403.
    96 Feher J, Kovacs I, Artico M, Cavallotti C, Papale A, Balacco Gabrieli C. Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration. Neurobiol Aging. 2006; 27(7): 983-993.
    97 Barron MJ, Johnson MA, Andrews RM, Clarke MP, Griffiths PG, Bristow E, He LP, Durham S, Turnbull DM. Mitochondrial abnormalities in ageing macular photoreceptors. Invest Ophthalmol Vis Sci. 2001; 42(12): 3016-3022.
    98 Roybal CN, Hunsaker LA, Barbash O, Vander Jagt DL, Abcouwer SF. The oxidative stressor arsenite activates vascular endothelial growth factor mRNA transcription by an ATF4-dependent mechanism. J Biol Chem. 2005; 280(21): 20331-20339.
    99 Ma W, Lee SE, Guo J, Qu W, Hudson BI, Schmidt AM, Barile GR. RAGE ligand upregulation of VEGF secretion in ARPE-19 cells. Invest Ophthalmol Vis Sci. 2007; 48(3): 1355-1361.
    100 Grossniklaus HE, Miskala PH, Green WR, et al. Histopathologic and ultrastructural features of surgically excised subfoveal choroidal neovascular lesions: submacular surgery trials report no. 7. Arch Ophthalmol. 2005; 123: 914-921.
    101 Dastgheib K, Green W. Granulomatous reaction to Bruch`s membrane in age-related macular degeneration. Arch Ophthalmol. 1994; 112: 813-818.
    102 Hageman GS, Luthert PJ, Victor Chong NH, Johnson LV, Anderson DH, Mullins RF. An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch's membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res. 2001; 20(6): 705-732.
    103 Patel N, Ohbayashi M, Nugent AK, Ramchand K, Toda M, Chau KY, Bunce C, Webster A, Bird AC, Ono SJ, Chong V. Circulating anti-retinal antibodies as immune markers in age-related macular degeneration. Immunology.2005; 115(3): 422-430.
    104 Umeda S, Suzuki MT, Okamoto H, Ono F, Mizota A, Terao K, Yoshikawa Y, Tanaka Y, Iwata T., Molecular composition of drusen and possible involvement of anti-retinal autoimmunity in two different forms of macular degeneration in cynomolgus monkey (Macaca fascicularis). FASEB J. 2005; 19(12): 1683-1685.
    105 Ambati J, Anand A, Fernandez S, Sakurai E, Lynn BC, Kuziel WA, Rollins BJ, Ambati BK. An animal model of age-related macular degeneration insenescent ccl-2- or ccr-2-deficient mice. Nat Med. 2003; 9(11): 1390-1397.
    106 Chen J, Connor KM, Smith LE. Overstaying their welcome: defective CX3CR1 microglia eyed in macular degeneration. J Clin Invest. 2007; 117(10): 2758-2762.
    107 Ross RJ, Zhou M, Shen D, Fariss RN, Ding X, Bojanowski CM, Tuo J, Chan CC. Immunological protein expression profile in Ccl2/Cx3cr1 deficient mice with lesions similar to age-related macular degeneration. Exp Eye Res.2008; 86(4):675-683.
    108 Anderson DH, Mullins RF, Hageman GS, Johnson LV. A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol. 2002; 134(3): 411-431.
    109 Nussenblatt RB, Ferris F 3rd. Age-related Macular Degeneration and the Immune Response: Implications for Therapy. Am J Ophthalmol. 2007; 144(4): 618-626.
    110 Louie JL, Kapphahn RJ, Ferrington DA. Proteasome function and protein oxidation in the aged retina. Exp Eye Res. 2002; 75(3): 271-284.
    111 Hjelmeland LM, Cristofolo VJ, Funk W, Rakoczy E, Katz ML. Senescence of the retinal pigment epithelium. Mol Vis. 1999; 5: 33.
    112 Majji AB, Cao J, Chang KY, Hayashi A, Aggarwal S, Grebe RR, De Juan E Jr. Age-related retinal pigment epithelium and Bruch's membrane degeneration in senescence-accelerated mouse. Invest Ophthalmol Vis Sci. 2000; 41(12): 3936-3942.
    113 Cousins SW, Espinosa-Heidmann DG, Alexandridou A, Sall J, Dubovy S, Csaky K. The role of aging, high fat diet and blue light exposure in an experimental mouse model for basal laminar deposit formation. Exp Eye Res. 2002; 75(5): 543-553.
    114 Dithmar S, Sharara NA, Curcio CA, Le NA, Zhang Y, Brown S, Grossniklaus HE. Murine high-fat diet and laser photochemical model of basal deposits in Bruch membrane. Arch Ophthalmol. 2001; 119(11): 1643-1649.
    115 Rakoczy PE, Zhang D, Robertson T, Barnett NL, Papadimitriou J, Constable IJ, Lai CM. Progressive age-related changes similar to age-related macular degeneration in a transgenic mouse model. Am J Pathol. 2002; 161(4): 1515-1524.
    116 Franceschi C. Inflammaging as a major characteristic of old people: can it be prevented or cured? Nutr Rev. 2007; 65(12 Pt 2): S173-6.
    117 Ridker PM. Inflammatory biomarkers and risks of myocardial infarction, stroke, diabetes, and total mortality: implications for longevity. Nutr Rev. 2007; 65 (12 Pt 2): S253-9.
    118 Grune T, Reinheckel T, Davies KJ. Degradation of oxidized proteins in mammalian cells. FASEB J. 1997; 11(7): 526-534.
    119 Grune T, Reinheckel T, Joshi M, Davies KJ. Proteolysis in cultured liver epithelial cells during oxidative stress. Role of the multicatalytic proteinase complex, proteasome. J Biol Chem. 1995; 270(5): 2344-2351.
    120 Brooks P, Fuertes G, Murray RZ, Bose S, Knecht E, Rechsteiner MC, Hendil KB, Tanaka K, Dyson J, Rivett J. Subcellular localization of proteasomes and their regulatory complexes in mammalian cells. Biochem J. 2000 (346 Pt 1): 155-161.
    121 Coux O, Tanaka, K, Goldberg AL. Structure and functions of the 20S and
    26S proteasomes. Annu Rev Biochem. 1996; 65: 801-847.
    122 Cascio P, Call M, Petre BM, Walz T, Goldberg AL. Properties of the hybrid form of the 26S proteasome containing both 19S and PA28 complexes. EMBO J. 2002; 21(11): 2636-2645.
    123 Braun BC, Glickman M, Kraft R, Dahlmann B, Kloetzel PM, Finley D,Schmidt M. The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat. Cell Biol. 1999; (1): 221-226.
    124 Tanahashi N, Murakami Y, Minami Y, Shimbara N, Hendil KB, Tanaka K. Hybrid proteasomes. Induction by interferon-gamma and contribution to ATP-dependent proteolysis. J Biol Chem. 2000; 275(19): 14336-14345.
    125 Gaczynska M, Rock KL, Goldberg AL. Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature medicine. 1993; 365: 264-267.
    126 Davies KJ. Degradation of oxidized proteins by the 20S proteasome. Biochemie 2001; 83: 301-310.
    127 Grune T, Merker K, Sandig G, Davies KJ. Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem Biophys Res Commun. 2003; 305(3): 709-718.
    128 Jahngen-Hodge J, Obin MS, Gong X, Shang F, Nowell TR Jr, Gong J, Abasi H, Blumberg J, Taylor A. Regulation of ubiquitin-conjugating enzymes by glutathione following oxidative stress. J Biol Chem. 1997; 272(45): 28218-28226.
    129 Reinheckel T, Ullrich O, Sitte N, Grune T. Differential impairment of 20S and 26S proteasome activities in human hematopoietic K562 cells during oxidative stress. Arch Biochem Biophys. 2000; 377(1): 65-68.
    130 Grune T, Reinheckel T, Davies KJ. Degradation of oxidized proteins in K562 human hematopoietic cells by proteasome. J Biol Chem. 1996; 271(26): 15504-15509.
    131 Grune T, Reinheckel T, Li R, North JA, Davies KJ. Proteasome-dependentturnover of protein disulfide isomerase in oxidatively stressed cells. Arch Biochem Biophys. 2002; 397(2): 407-413.
    132 Sitte N, Merker K, von Zglinicki T, Grune T. Protein oxidation and degradation during proliferative senescence of human MRC-5 fibroblasts. Free Radic Biol Med. 2000; 28(5): 701-708.
    133 Peters JM, Franke WW, Kleinschmidt JA. Distinct 19 S and 20 S subcomplexes of the 26 S proteasome and their distribution in the nucleus and the cytoplasm. J Biol Chem. 1994; 269(10): 7709-7718.
    134 Yang Y, Früh K, Ahn K, Peterson PA. In vivo assembly of the proteasomal complexes, implications for antigen processing. J Biol Chem. 1995; 270(46): 27687-27694.
    135 Kisselev AF, Kaganovich D, Goldberg AL. Binding of hydrophobic peptides to several non-catalytic sites promotes peptide hydrolysis by all active sites of 20 S proteasomes. Evidence for peptide-induced channel opening in the alpha-rings. J Biol Chem. 2002; 277(25): 22260-22270.
    136吴慧娟,张志刚.泛素-蛋白酶体途径及意义.国际病理科学与临床杂志. 2006; 26(1): 7-10.
    137尹会男,柴家科.泛素蛋白酶体途径研究进展.医学分子生物学杂志. 2004; 1(1): 47-50.
    138 Sommer T, Wolf DH. Endoplasmic reticulum degradation: reverse protein flow of no return. FASEB J. 1997; 11(14): 1227-1233.
    139 Ferrington DA, Hussong SA, Roehrich H, Kapphahn RJ, Kavanaugh SM, Heuss ND, Gregerson DS. Immunoproteasome Responds to Injury in the Retina and Brain. J Neurochem. 2008; doi:10.1111/j.1471-4159.2008. 0534 5.x.
    140 Drews O, Wildgruber R, Zong C, Sukop U, Nissum M, Weber G, Gomes AV, Ping P. Mammalian proteasome subpopulations with distinct molecular compositions and proteolytic activities. Mol Cell Proteomics. 2007; 6(11): 2021-2031.
    141吴焱秋,柴家科.泛素-蛋白酶体途径的组成及其生物学作用.生理科学进展. 2001; 32(4): 331-333.
    142 Wójcik C, DeMartino GN. Intracellular localization of proteasomes. Int J Biochem Cell Biol. 2003; 35(5): 579-589.
    143 Enenkel C, Lehmann A, Kloetzel PM. Subcellular distribution of proteasomes implicates a major location of protein degradation in the nuclear envelope-ER network in yeast. EMBO J. 1998; 17(21): 6144-6154.
    144 Palmer A, Rivett AJ, Thomson S, Hendil KB, Butcher GW, Fuertes G, Knecht E. Subpopulations of proteasomes in rat liver nuclei, microsomes and cytosol. Biochem J. 1996; 316(Pt 2): 401-407.
    145 Reits EA, Benham AM, Plougastel B, Neefjes J, Trowsdale J. Dynamics of proteasome distribution in living cells. EMBO J. 1997; 16(20): 6087-6094.
    146 Voss P, Grune T. The nuclear proteasome and the degradation of oxidatively damaged proteins. Amino Acids. 2007; 32(4): 527-534.
    147 Bulteau AL, Petropoulos I, Friguet B. Age-related alterations of proteasome structure and function in aging epidermis. Exp Gerontol. 2000; 35(6-7): 767-777.
    148 Grune T, Merker K, Jung T, Sitte N, Davies KJ. Protein oxidation and degradation during postmitotic senescence. Free Radic Biol Med. 2005; 39(9): 1208-1215.
    149 Shibatani T, Nazir M, Ward WF. Alteration of rat liver 20S proteasome activities by age and food restriction. J Gerontol A Biol Sci Med Sci. 1996; 51(5): B316-22.
    150 Keller JN, Huang FF, Markesbery WR. Decreased levels of proteasome activity and proteasome expression in aging spinal cord. Neuroscience. 2000; 98(1): 149-156.
    151 Bulteau AL, Szweda LI, Friguet B. Age-dependent declines in proteasome activity in the heart. Arch Biochem Biophys. 2002; 397(2): 298-304.
    152 Kapphahn RJ, Bigelow EJ, Ferrington DA. Age-dependent inhibition of proteasome chymotrypsin-like activity in the retina. Exp. Eye. Res. 2007; 84(4): 646-654.
    153 Sitte N, Huber M, Grune T, Ladhoff A, Doecke WD, Von Zglinicki T, Davies KJ. Proteasome inhibition by lipofuscin/ceroid during postmitotic aging of fibroblasts. FASEB J. 2000; 14(11): 1490-1498.
    154 Merker K, Sitte N, Grune T. Hydrogen peroxide-mediated protein oxidation in young and old human MRC-5 fibroblasts. Arch Biochem Biophys. 2000; 375(1): 50-54.
    155胡志安,谭银玲.蛋白酶复合体在衰老中的作用.中国老年学杂志. 2003; 23(7): 474-476.
    156 Imanishi T, Hano T, Sawamura T, Nishio I. Oxidized low-density lipoprotein induces endothelial progenitor cell senescence, leading to cellular dysfunction. Clin Exp Pharmacol Physiol. 2004; 31(7): 407-413.
    157 Li SY, Du M, Dolence EK, Fang CX, Mayer GE, Ceylan-Isik AF, LaCour KH, Yang X, Wilbert CJ, Sreejayan N, Ren J. Aging induces cardiac diastolic dysfunction, oxidative stress, accumulation of advanced glycation endproducts and protein modification. Aging Cell. 2005; 4(2): 57-64.
    158 Mary J, Vougier S, Picot CR, Perichon M, Petropoulos I, Friguet B. Enzymatic reactions involved in the repair of oxidized proteins. Exp Gerontol. 2004; 39(8): 1117-1123.
    159 Sitte N, Merker K, Von Zglinicki T, Grune T, Davies KJ. Protein oxidation and degradation during cellular senescence of human BJ fibroblasts: part I--effects of proliferative senescence. FASEB J. 2000; 14(15): 2495-2502.
    160 Shu X, Tulloch B, Lennon A, Vlachantoni D, Zhou X, Hayward C, Wright AF. Disease mechanisms in late-onset retinal macular degeneration associated with mutation in C1QTNF5. Hum Mol Genet. 2006; 15(10): 1680-1689.
    161 Chondrogianni N, Tzavelas C, Pemberton AJ, Nezis IP, Rivett AJ,Gonos ES. Overexpression of proteasome beta5 assembled subunit increases the amount of proteasome and confers ameliorated response to oxidative stress and higher survival rates. J Biol Chem. 2005; 280(12): 11840-11850.
    162 Chondrogianni N, Petropoulos I, Franceschi C, Friguet B, Gonos ES. Fibroblast cultures from healthy centenarians have an active proteasome. Exp Gerontol. 2000; 35(6-7): 721-728.
    163 Burke JM, McKay BS. In vitro ageing of bovine and human retinal pigment epithelium: number and activity of the Na/K ATPase pump. Exp Eye Res. 1993; 57(1): 51-57.
    164 Burke JM, Skumatz CM. Autofluorescent inclusions in long-term postconfluent cultures of retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1998; 39(8): 1478-1486.
    165 Burke JM. Cytochrome oxidase activity in bovine and human retinal pigment epithelium: topographical and age-related differences. Curr Eye Res. 1993; 12(12): 1073-1079.
    166王雨生,严密,杨抚华.视网膜色素上皮细胞培养技术及其应用.中华眼底病杂志. 1994; (10): 124-128.
    167赵亮,张宗玉,童坦君.生物体衰老与复制衰老——体内与体外研究.生理科学进展. 2000; 31(3): 205-210.
    168 Matsunaga H, Handa JT, Aotaki-Keen A, Sherwood SW, West MD, Hjelmeland LM. Beta-galactosidase histochemistry and telomere loss in senescent retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1999; 40(1): 197-202.
    169 Burke JM, Skumatz CM. Autofluorescent inclusions in long-term postconfluent cultures of retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1998; 39(8): 1478-1486.
    170 Shen JK, Dong A, Hackett SF, Bell WR, Green WR, Ampochiaro PA. Oxidative damage in age-related macular degeneration. Histol Histopathol. 2007; 22(12): 1301-1308.
    171 Delori FC, Goger DG, Dorey CK. Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects. Invest Ophthalmol VisSci. 2001; 42(8): 1855-1866.
    172 Bulteau AL, Moreau M, Nizard C, Friguet B. Impairment of proteasome function upon UVA- and UVB-irradiation of human keratinocytes. Free Radic Biol Med. 2002; 32(11): 1157-1170.
    173 Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta. 2003; 329(1-2): 23-38.
    174段丽菊,刘英帅,朱燕,杨旭. DNPH比色法:一种简单的蛋白质羰基含量测定方法.毒理学杂志. 2005; 19(4): 320-322.
    175 Friguet B, Bulteau AL, Chondrogianni N, Conconi M, Petropoulos I. Protein degradation by the proteasome and its implications in aging. Ann N Y Acad Sci. 2000; 908: 143-154.
    176 Breusing N, Grune T. Regulation of proteasome-mediated protein degradation during oxidative stress and aging. Biol Chem. 2008; doi: 10.1515/BC.2008.029.
    177 Fernandes AF, Guo W, Zhang X, Gallagher M, Ivan M, Taylor A, Pereira P, Shang F. Proteasome-dependent regulation of signal transduction in retinal pigment epithelial cells. Exp Eye Res. 2006; 83(6): 1472-1481.
    178 Ostrowska H, Ostrowska JK, Worowski K, Radziwon P. Human platelet 20S proteasome: inhibition of its chymotrypsin-like activity and identification of the proteasome activator PA28. A preliminary report. Platelets. 2003; 14(3): 151-157.
    179 Chondrogianni N, Petropoulos I, Franceschi C, Friguet B, Gonos ES. Fibroblast cultures from healthy centenarians have an active proteasome. Exp Gerontol. 2000; 35(6-7): 721-728.
    180 Friguet B, Szweda L. Inhibition of the multicatalytic proteinase (proteasome) by 4-hydroxy-2-nonenal cross-linked protein. FEBS Lett. 1997; 405(1): 21-25.
    181 Robinson CE, Keshavarzian A, Pasco DS, Frommel TO, Winship DH, Holmes EW. Determination of protein carbonyl groups by immunoblotting. Anal Biochem. 1999; 266(1): 48-57.
    182 Farout L, Friguet B. Proteasome function in ageing and oxidative stress: implications in protein maintenance failure. Antioxid Redox Signal. 2006; 8(1-2): 205-216.
    183 Jung T, Engels M, Kaiser B, Poppek D, Grune T. Intracellular distribution of oxidized proteins and proteasome in HT22 cells during oxidative stress. Free Radic Biol Med. 2006; 40(8): 1303-1312.
    184 Ponnappan S, Ovaa H, Ponnappan U. Lower expression of catalytic and structural subunits of the proteasome contributes to decreased proteolysis inperipheral blood T lymphocytes during ageing. Int J Biochem Cell B. 2007; 39: 799-809.
    185 Jung T, Bader N, Grune T. Oxidized proteins: intracellular distribution and recognition by the proteasome. Arch Biochem Biophys. 2007; 462(2): 231-237.
    186 Dong C, Upadhya SC, Ding L, Smith TK, Hegde AN. Proteasome inhibition enhances the induction and impairs the maintenance of late-phase long-term potentiation. Learn Mem. 2008; 15(5): 335-347.
    187 Wu WK, Sung JJ, Yu L, Cho CH. Proteasome inhibitor MG-132 lowers gastric adenocarcinoma TMK1 cell proliferation via bone morphogenetic protein signaling. Biochem Biophys Res Commun. 2008; doi:10.1016/j.bb rc.2008.04.059
    188 Brun J. Proteasome inhibition as a novel therapy in treating rheumatoid arthritis. Med Hypotheses. 2008; doi:10.1016/j.mehy.2008.02.014
    189 Chondrogianni N, Gonos ES. Proteasome inhibition induces a senescence-like phenotype in primary human fibroblasts cultures. Biogerontology. 2004; 5(1): 55-61.
    190 Wang XC, Jobin C, Allen JB, Roberts WL, Jaffe GJ. Suppression of NF-kappaB-dependent proinflammatory gene expression in human RPE cells by a proteasome inhibitor. Invest Ophthalmol Vis Sci. 1999; 40(2): 477-486.
    191吴清明,于皆平,张卫国,刘先军,童强.阻断泛素-蛋白酶体通路对胃癌细胞增殖和凋亡的影响.中华消化杂志. 2004; 24(2): 102-105.
    200 Tsubuki S SY, Tomioka M, Ito H, Kawashima S. Differential inhibition of calpain and proteasome activities by peptidyl aldehydes of di-leucine and tri-leucine. J Biochem. 1996; 119(3): 572-576.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700