用户名: 密码: 验证码:
TFG种子的杀虫活性和有效成分研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以豆科植物TFG为材料,以主要的储粮害虫谷蠹、玉米象、杂拟谷盗、锯谷盗为试验对象,对粗提物和分离物的触杀、驱避活性进行了跟踪测定,系统研究了溶剂和提取方法对粗提物触杀、驱避活性的影响,比较了提取率和生物活性的差异,客观评价了与提取效率及杀虫活性相关的因子在提取分离过程中的作用,并确立了一种用于提取TFG生物活性物质的最优方案,分离出其中所含的活性成分,鉴定出其化学结构,最后进一步研究了活性单体的作用。主要研究结果如下:
     1.以无水乙醇、氯仿、乙酸乙酯、丙酮、石油醚为溶剂采用温浸回流法对TFG种子中的生物活性物质进行提取。用乙醇作溶剂时,对TFG的提取率最高,为11.48%,TFG的石油醚提取率最低,只有4.91%。TFG的氯仿提取率、乙酸乙酯提取率和丙酮提取率分别为7.24%、7.54%和5.29%。
     生物测定结果表明:TFG的5种溶剂粗提物对玉米象成虫都表现出一定的驱避作用。氯仿温浸粗提物对玉米象的驱避效果最好,在剂量为100μg/cm~2的驱避级别达到Ⅱ级,在处理剂量为5000μg/cm~2时,驱避级别达到Ⅲ级,其次是丙酮粗提物,在处理剂量为100μg/cm~2时对玉米象的驱避级别达到Ⅱ级。
     TFG的5种溶剂粗提物对杂拟谷盗的驱避作用均优于对玉米象的作用。在各粗提物剂量为1.6μg/cm~2时,7天平均驱避率均超过80%,驱避等级为Ⅴ级,丙酮粗提物对杂拟谷盗的驱避效果最好,其次是氯仿粗提物,乙酸乙酯粗提物对杂拟谷盗的驱避效果最差。多重比较结果显示:TFG各粗提物对玉米象与锯谷盗的驱避率之间差异不显著;各粗提物对杂拟谷盗与玉米象的驱避率之间差异显著:各粗提物对锯谷盗与谷蠢的驱避率之间差异显著;TFG粗提物对4种仓虫成虫的驱避活性大小顺序为:杂拟谷盗>玉米象>锯谷盗>谷蠹。
     TFG的5种溶剂粗提物对玉米象成虫都有较好的触杀作用,玉米象成虫在接触药膜3天后,转而用干净无虫的小麦粒饲养1周,几乎均已死亡。TFG乙醇粗提物的上层物质对玉米象的触杀活性最强,处理玉米象24h和48h后的致死中量(简称LD_(50)分别为0.362mg/cm~2和0.328mg/cm~2;乙酸乙酯粗提物和丙酮粗提物对玉米象的触杀活性也较强,丙酮粗提物处理玉米象24h后的LD_(50)为0.380mg/cm~2,乙酸乙酯处理玉米象48h后的LD_(50)为0.334mg/cm~2;触杀活性较低的是石油醚粗提物,处理玉米象24h和48h后得到的LD_(50)分别比乙醇粗提物的LD_(50)高2倍多。
     TFG的5种溶剂粗提物对杂拟谷盗成虫的触杀作用较弱,杂拟谷盗成虫在接触药膜3天后,转入试管内饲养1周,死虫的数量仅有小幅度上升。TFG乙醇粗提物上层物质的触杀效果最好,处理杂拟谷盗成虫24h、48h、72h和10d后的LD_(50)分别为0.482mg/cm~2、0.450mg/cm~2、0.400mg/cm~2和0.386mg/cm~2,对杂拟谷盗触杀活性最低的是石油醚粗提物。
     TFG的5种溶剂粗提物处理谷蠹24h后,丙酮粗提物触杀活性表现为最强,它对谷蠹成虫的LD_(50)为0.240mg/cm~2,触杀效果略高于乙醇粗提物和氯仿粗提物;经各粗提物处理后,谷蠹的死亡率从24h到48h的上升幅度较大。
     从TFG的5种溶剂粗提物对锯谷盗触杀试验结果可知,随着时间的延长,锯谷盗死亡率的变化幅度因粗提物以及施用的药剂剂量的不同而不同,TFG乙醇粗提物上层物质和氯仿粗提物的触杀效果较好,触杀活性最低的是石油醚粗提物。
     2.以TFG种子干粉为原料,以无水乙醇为提取溶剂,采用冷浸法、温浸法、索氏法、冷浸-索氏法、超临界CO_2萃取法(SCFE)对TFG粗提物的提取方法进行了比较研究,SCFE法的提取率为11.35%,高于冷浸法(4.65%)和冷浸-索氏法(8.14%),略低于索氏法(12.99%),和温浸法(11.48%)的提取率基本持平。
     5种方法得到的粗提物对杂拟谷盗都表现出良好的驱避性,不同粗提物的有效驱避剂量差异显著,其中,超临界CO_2萃取物试验所用剂量最小,由初试结果将最高剂量拟定为0.16mg/cm~2,其平均的驱避率为87.9%,驱避级别为Ⅴ级,第1天的驱避效果很显著,驱避率为96.6%,到第4天仍有明显的驱避效果;温浸法粗提物效果也较好,当粗提物剂量为0.96mg/cm~2~1.6mg/cm~2,处理后每天的驱避率都超过了80%,而平均驱避率更是超过了90%,驱避级别均在Ⅴ级。冷浸法、索氏法、冷浸-索氏法得到的粗提物的驱避效果相对较差,因而测试剂量最大,最高剂量设为16mg/cm~2,是超临界CO_2萃取物试验测试剂量的100倍。
     5种方法得到的各粗提物对玉米象都有较好的触杀效果,很小的剂量即可导致玉米象大量死亡。通过对各个时间段所得到的致死中量进行比较,发现超临界CO_2萃取物对玉米象的触杀效果最好,处理玉米象24h、48h、72h后的致死中量分别为0.252mg/cm~2、0.232mg/cm~2、0.166mg/cm~2,与其它方法相比,剂量均为最低。
     5种方法得到的各粗提物对杂拟谷盗的致死中量从小到大依次为温浸法、SCFE法、冷浸法、冷浸.索氏提取、索氏提取法。SCFE法得到的粗提物对杂拟谷盗的触杀活性除了在前三天的观察中略低于温浸法粗提物,在转入饲料中饲喂一周后,其对杂拟谷盗的LD_(50)与温浸法相当,在处理剂量为0.91mg/cm~2时,杂拟谷盗72h后的死亡率达到了90%,在剂量高于0.52mg/cm~2时,10d后的死亡率均在80%以上。
     5种方法得到的各粗提物对谷蠹的致死活性依次为温浸法>SCFE技术>冷浸法>索氏提取法>冷浸-索氏提取法。温浸法和SCFE法得到的TFG粗提物对谷蠹有良好的触杀活性,处理谷蠹24h后的LD_(50)分别为0.255mg/cm~2和0.256mg/cm~2,48h后的LD_(50)分别为0.144mg/cm~2和0.156mg/cm~2,72h后的LD_(50)分别为0.112mg/cm~2和0.142mg/cm~2,10d后的LD_(50)分别为0.100mg/cm~2和0.130mg/cm~2。
     3.以3种溶剂乙醇、乙酸乙酯、氯仿作为夹带剂,对TFG种子干粉进行SCFE,TFG种子粗提物萃取得率由高到低的顺序依次为:乙醇>乙酸乙酯>氯仿>无夹带剂,分别为14.17%、13.31%、10.74%和10.18%。
     以乙醇作为夹带剂时,所得到的超临界CO_2萃取物对玉米象的触杀活性最强,对玉米象处理24h,48h,72h后的LD_(50)分别为231.764μg/cm~2,194.43μg/cm~2,141.06μg/cm~2;乙酸乙酯作夹带剂时,得到的萃取物对玉米象的触杀效果也较好,对玉米象处理24h,48h,72h后的LD_(50)分别为228.67μg/cm~2,180.09μg/cm~2和152.61μg/cm~2,触杀效果较弱的是氯仿作为超临界CO_2萃取的夹带剂时得到的萃取物,效果最差的是不选用夹带剂,用单一的超临界CO_2作为溶剂而萃取得到的萃取物,处理玉米象72h后的LD_(50)最大,为218.74μg/cm~2。
     不同夹带剂萃取得到的各萃取物对杂拟谷盗成虫的触杀活性的大小依次为氯仿>乙醇>无夹带剂>乙酸乙酯,处理杂拟谷盗10d后的LD_(50)分别为278.57μg/cm~2、303.89μg/cm~2、341.74μg/cm~2和429.45μg/cm~2。
     用乙醇作为夹带剂时得到的超临界CO_2萃取物对谷蠹的触杀效果最好,24h时的LD_(50)为115.14μg/cm~2,10d时的LD_(50)为78.25μg/cm~2;用单一的超临界CO_2作为溶剂时的萃取物对谷蠹的触杀生物活性最差,24h时的LD_(50)为174.71μg/cm~2,10d时的LD_(50)为135.22μg/cm~2。
     4.以萃取率作为目标函数,通过考察分析萃取压力、萃取温度、萃取时间、夹带剂体积和夹带剂浓度对萃取率的影响趋势,确定超临界CO_2萃取过程中各影响因素的正交试验条件为:操作压力的正交试验区间为20MPa~30MPa;萃取温度的正交试验区间为45℃~55℃;正交试验的操作时间为1.5h;正交试验夹带剂用量的区间为20mL~40mL;正交试验夹带剂浓度的区间为60%~95%。
     选择TFG萃取物的触杀活性作为主要的评判指标,同时以TFG萃取物萃取得率作为补充评判指标,以正交试验对TFG超临界CO_2进行工艺优化,试验结果表明:最佳萃取工艺为萃取压力25Mpa,萃取温度55℃,央带剂为95%乙醇,固液比为200g:30mL。
     在优化工艺下得到的萃取得率为16.96%,与正交试验方案中的最高值即17.88%基本持平。优化后的SCFE技术工艺得到的萃取物对谷蠹的触杀活性在处理后24h和10d的LD_(50)分别为102.24μg/cm~2和65.10μg/cm~2,相对毒力分别为1.44和2.26。
     5.用石油醚、氯仿、乙酸乙酯、正丁醇和水依次对TFG超临界CO_2萃取物(简称TFG-1)进行萃取,萃取率分别为61.32%、9.22%、9.16%、8.39%和17.08%。生物测定结果表明:TFG-1的活性成分主要存在于石油醚萃取物中,对谷蠹成虫表现出很强的触杀作用,TFG-1石油醚萃取物对谷蠹处理24h、48h、72h和10d后的LD_(50)分别为175.05μg/cm~2、133.65μg/cm~2、113.37μg/cm~2和79.34μg/cm~2。氯仿萃取物对谷蠹的触杀活性较强,乙酸乙酯萃取物具有一定的活性,而正丁醇萃取物和水提取物未见杀虫活性。
     以不同极性的溶剂系统作为展开剂,将TFG-1石油醚萃取物进行薄层层析(TLC),在紫外光(254nm)下进行观察,未见明显谱带。说明TFG-1石油醚萃取物没有紫外吸收现象。当以石油醚:乙酸乙酯=10:1的混合溶剂作为展开剂时展层效果最好,在碘显色时有5个谱带,在磷钼酸显色时有10个谱带,其Rf值在0.1-0.9之间。
     将TFG-1石油醚萃取物进行柱层析,第1次柱层析后,经TLC检测,归类合并,共得到7个流分,第1个组分(Ⅰ)的得率最高,为75.13%,是TFG-1石油醚萃取物的主要成分。当载药量均为519.95μg/cm~2时,只有流分Ⅰ的杀虫效果最明显,对谷蠹的致死率在24h时即达到100%,流分Ⅵ其次,对谷蠹的致死率在24h时为80.76%,另外流分Ⅴ也有较好的杀虫效果,对谷蠹的致死率在24h时为46.67%,而流分Ⅱ、Ⅳ和Ⅶ的杀虫效果较差,流分Ⅲ几乎没有杀虫效果。
     流分Ⅰ柱层析分离得到5个样品,分别为样品a、样品b、样品c、样品d、样品e,其中样品e为流分Ⅰ的主要成分。流分Ⅵ柱层析分离后得到4个样品,分别为样品f、样品g、样品h、样品i,其中样品i为流分Ⅵ的主要成分。生物测试结果显示从流分Ⅰ中得到的5个样品均有杀虫活性,样品e对谷蠹成虫的触杀活性很强,当处理剂量为259.98μg/cm~2时,谷蠹经样品e处理后,其24h时的死亡率达77.78%。从流分Ⅵ中得到的4个样品同样均有杀虫活性,样品i的触杀活性较强,谷蠹经剂量为259.98μg/cm~2的样品i处理,其24h后的死亡率为41.11%。
     样品e经多次柱层析纯化得到一单体化合物e5222(简称化合物Ⅰ)。样品i经柱层析后,在丙酮中重结晶,得到一结晶状单体化合物i3111(简称化合物Ⅱ)。经理化常数测定和红外、核磁共振、质谱等波谱数据分析鉴定,化合物Ⅰ和化合物Ⅱ分别是1,2-二亚油酰-3-硬脂酰-甘油三酯(1,2-dilinoleic acid-3-stearic acid-triglyceride)和4a,14a-二甲基-胆甾醇(4a,14a-dimethyl-cholesterol),这2个化合物均首次从TFG中发现。
     6.化合物Ⅰ对谷蠹成虫有较强的触杀活性,剂量为129.99μg/cm~2的药剂处理试虫24h、48h、72h和10天后,谷蠹的平均死亡率分别为32.22%、40.00%、56.67%和70.00%,死亡率较高。化合物Ⅰ对玉米象有明显的触杀效果,用剂量为129.99μg/cm~2的药剂处理试虫24h、48h、72h和10天后,玉米象的平均死亡率分别为86.67%、92.22%、95.56%和100.00%,死亡率很高。
     化合物Ⅱ对谷蠹和玉米象的触杀效果相对较弱,当药膜剂量为259.98μg/cm~2时,对谷蠹处理10天后有少量成虫死亡,平均死亡率为4.44%,同样的剂量处理玉米象10天后的平均死亡率为97.78%。
     将化合物Ⅰ与化合物Ⅱ按质量比为1:1制成混剂,对谷蠹和玉米象的生测结果表明:处理谷蠹成虫10天后,得到的共毒系数为60.57,共毒系数数值小于80,两单体的活性在处理谷蠹成虫10天后表现为拮抗作用,混剂处理玉米象10天后,得到的共毒系数为30.23,共毒系数数值小于80,两单体对玉米象的活性同样表现为拮抗作用。
Aim to study the bioactivity against the main stored pests including Sitophilus zeamais Motschulsk (S. zeamais), Rhyzopertha dominica Fabricius (R dominica), Tribolium castaneum (Herbst) (T.castaneum) and Oryzaephilus surinamensis (Linnaeus)(O. surinamensis), several solvents and methods were selected to extract the bioactive substance efficiently from Legumiosae plant TFG seeds. From the year of 2003 to 2006, a series of studies concerned plant TFG have been conducted including its contact toxicity, repellency and its phytochemistry, the research results are outlined as follows:
     1. The powderded seeds of TFG was extracted with alcohol, chloroform, ethyl acetate, acetone and petroleum ether at relative high temperature by dipping the extract flask in warm water, the extracts rate of TFG seeds in alcohol was 11.48%, which is the highest rate among these solvents, while petroleum ether had the lowest extract rate which was only 4.91%. The extracts rate of TFG in chloroform, ethyl acetate and acetone was 7.24%, 7.54% and 5.29%.
     The five extracts obtained from different solvents all had a certain repellency against S. zeamais, the chloroform extract had the most effective repellency among those extracts, and its repellency level against S. zeamais could reach toⅡwhen dosage was at 1000μg/cm~2, the second was acetone extracts.
     All the extracts had a significant repellency to T.castaneum, average repellency of different extracts all exceeded 80%, and repellency level wereⅤ, acetone extracts had the most effective repellency to T.castaneum. the second one was chloroform extracts, the one had the most poor repellency was ethyl acetate. The difference of repellency rates between S. zeamais and O. surinamensis did not caused obviously by TFG extracts, while the repellency rate between S. zeamais and T.castaneum was notable, and the repellency rate between R. dominica and O. surinamensis was also notable. The order of repellency against stored pests by TFG solvent extracts was T.castaneum>S. zeamais>O. surinamensis>R. dominica.
     All the five extracts possessed strong contact activity to S. zeamais, the adults, treated by extracts for three days and then cultured by clean wheat for one week, nearly all died. The alcohol extracts had the most effective contact toxicity to S. zeamais, its LD_(50) (effective dosage causing 50% mortality rate)to S. zeamais was 0.362mg/cm~2 and 0.328mg/cm~2, respectively. The second was ethyl acetate extracts and its LD_(50) to S. zeamais within 48 hours was 0.334mg/cm~2, acetone extracts also had excellent contact toxicity to S. zeamais and its LD_(50) within 24 hours to S. zeamais was 0.380mg/cm~2.The petroleum ether extract had the lowest contact toxicity to S. zeamais among the five TFG extracts. The LD_(50) of petroleum ether extract to S. zeamais was 0.772 mg/cm~2 and 0.680 mg/cm~2 by treatment within 24 hours and 48 hours, respectively.
     All the TFG five extracts had poor contact toxicity to T. castaneum adults. The mortality of T. castaneum changed very little after treated for three days and then cultured for one week. TFG alcohol extracts showed the most effective activity to R. dominica among these extracts, its LD_(50) to R. dominica adults was 0.482 mg/cm~2, 0.450mg/cm~2,0.400mg/cm~2 and 0.386mg/cm~2 within 24 hours, 48 hours, 72 hours and 10 days; the TFG petroleum ether extracts had the hightest LD_(50) to T. castaneum.
     TFG actone extract had strong toxicity to R. dominica with the LD_(50) of 0.240mg/cm~2 by treatment within 24 hours, it showed more efficient than alcohol extract and chloroform extract, the mortality of R. dominica adults increased rapidly from 24 hours to 48 hours after treatment. The mortality of O. surinamensis changed differently according to the different TFG extracts and treatment dosage, alcohol extracts and chloroform extracts had more active contact toxicity than other extracts.
     2. Since alcohol was the optimum solvent to extract bioactive substance according to the results of the first experiment, it was selected as extract solvent for different extracting method including method of dipping powered TFG in alcohol at room temperature (TFGR), method of dipping powdered TFG in alcohol at relative high temperature (TFGH), method of Soxhlet extraction (TFGS), method of TFGR and TFGS (first, dipping powered TFG in alcohol at room temperature to get some extracts, then extracting remainder with Soxhlet extraction apparatus to obtain more extracts, TFGR-TFGS), method of Supercritical CO_2 Fluid Extraction (TFG-SCFE), no modifier was used in TFG-SCFE. The results showed that the extracts rate of TFGR, TFGH, TFGS, TFGR-TFGS, TFG-SCFE was 4.65%, 11.48%, 12.99%, 8.14%, 11.35%, respectively.
     All the extracts obtained from those five methods were good at repelling T.castaneum, the repellency rates varied obviously when the extract method changed. TFG-SCFE extracts could repel T.castaneum at very little dosage. Treatment with TFG-SCFE extracts at dosage 0.16 mg/cm~2, the average repellency rate within 4 days was 87.9%; treatment with TFGH extracts at dosage about 0.96 mg/cm~2 to 1.60 mg/cm~2, the average repellency rates of everyday all exceeded 80%, and the average repellency rates within 4 days was high to more than 90%, TFGR extracts, TFGS extracts and TFGR- TFGS extracts all had relative poor repellency to T.castaneum, the highest dosage for testing was 16 mg/cm~2, which was 100 times to the testing dosage of TFG-SCFE extracts.
     The LD_(50) values of extracts obtained from those five methods to T.castaneum increased gradually from TFGH, TFG-SCFE, TFGR, TFGR-TFGS and TFGS. TFG-SCFE extracts had similar contact toxicity as TFGH extracts, treatment with it at dosage 0.91 mg/cm~2 on T.castaneum, the mortality achieved to 90% within 72 hours, and the mortality all exceeded 80% when dosage above 0.52 mg/cm~2.
     The toxicity order to R. dominica was TFGH>TFG-SCFE>TFGR>TFGS>TFGR-TFGS. TFGH extracts and TFG-SCFE extracts showed effective contact toxicity to R. dominica, the LD_(50) of TFGH to R. dominica within 24 hours, 48 hours,72 hours and 10 days was 0.255 mg/cm~2, 0.144 mg/cm~2, 0.112mg/cm~2 and 0.100mg/cm~2, respectively. The LD_(50) of TFG-SCFE to R. dominica within 24 hours, 48 hours,72 hours and 10 days was 0.256 mg/cm~2, 0.156 mg/cm~2, 0.142mg/cm~2 and 0.130mg/cm~2, respectively.
     3. Alcohol, ethyl acetate, chloroform was used as modifier to extract bioactive substance from TFG seeds powder, and the extract rates of TFG-SCFE with alcohol (TFG-SCFE-A), TFG-SCFE with ethyl acetate (TFG-SCFE-E), TFG-SCFE with chloroform(TFG-SCFE-C), and TFG-SCFE without modifier was 14.17%,13.31%,10.74% and 10.18%. Among those four extracts, TFG-SCFE-A extracts was the best pesticide to kill 5. zeamais. The LD_(50) of TFG-SCFE-A to 5. zeamais within 24 hours, 48 hours, 72 hours was 231.76μg/cm~2, 194.43 mg/cm~2, 141.06μg/cm~2 respectively. The second was TFG-SCFE-E extract, its LD_(50) to S. zeamais within 24 hours, 48 hours and 72 hours was 228.67μg/cm~2,180.09μg/cm~2 and 152.61μg/cm~2, the third was TFG-SCFE-C, and the last one was TFG-SCFE, the LD_(50) of TFG-SCFE to S. zeamais within 72 hours was the largest one, and the value was 218.74μg/cm~2.
     The contact toxicity order of the SCFE extracts with different modifier against T. castaneum was TFG-SCFE-C>TFG-SCFE-A>TFG-SCFE>TFG-SCFE-E, the LD_(50) of them to T.castaneum was 278.57μg/cm~2,303.89μg/cm~2,314.74μg/cm~2 and 429.45μg/cm~2.
     Among these four extracts, TFG-SCFE-A extracts possessed strong pesticidal effect to R. dominica, the LD_(50) of it to R. dominica within 24 hours and 10 days was 115.14μg/cm~2 and 78.25μg/cm~2, respectively; TFG-SCFE extracts was the one that showed poor contact toxicity, the LD_(50) of it to R. dominica within 24 hours and 10 days was 174.71μg/cm~2 and 135.22μg/cm~2.
     4. Used extract rate as standard values, extract pressure (EP), extract temperature (ET), extract duration (ED), modifier volume (MV), modifier consistence (MC) were investigated to settle down optima range, the results showed range for EP was 20MPa~30MPa, range for ET was 45℃~55℃, range for ED was 1h~2h, range for MV was 20mL~40mL and range for MC was 60%~95%.
     Contact toxicity and extract rate were used as standard values to optimize extraction conditions, which were achieved at 55 ~ΩC under 25 Mpa of pressure. The extraction efficiency for 200 grams of dry sample reached 16.96% with 30 mL of 95% alcohol. Extracts loaded on filter paper showed dose and time dependent toxicities to adult R. dominica with a LD_(50) value of 65.10μg/cm~2 after 3d treatment and 7d culturation.
     5. TFG-1 extract was first separated into five parts by partition in liquid extraction method, petroleum ether, chloroform, ethyl acetate, n-butanol and water were used, extract rate of them was 61.32%,9.22%,9.16%,8.39% and 17.08%. the petroleum ether fraction was identified to be the most active part as result of contact toxicity; the second, chloroform fraction, and the third, ethyl acetate, treatment with TFG-1 n-butanol extracts and TFG-1 water extracts to R. dominica showed no contact toxicity. and the LD_(50) of TFG-1 petroleum ether extract to R. dominica within 24 hours, 48 hours, 72 hours and 10 days was 175.05μg/cm~2,133.65μg/cm~2,113.37μg/cm~2 and 79.34μg/cm~2, respectively.
     Separation and purification of the petroleum ether part was performed through silica gel column for several times. Seven parts were got by TLC testing, the separation rate of partⅠwas the highest one, and the value was 75.13%, which mean partⅠwas the main ingredients of TFG-1 petroleum ether extract. Treatment with extracts of partⅠ, partⅥand partⅤat dosage 519.95μg/cm~2 on R. dominica, the mortality rate of adults was 100%, 80.76% and 46.67% within 24 hours, partⅡ, partⅣand partⅦhad little contact toxicity to R. dominica, partⅢshowed no toxicity to R. dominica by those testing treatment dosages. Five samples were obtained from partⅠby column chromatography, that was sample a, sample b, sample c, sample d and sample e, and results of separation rates showed sample e was the main components of partⅠ. Four samples were got from partⅥ,and sample i was the main component of partⅥ. Treatment with sample e and sample i at dosage 259.98μg/cm~2 to R. dominica, the mortality of adults was 77.78% and 41.11%, respectively.
     One monomer compound (compoundⅠ)was isolated from the active sample e, the molecular structure of the compound was definitely identified as 1,2-dilinoleic acid-3-stearic acid-triglyceride by the spectrum analysis including MS, ~1H-NMR, ~(13)C-NMR and IR. One crystal (compoundⅡ) was isolated from sampleⅠ, and was named as 4a, 14a-dimethyl-cholesterol.
     6. It was found that compoundⅠpossessed strong contact toxicity to R. dominica and S. zeamais, treatment with dosage 129.99μg/cm~2, the average mortality of R. dominica and S. zeamais within 10 days was 70.00% and 100.00%, respectively, compoundⅡalso showed contact toxicity to R. dominica and S. zeamais, treatment with dosage 259.98μg/cm~2, the average mortality of R. dominica and S. zeamais within 10 days was 4.44% and 97.78%. After having mixed compoundⅠand compoundⅡat the weight rate 1:1, the mixture was tested its contact toxicity to R. dominica and S. zeamais. The results showed treatments of mixed compound had pesticidal effects on R. dominica and S. zeamais, whose LD_(50) were 217.60μg/cm~2 and 45.44μg/cm~2 within 10 days; the co-toxicity coefficient of mixed medicament to R. dominica and S. zeamais were 60.57 and 30.23, the values were much smaller than 80, so their medicamental avail relaxational effect.
引文
1.艾应伟,范志金,李伟,等.植物源生理活性物质与害虫防治.资源科学,2000,22(3):78-81
    2.白志诚.紫穗槐杀虫成分的研究.延安大学学报,1990,11(1):1-4
    3.贝纳新,高萍,石承民,等.植物源杀虫剂研究进展.沈阳农业大学学报,2002,33(4):309-31
    4.卞俊,蔡定国,顾明娟,等.CO_2超临界流体萃取马钱子中士的宁的研究.中国医药工业杂志,1997,28(1):5
    5.操海群,岳永德,花日茂,等.植物源农药研究进展(综述),安徽农业大学学报,2000,27(1):40-44
    6.操海群,岳永德,彭镇华,等.竹提取物对玉米象生物活性的初步研究.农药学学报,2002,4(1):80-84.
    7.曹光荣,李绍君,段得贤,等.黄花棘豆有毒成分的分离与鉴定.西北农业大学学报,1989,17(3):1-7
    8.曹艳萍,白根举,王光清,等.紫穗槐杀虫活性成分的提取与分离.西北林学院学报,1996,11(1):110-112
    9. 陈虹,邓修.木香挥发油的超临界CO_2萃取及质量研究,中草药,1997,28(6):337-339
    10.陈冀胜,郑硕.中国有毒植物[M].北京:科学出版社,1987,338
    11.陈默君,贾慎修.中国饲用植物[M].北京:北京农业出版社,2002
    12.陈山.中国草地饲用植物资源[M].辽宁:辽宁民族出版社,1994
    13.陈淑莲,游静,王国俊.超临界流体低压萃取β—香烯.色谱,2001,19(2):179
    14.陈万义,王明安.对我国植物源农药研究中几个问题的思考.第二届全国植物源农药暨第六届药剂毒理学术讨论会论文集.陕西杨凌,2001
    15.陈孝君译.农药.从杀伤到控制.农药译丛,1988,10(2):2-4
    16.陈耀祖,苦马豆化学成分的研究.西北药学杂志,1987,092(3):15
    17.陈业高,于丽丽,黄荣.补骨脂化学成分的分离与鉴定.云南化工,2005,32(41:3-5
    18.陈愿柱.植物性杀虫剂防治仓库害虫概况.粮食与油脂,1990,(2):20-23
    19.陈执中,章月华,生化新药研究动向.中国药学杂志,1994,29(1):12
    20.程东美,胡美英.黄杜鹃对3种仓储害虫的毒杀试验.粮食储藏,2000,29(6):3-6
    21.邓启焕,高勇.第二类超临界流体萃取银杏叶有效成分的实验研究.中草药,1999,30(6):419-423
    22.邓清,邓树林。绿色食品蔬菜.豆薯,江西农业科技,2003,5:22
    23.邓望喜,杨志慧,杨长举,等.几种植物性物质防治储粮害虫的初步研究.粮食储藏,1989,(2):29-34
    24.邓亦峰,梁念.半边旗中二萜类化合物的超临界CO_2萃取及HPLC-MS分析.中药,2004,35(2):145-1487
    25.丁伯良,王建辰,薛登民,等.奶山羊甘肃棘豆中毒卵巢、胎盘的病理学研究.中国兽医学报,1995,15(1):27-32
    26.董新艳,张兴儒.超临界萃取技术在中草约研究中的应用.青海大学学报,2005,23(3):15-18,26
    27.段先志,夏红英,罗平.夹带剂性质对超临界二氧化碳萃取的影响.化工技术与开发,2003,32(6):23-26
    28.樊文乐,武文洁.超临界萃取中夹带剂的概述.食品科技,2005,2:39-42
    29.樊西惊,雷周印.无公害植物性杀虫剂.西安:西北大学出版社.1994
    30.高德霖.超临界萃取技术的开发研究.化工进展,1985,(3):24-29
    31.高菊芳译.生物农药的作用、应用与功效(二)植物和动物源农药.世界农药,2001,23(2):5-10
    32.高希武,姜辉,陶岭梅,等.生物/生物源农药研究的现状与展望[C]见:面向21世纪的植物保护发展战略(中国植物保护学会年会论文集).北京:中国科学技术出版社,2001,158
    33.葛发欢,史庆龙,林香仙,等.超临界CO_2从黄山药中萃取薯蓣皂素的工艺研究.中草药,2000,31(3):181
    34.葛发欢,王海波.超临界流体萃取技术在天然产物提取及药物分析中的最新研究进展和前景.中成药,1997,19(1):45-46
    35.葛鹏斌,赵宝玉,童德文,等.小花棘豆中苦马豆素的提取分离与结构鉴定.中国农学通报,2003,19(1):1-4
    36.谷艳芳,尚福德,薛敬忠,等.几种植物性物质对赤拟谷盗的驱避作用.河南农业大学学报,1997,31(3):277-279
    37.广西植物研究所.土农药[M].南宁:广西人民出版社,1972
    38.郭长合.苦参在农业中的研究与应用.农业科学与管理,2001,22(4):27-28
    39.郭晓庄.有毒中草药大辞典[S].天津:天津科技翻译出版公司,1992
    40.郭振德,张相年,张镜澄,超临界CO_2萃取姜油的组成研究,色谱,1995,13(3):156-159
    41.国家药典委员会.中华人民共和国药典[S].2000
    42.郝乃斌,戈巧英.中国植物源杀虫剂的研制与应用.植物学通报,1999,16(5):495
    43.何衍彪,詹儒林,赵艳龙.植物源农药的研究和利用.热带农业科学,2004,24(3):48-56
    44.贺红武,黄刚良.作为生物合理农药资源的热带植物.世界农药,2000,22(5):8-13
    45.侯柏玲,李占林,李铣.苦马豆根和茎中黄酮类化学成分的研究,实用药物与临床,2005,8(增刊):46-47
    46.侯华民,张兴.植物精油对玉米象的熏蒸和种群抑制活性研究.粮食储藏,2001,30(3):8-11
    47.侯华民.植物精油防治害虫的研究现状.江苏农药,2000,(1):24-26
    48.侯玉翠,张毅,刘克文,等.超临界流体技术的研究进展[J].化学工业与工程,2002,19(5):384-389.
    49.候学文,谢建军,曾鑫年,等.生物技术在植物性杀虫剂研究开发中的应用.植物保护学报,2001,28(1):77-82
    50.胡楫.无公害杀虫剂:高效鱼藤氰的研制及工厂化生产.广东农业科学,1995,2:42-49
    51.胡美英,赵善欢.几种植物杀虫剂对杂拟谷盗的毒力试验.华南农业大学学报,1993,14(4):32-37
    52.湖南嘉和县粮食局.苦楝籽粉压盖粮面防治储粮害虫.粮油科技,1984,(3):40-41
    53.华昌培.植物精油对仓库害虫的毒性试验,四川日化,1988,(1):20-25
    54.黄宝华.CO_2超临界萃取中挥发性成份分析.中药材,1997,20(1):30-31.
    55.黄抱鸿,胡希良,范方传等.中草药组合防护剂防治储粮害虫试验报告.江西粮油科技,1995,(2):2-5
    56.黄福辉,项发根,周为民.关于山苍子有效成分在储粮中的应用.粮食储藏,1980,(2):19-22
    57.黄纪念,屠鹏飞,蔡同一.超临界CO_2流体萃取迷迭香中抗氧化活性成分的工艺研究.中草药,2004,35(2):150-1536
    58.黄欣,苏乐群,邵伟,等.白芷香豆素类化合物的成分分析及CO_2超临界萃取工艺的研究.中国药房,2005,16(11):824-826
    59.黄星.鬼箭锦鸡儿超临界CO_2萃取物化学成分的GC-MS分析.中药材,2001,24(9):650
    60.黄有德,肖志国,孟聚诚,等.变异黄芪有毒成分的分离与分析.中兽医医药杂志,1992,(4):3-6
    61.纪松岗,柴逸夫,吴玉田,等.超临界流体萃取胶束电动毛细管色谱法分离测定大黄中萘醌类组分的含量.分析化学,1998,26(11):1388
    62.贾金平,何翊.超临界流体的应用现状.化学世界.1998,39(1):3-6
    63.贾慎修,陈默君.中国饲用植物志.北京:农业出版社,1987-1997
    64.江苏新医学院编.中药大辞典.下册,上海人民出版社,1977
    65.姜武锋,马文斌,向金平,等.植物防护剂安粮仙防治储粮害虫的研究.粮食储藏,1999(5):19-22
    66.兰辛.超临界萃取的溶媒和夹带剂.贵州化工,1997,(1):15
    67.雷小刚,梁意红.超临界流体萃取工艺与装置的研究和开发.化工机械,1995,22(61:50-53
    68.李爱群,欧润妹,张北泉.补骨脂不同提取部位中有效成分的含量比较.广州中医药大学学报,1999,161(1):52-54
    69.李斌.杀虫剂研究进展.农药,2000,39(4):6-9
    70.李典谟.走向21世纪的中国昆虫学[M].北京:中国科学技术出版社,2000,1077-1080
    71.李国钟,李楠.超临界CO_2萃取甘草素.化学工程,1994,22(5):26-28
    72.李会新,魏木山,易平炎.25种植物精油对四纹豆象的防治效果.粮食储藏,2001,30(6):6-9
    73.李金培,张玉珍.植物源农药的利用.世界农业,1998,(12):28-30
    74.李菁,葛发欢.超临界CO_2萃取当归挥发油的研究.中药材,1996,19(4):187-189
    75.李军,冯耀声.超临界二氧化碳萃取茶多酚的研究.天然产物研究与开发,1996,8(3):42
    76.李玲.超临界流体萃取法在中药材质量控制中的应用.药学学报,1995,30(2):133
    77.李隆术,李光灿.植物芳香油防治仓虫的试验.粮食储藏,1985,63(4):1-9
    78.李培忠,孙国璋.川楝素在小鼠神经肌肉标本上的抗肉毒作用.生理学报,1983,35(4):480-483
    79.李前泰,宋永成.谷虫防护剂谷虫净的有效防虫期试验.粮油仓储科技通讯,1999,(1):31-32
    80.李前泰,宋永成.几种植物挥发油杀虫效果的试验研究.粮食储藏,2001,30(1):19-22
    81.李强(译).防治害虫的植物.国外农学保护,1993,6(4):19.20
    82.李巧玲,周明华,陈俊男.超临界萃取装置的研制及其应用.分析测量技术与仪器[J].1997,3(3):147-151
    83.李庆孝,何传椐.生物农药使用指南[M].北京:中国农业出版社,2004,52-55
    84.李淑芬.超临界CO_2萃取天然产品的特性研究[A].全国超临界流体技术学术及应用研讨会论文集[C].北京:清华大学出版社,1996,30-35
    85.李先春,王敦清.超临界二氧化碳流体萃取草珊瑚的工艺研究.天然产物研究与开发,1998,10(4):64.
    86.李小平,吕小军.川楝果实提取物对棉铃虫杀虫活性初探.淮北煤师院学报,2003,24(4):35-38
    87.李晓东,陈文奎,胡美英.印楝素、Rhodojaponin 对斜纹夜蛾的生物活性及作用机理的研究.华南农业大学学报,1995,16(2):80-85
    88.李晓东,赵善欢.红果米仔兰杀虫活性成分及毒力的初步研究.植物保护学报,1998,25(3):267-269
    89.李晓东,赵善欢.楝科植物次生化合物及其构效关系.华南农业大学学报,1997,18(3):29-32
    90.李晓东.印楝素对昆虫的毒理作用机制.华南农业大学学报,1995,170:118-122.
    91.李扬汉.植物学[M].上海科学技术出版社,1988
    92.李永夫,罗安程.植物源农药的研究和应用进展.科技通报,2003,19(5):434-438
    93.李云华,于洋.用超临界萃取—薄层扫描法测定中药大黄中大黄素的含量.药物分析杂志,1995,15(A01):336-338
    94.李云寿,唐绍宗.黄花蒿提取物的杀虫活性.农药,2000,39(10):25-26
    95.李云寿,邹华英,汪禄祥,等.紫茎泽兰提取物对四种储粮害虫的杀虫活性.昆虫知识,2001,38(3):214-216
    96.李肇奖,吕晓玲,姚秀玲,等.油茶总皂苷提取工艺优化.中国食品添加剂,2004(5):1-48
    97.李志勇,宁布.概述我国豆科牧草资源.四川草原,2005,113(4):20-22
    98.李洲.分离技术的进展.化工进展[J].1993,(1):17-22.
    99.梁瑞红,谢明勇,施玉峰.紫草色素超临界萃取与有机溶剂萃取之比较.食品科学,2004,25(3):130-132
    100.梁勇,羊裔明,袁淑兰.丹参酮药理作用及临床应用研究进展.中草药,2000,31(4):304
    101.梁媛,叶非.植物源农药的活性成分和作用机理.农药科学与管理,2006,27(2):34-40
    102.廖春燕,刘秀琼.粘虫幼虫感受器扫描电镜观察及川楝素的抑制作用.华南农业大学学报,1986,7(2):43-46.
    103.廖周坤,姜继祖,王化远,等.超临界CO_2萃取藏药灵芝中总皂甙及多糖的研究.中草约,1998,29(9):601-6025
    104.刘缠民,蒋继宏,黄小花,等.苦豆碱及顺式氯氰菊酯对菜田蚜虫群落的毒力研究.动物学杂志,2002,37(2):2-5
    105.刘成梅,游海.天然产物有效成分的分离与应用[M].北京:化学工业出版社,2003,11-14
    106.刘法涛,杨志忠.里奥百脉根的优点与利用评价.中国草地,1998,6:30-34,42
    107.刘红梅.超临界CO_2萃取天然香料的研究进展.北京联合大学学报:自然科学版,2003,17(3):94-96
    108.刘家良,李倩恰,张昆,等.应用CO_2超临界流体从二种卫矛科植物中分离三萜成分,广东工业大学学报,1998,15(3):26-30
    109.刘建明,陈世黄,占布拉,等.苦豆子特性的初步探讨.内蒙古草业,1996,3(4):50-54
    110.刘延成.α-萘乙酸与β-萘酚在含夹带剂超临界CO_2中溶解度的研究.化工进展,2003,22(9):980
    111.刘志茹,胡云楚,任凤莲.芫花杀虫活性组分的浸提、分离与生物测定.中南林学院学报,2000,20(4):15-19
    112.卢文彪,曾元儿,钟镜金,等.丹参制剂中丹参酮Ⅱ A的稳定性影响因素考察.时珍国医国药,2002,13(1):7
    113.鲁玉杰,刘凤杰.大蒜和芦荟提取物防治几种储粮害虫效果的研究.粮食储藏,2003,32(3):14-17
    114.陆永跃,梁广文,邵婉婷,等.非洲山毛豆提取物对香蕉交脉蚜的忌避作用研究.植物保护,2002,28(6):19-22
    115.陆蕴如.中药化学[M].北京:学苑出版社,1995:93-127
    116.吕晓玲,李肇奖.CO_2超临界萃取油茶皂苷的研究.食品与发酵工业,2005,31(1):23-26
    117.罗都强.雷公藤有效成分和杀虫活性及应用研究.[博士学位论文].杨陵:西北农林科技大学,2002
    118.罗刚,金钰珠.川楝素药理研究进展.华西药学杂志,1983,3:154-156.
    119.罗万春,张强.苦豆子生物碱对小菜蛾体内部分杀虫剂代谢酶活性的影响.昆虫学报,2003,46(1):122-125
    120.罗万春,李云寿,赵善欢,等.苦豆子生物碱对萝卜蚜的毒力及其对几种酯酶的影响.昆虫学报,1997,40(4):357-365
    121.罗万春,李云寿,赵善欢.苦豆子提取物对两种蔬菜害虫的活性.植物保护学报,1996,23(3):281-282
    122.骆和东,林健,贾玉珠.一起食用豆薯种子引起的鱼藤酮中毒.现代预防医学,2005,32(10):1392
    123.马海乐.超临界CO_2萃取技术及其在生物资源开发利用中应用的最新进展(Ⅱ).包装与食品机械,2001,19(3):7
    124.马志卿,张兴.植物源杀虫物质的作用特点.植物保护,2000,26(2):37-39
    125.孟协中,胡向群,张如明,等.宁夏两种有毒棘豆中毒性成分的研究.宁夏农林科技,1994,(2):37-40
    126.苗抗立,张建中,董颖,等.苦参化学成分及药理的研究进展.天然产物研究与开发,2001,13(2):69-73
    127.缪海均,柳正良,李云华.超临界流体萃取法.毛细管气相色谱法分析厚朴药材中厚朴酚、和厚朴酚的含量.药物分析杂志,1998,18(3):182
    128.莫建初,刘志茹,王海,等.芫花杀虫活性成分的结构鉴定.中南林学院学报,2001,21(4):5-10
    129.农业部农药检定所.农药登记公告汇编.北京:中国农业大学出版社,1999
    130.农业部农药检定所.新编农药手册(续集)[M].北京:中国农业出版社,1998
    131.农业部农药检定所等编.农药分析(第三版).北京:化学工业出版社,1988
    132.欧建能,林秀仙,梁卫平,等.贯叶连翘提取物的CO_2萃取工艺研究.中药材,2000,23(10):619
    133.庞雄飞.植物保护剂与植物免害工程—异源次生化合物在害虫防治中的应刚.世界科技研究与发展,1999,21(2):24-27
    134.秦宝福,姬志勤,祁志军,吴文君.苦皮藤素微粉剂控制玉米象的效果.农药,2003,42(11):47-48
    135.曲波,翟强.植物源农药的应用前景.辽宁农业科学,2003(3):36
    136.曲玲,李程,侯玉霞,曹有龙.苦参素防治温室白粉虱的药效试验.长江蔬菜,2006,6:44-45
    137.屈秋耘,白志诚,石得玉,等.紫穗槐叶杀虫成分的研究.西北植物学报,1998,18(2):311-313
    138.全炳武,刘海峰,李翔国,金玉兰.不同苦参碱混剂对蚜虫的杀虫活性.延边大学农学学报,2006,28(2):88-92
    139.荣晓东,徐汉虹,赵善欢.植物性杀虫剂印楝的研究进展.农药学学报,2000,2(2):9-14
    140.沈建国,翟梅枝,林奇英,等.我国植物源农药研究进展.福建农林大学学报(自然科学版),2002,31(1):26-31
    141.沈寅初,张一宾.生物农药[M].北京:化学工业出版社,2000
    142.史东龙.CO_2超临界萃取姜黄油的工艺研究.中药材,1997,20(7):345-349.
    143.史庆龙,林秀仙,葛发欢,等.超临界CO_2萃取技术在云南红豆杉化学成分研究中的应用.中药材,2001,24(5):338
    144.史庆龙.棉籽油的超临界CO_2流体萃取及其GC-MS分析.中药材,2001,24(12):872
    145.史卫国,徐之明,黄清臻,等.植物源农药的进展.农药科学与管理,1997,(3):33-35
    146.宋启煌,高红莲,张穗,等.超临界CO_2从小球藻中萃取EPA和DHA的工艺研究.化学世界,1999,(3):146-150
    147.宋玉霞,许兴,曹有龙,等.宁夏荒漠野生农药植物名录.宁夏大学学报(自然科学版),22(1):73-76
    148.苏子仁,陈建南,葛发欢.应用SFE-CO_2提取丹参脂溶性有效成分工艺研究.中成药,1998,20(8):1-2
    149.谭天伟.天然产物分离新技术.化工进展,2003,22(7):665-666
    150.谭远友,洪子鹂,王建华,等,西藏冰川棘豆生物碱的提取、分离及毒性研究初报,动物毒物学,1999,14(2):22-26
    151.唐川江,侯太平,陈放.瑞香狼毒防治仓储害虫的初步研究.粮食储藏,2001,30(4):11-13
    152.唐春风(译).天然产物化学经济器在农业中对病虫害的防御作用.世界农药,2000,22(1):10-27
    153.唐为民,刘玉玲.植物性杀虫剂在防治储粮害虫中的开发和应用.四川粮油科技,2002,76(4):19-24
    154.陶锐.超临界流体萃取技术进展.中国卫生检验杂志,1999,9(1):74-79.
    155.童德文,曹光荣,李绍君.甘肃棘豆中苦马豆素的分离与鉴定.西北农林科技大学学报,2001,29(3):5-8
    156.屠予钦.天然源农药的研究利用机遇与问题.世界农药,1999,21(4):4-12
    157.王建平,石井永.超临界流体在萃取飞龙掌血成分上的研究.中草药,1990,21(11):18
    158.王剑文,付昀,宋启示.植物杀虫剂资源的开发应用.资源开发与市场,1996,12(6):254-255
    159.王进忠,孙淑玲,苏红田.植物源杀虫剂的研究利用现状及展望.北京农学院学报,2000,15(2):72-75
    160.王洛春,仇汝臣,王英龙,等.超临界萃取技术的应用研究进展.化工纵横,2003,17(1):9-11
    161.王启坤.天然产物害虫控制剂的研究进展.西北农业大学学报,1993,2(2):485-495
    162.王小艺,中国植物源杀虫剂的研究与应用,世界农业,2000,(2):30-32
    163.王晓玲,杨伯伦,张尊听,等.新型分离技术在天然有机物提取及纯化中的应用.化工进展,2002,21(2):131-135
    164.王晓清,姜武峰.7种植物提取物对赤拟谷盗种群形成抑制作用的研究.粮食储藏,1999(1):9-12
    165.王欣,李元瑞.超临界流体萃取过程参数的优化选择.中国油脂,2000,25(6):200
    166.王新国,徐汉虹.赵善欢21世纪的杀虫剂展望.西安联合大学学报,1999,2(4):5-10
    167.魏勇,刘学武,张晓冬,等.超临界萃取的研究及在医药工业中的应用.化学工程与工业,2002,(19):401-404
    168.吴恭谦.几种主要植物质杀虫剂研究进展.安徽农业大学,1994,21(2):146-150
    169.吴广通,石力夫,胡晋红,等.超临界流体萃取法测定川芎中藁本内酯含量的研究.药学学报,1998,33(6):457-460
    170.吴钜文,陈建峰.植物源农药及其安全性.植物保护,2002,28(4):39-41
    171.吴佩文编译.植物精油类农药.世界农药,1999,21(6):23-27
    172.吴文君,曹金娟.植物性农药质量控制.农药科学与管理.1997,18(1):24-25
    173.吴文君,陈文泉,王兴林.苦皮藤提取物对玉米象的控制作用及机理[J].粮食储藏,1988,17(6):9-13
    174.吴文君,刘惠霞,朱靖博,等.我国植物源害虫控制剂的研究与开发.农药,1995,34(2):6-8
    175.西北植物研究所.黄土高原植物志第二卷[M].北京:中国林业出版社,1992.333.
    176.夏传国,陈杰林,李隆术等.丹皮及其提取物对几种中药材仓储害虫的忌避作用研究.粮食储藏,2000,29(1):3-9.
    177.咸红.HPLC法测定丹参超临界萃取物中丹参酮Ⅱ A的含量.实用医技杂志,2006,13(3):387-389
    178.萧效良,甘海涛,戚东林.CO_2超临界萃取技术提取中药有效成分.化工进展,2001,(5):7
    179.晓岚编译.大蒜对仓贮害虫的忌避作用.世界农药,2001,23(3):46-48,19
    180.肖建平,范崇政.超临界流体技术研究进展.化学进展,2001,13(2):94
    181.徐海军,邓碧玉,蔡云升,等.夹带剂在超临界萃取中的应用.化学工程,1991,19(2):58
    182.徐汉虹,鞠荣.植物源光活化毒素的研究与新农药开发.华南农业大学学报(自然科学版),2003,24(4):103-105
    183.徐汉虹.杀虫植物与植物性杀虫剂[M].北京:中国农业出版社,2001,1-498
    184.徐汉虹.植物精油对仓库害虫的活性与有效成分研究.华南农业大学博士学位论文,1992
    185.徐伟松,胡美英,钟国华.杀虫植物的综合利用[C]见:昆虫与环境(中国昆虫学会2001年学术年会论文集),北京:中国农业科技出版社,2001,82
    186.杨波,王喜军,张越.CO_2超临界萃取防风生物活性成分最佳工艺的研究.中国中医药科技,2006,13(2):96
    187.杨长举,邓望喜,杨志慧,等.26种中草药和香料植物对赤拟谷盗成虫的驱避作用.华中农业大学学报,1992,11(4):339-341
    188.杨长举,杨志慧,邓望喜,等.几种植物性物质防治绿豆象的初步研究.中国粮油学报,1994,9(2):4-9
    189.杨长举,杨志慧,邹矛,等.4种植物性物质对几种仓库害虫驱避性的估价.华中农业大学学报.1994,13(6):576-580
    190.杨春河,母灿先译.害虫防治的新概念与新趋势.农药译丛,1997,19(1):1-7
    191.杨东升,张金桐,王宁,等.川楝素和印楝素对家蝇生长发育及繁殖的影响.中国媒介生物学及控制杂志,2002,13(3):185-188
    192.姚康,杨长举.用山苍子芳香油防治蚕豆象.昆虫学报,1984,27(2):173-180.
    193.姚荣成.苦马豆的研究进展.药学实践杂志,2003,21(1):43-44
    194.叶世柏.化学性食物中毒与检验[M].北京:北京大学出版社,1989,123-124.
    195.殷永升,常金玉,王言贵.新型植物杀虫剂及应用.食品科技,1994,(5):36-37
    196.尹秀玲,徐兴友,孟宪东,等.蓖麻的开发利用.生物学杂志,1998,15(82):35
    197.于恩平,朱美文,方芝蓉,等.关于超临界萃取过程中使用夹带剂的研究.化学工程,1989,17(4):21
    198.于恩平.超临界萃取月见油的实验研究.中草药,1992,23(7):346
    199.于荣敏,李铣,宋丽艳,等.小花棘豆毒性生物碱的研究,沈阳药学院学报,1991,8(2):113-116
    200.余华,李萍.提携剂在中草药超临界CO_2萃取中的应用.中国药学杂志,2003,38(5):331-333
    201.禹慧明,姚汝华,林炜铁.夹带剂对超临界CO_2萃取被孢霉中Υ-亚麻酸油脂的影响.中国油脂,1999,24(2):38-40
    202.袁海龙,柳正良,张纯,等.超临界流体萃取HPLC法测定何首乌中大黄酸、大黄素及大黄素甲醚的含量.中草药,1999,30(4):258-260
    203.袁静,吕良忠,丛斌,等.苦参生物碱杀虫生物活性测定.农药,2004,43(6):284-287
    204.臧二乐,李萍.植物源杀虫剂研究现状,农药,1994,33(4):5-7.
    205.臧志清.超临界二氧化碳萃取红辣椒的夹带剂筛选.农业工程学报,1999,15(2):208
    206.曾琦华,黄少烈.夹带剂在银杏叶超临界CO_2萃取中的应用研究.广东药学,2001,11(6):7
    207.曾鑫年,张善学.西非灰毛豆中鱼藤素的分析.分析测试学报,2001,20(6):18-20
    208.张国洲.瑞香狼毒的杀虫活性和有效成分研究.广州:华南农业大学博士学位论文,1999
    209.张宏利,张跃进,韩崇选,等.2004:苦参生物活性研究进展,西北农林科技大学学报(自然科学版),32(5):31-37
    210.张镜澄.超临界流体萃取[M].北京:化学工业出版社.2000
    211.张强,罗万春.苦豆草7种生物碱对不同类型4种杀虫剂增效作用的研究.农药学学报,2002,4(3):57-61
    212.张双喜.鱼藤杀虫作用的研究[D].广州:华南农业大学,1989
    213.张伟,邓新平,王进军,等.数学模型在二元复配剂最优配比筛选中的应用.农约,2006,45(5):316-319
    214.张骁.超临界流体萃取技术及其应用进展.中国医药情报,1999,5(2):90-94
    215.张兴,高蓉,田暄,等.砂地柏果实中杀虫活性成分的结构鉴定.西北农业大学学报,1999,27(4):16-18
    216.张兴,王兴林,杨凌.抑制玉米象种群的植物样品筛选研究.粮食储藏,1993,(4):3-7
    217.张业光,徐汉虹,黄继光,等.非洲山毛豆对几种鳞翅目害虫的拒食作用.华南农业大学学报,2000,21(4):26-29
    218.张忠义.CO_2超临界萃取大蒜有效成份的研究.中药材,1998,21(3):131-132
    219.赵宝玉,曹光荣,疯草中毒研究进展,动物毒物学,2000,15(1,2):17-21
    220.赵宝玉,曹光荣,李绍君,等.劲直黄芪有毒成分的分离与鉴定.中国兽医科技,1993,23(9):9-12
    221.赵博光.六种植物提取物对马尾松毛虫的抑食作用及毒性,南京林业大学学报,1994,18(2):73-78
    222.赵博光.双稠哌啶类生物碱分子结构与杀线活性间关系.林业科学,1998,34(5):61-67
    223.赵善欢,万树青.杀虫植物的研究及应用进展.广东农业科学,1997,(1):26-28
    224.赵淑英,王秋芬,宋湛谦.CO_2超临界萃取印楝素的研究.福建林学院学报,2005,25(2):153-156
    225.真锅明义.超临界流体抽出生药植物成份应用(第3报)紫根及甘草色素化学杂志(日),1987,107(7):506
    226.郑永权,姚建仁,邵向东.苦参化学成分及农业应用研究概况.农药科学与管理,2000,21(1):24-26
    227.中国科学院植物研究所.中国主要植物图说,豆科[M].北京科学出版社,1994
    228.中国科学院中国植物志编辑委员会.中国植物志[M].北京科学出版社,1998
    229.中国农业百科全书编辑委员会.中国农业百科全书·农药卷[M].北京:中国农药出版社,1993
    230.中国土农药志编辑委员会编著.中国土农药志.北京:科学出版社,1959
    231.周利娟,黄继光,徐汉虹,等.从华蟹甲草中分离的两种活性成分对家蝇的杀虫活性.昆虫学报,2006,49(1):74-79
    232.周庆荣.固体溶质在含夹带剂超临界流体中的溶解度(Ⅱ)准液体模型.化工学报,1995,46(3):317
    233.朱邦长,何胜江,张川黔,等.贵州天然豆科牧草—百脉根的引种与驯化,中国草地,1996,6:35-37
    234.朱仁发,杨俊,张悠金.夹带剂在烟草超临界萃取中的应用.烟草科技,1999,(3):35
    235.朱相云.中国豆科植物分类系统概览.植物研究,2004,24(1):20-27
    236.邹节明,梁芳琳,吴广雄,等.CO_2超临界流体技术应用于中药有效成分提取的实验研究.中国中药杂志,2003,28(5):414-417
    237. K. Tripathi, V. Prajapati, N. Vermaetal. Bioactivities of the leaf essential oil of curcuma longa (var.Ch-66) on three species of stored-product beetles (Coleoptera). Journal of Economic Entomology, 2002, 95(1): 183-189
    238. Abbassy M A A, Honsy A H, Lamaei A, et al. Insecticidal and synergistic citrus oils isolated from citrus peels. RAE A,1980, 68:477-486
    239. Abdalla E F. Antifeedant activity of sesquiterpene lactones and their effect on consumption and utilization of food by Spodoptera littoralis(Boisd.) larvae. Bulletin of the Entomological Society of Egypt (Economic Series), 1988, (15): 245-252
    240. Ahmed S M, Eapen M.Vapour toxicity and repellency of some essential oils to insect pests. Indian Perfumer,1986, 30(1): 273-278
    241. Ahmed S, Grainge M. Potenital of the Neem tree for pest control and rural development. Economic Botany, 1986, 40(2): 201-209
    242. Arnbround A, Reverchon E, Senatore F. Isolation of peppermint oil using supercritical CO_2 Extraction. Flavour and Fragrance Journal, 1994, 9:19-23
    243. Andrew P. Stability of the natural insecticide a zadirachtin in aqueous and organic solvents. Pestic Sci, 1998, 53:217-222
    244. Anitescr G, Doneanu C. Supercritical carbon dioxide extraction of Angelica archangelica L root oil. Journal of Supercritical Fluids,1998, 12:59-67
    245. Belmain S R, Neal G E, Ray D E. GolobInsecticidal and vertebrate toxicity associated with ethnobotanicals used as post-harvest protectants in Ghana. Food and Chemical Toxicology, 2001, 39:287-291
    246. Benner P. Pesticidal compounds from higher plants. Pestic. Sci., 1993, 39:95-102
    247. Berenbaum M. Charge of the light brigade: Phototoxicity as a defense against insects. In: Heitz J K, Downum K Reds .Light-Activated Pesticides. ACS Symp. Ser. 339. Washington, DC: American Chemical Society, 1987, 206-216
    248. Berenbaum M. Toxicity of furanocoumarin to armyworms: A case of biosynthetic escape form insect herbivores. Science, 1978, 201:532-534
    249. Berger B M, Tunc J, Erler F. Ovicidal activity of essential oils from five plants against two stored-product insects. J. Stored Prod. Res, 2000, 36(2): 161-168
    250. Butterworth J H, et al. Isolation of a substance that suppresses feeding in locusts. J Chem Communs, 1968, 23-24
    251. Cadoni E, Giorgi M R D, Medda E, et al. Supercritical CO_2 extraction of lycopene and β-carotene from ripe tomatoes. Dyes and Pigment, 2000, (44): 27-32.
    252. Catherine Regnault -roger and Abdelaziz Hamraoui. Fumigant toxicactivity and reproductive inhibition induced by monoterpenes on Acanthoscelides obtectus (Say) (Coleoptera), a bruchid of kidney bean ( Phaseolus vulgaris L.). J. Stored Prod. Res, 1995, 31(4): 291-29
    253. Chaidir J, Hiort B W, Nugroho F I, et al. New insecticidal rocaglamise derivatives from flowers of Aglaia duperreana(Meliaceae ). Phytochemistry, 1999, 51:837-842.
    254. Champagne D E, Koul O, Isman M B, et al. Biological activity of limonoids from the Rutales. Phytochemistry, 1992, 17(2) :377-394
    255. Chan P, Soon-Ⅱ K, Young-Joon A. Insecticidal activity of asarones identified in Acorus gramineus rhizome against three coleopteran stored-product insects. J. Stored Prod. Res, 2003, 39(3): 333-342
    256. Chen W M, B. Isman and S F Chiu. Antifeedant and growth inhibitory effects of the limonoid toosendanin and melia toosendan extrads on the variegated cutworm, Peridroma saucia(Lep: Noctoidae).Jour. App. Ent, 1995, 119:367-370
    257. Ciccia G, Coussio J, Mongelli E. Insecticidal activity against Aedes aegypti larvae of some medicinal South Americn plants. Jourmal of Ethnopharmacology, 2000, 72:185-189
    258. Consuelo M, Diaz-Maroto M, Soledad Perez-Coello M, et al. Supercritical carbon dioxide extraction of volatiles from spices comparison with simultaneous distillation extraction. Journal of Chromatography A, 2002, (947): 23-29
    259. Crane F L, Glenn J L, Green D E. Studies on the electron transfer system Ⅳ. The electron transfer particle. Biochim. Biophys. Acta, 1956, 22(3): 475-487
    260. D F Williams. Extraction with Supercritical Gases. Chemical Engineering Science. 1981, (36):1769
    261. Das Deban, Saikia M K, Sarmah D K Comparative efficacy of botanicals and antagonistic fungi for the management of rice root-know nematode Meloidogyne graminicola. International Journal of Troical Agriculture, 1999, 17(1-4): 287-290.
    262. David H, Messer U K, Dipl. Ing, Thomas B. Supercritical fluid extraction with CO_2. Filtration and Separation, 1999, 25-27
    263. Della L, Tubaro R, Sosa A, et al. Preparative purification of the major anti-inflammatory triter Penoid esters from Marigold(Calendula officinalis) Fitoterapia, Planta Med., 1994, 60:516-522
    264. Dewick P M. Isoflavonoids. In: Harborne J Bed.The Flavonoids: Advances in Research since 1986. London: Chapman and Hall Ltd., 1994, 125-209.
    265. Doraiswamy L, Ferreira S, Meireles M, Nikolov Z, Petenata A Supercritical fluid extraction of black pepper (Piper nigrun L.) essential oil. Journal of Supercritical Fluids, 1999, 14:235-245
    266. Dreyer M, Nugroho B W, Bohnenstergel Fl, et al. New insecticidal rocaglamide derivatives and related compounds from Aglaia oligophylla. J. Nat. prod, 2001, 64:415-420
    267. E. Shaaya, M. Kostjukovski, J. Eilberg et al. Plant oils as fumigants and contact insecticides for the control of stored product insects. J. Stored Prod. Res, 1997, 3(1): 7-15
    268. Ebenezer O Owusuv. Effect of some ghanaian plant components on control of two stored-product insect pests of cereals. J. Stored Prod. Res, 2001, 37(1): 85-91
    269. Eberhard U. Control of phycophtbor infestans with berberine. C A, 1984, (101): 72-74
    270. Eckenbach U, Lampman R L, Seigler D S, et al. Mosquitociidal activity of acetylenic compounds from Cryptotaenia Canadensis. Journal of Chemical Ecology, 1999, 25 (8): 1885-1893
    271. Eikani M, Goodarznia Ⅰ, Mirza M. Supercritical carbon dioxide extraction of cumin seeds (Cuminum cyminum L.). Flavour and Fragrance Journal, 1999, 4:29-31
    272. Eliane C, Vasconcelos M, Janete H Y, et al. Comparison of extraction and clean-up methods for the analysis of fridelan-3-ol and friedelin from the leaves Maytenus aquifolium Martius(Celastraceae), Phytochem Anal, 2000, 11:247-250
    273. F. A. Aayi, N. E. S. Lale. Susceptibility of unprotected seeds and seeds of local bambara groundnut cultivars protected with insecticidal essential oils to infestation by Callosobruchus maculates (F.) (Coleoptera:Bruchidae). J. Stored Prod Res, 2001, 37:47-62
    274. F. Erler Ⅰ. Ulug B. Yalcinkaya Repellent activity of five essential oils against Culex pipiens. Fitoterapia, 2006, 77(7-8): 491-494
    275. Fang N B, Casida J E. Cube resin insecticide: identification and biological activity of 29 rotenoid constituents. J. Agric. Food Chem.,1999, 47(5): 2130-2136
    276. Fang N B, Casida J E. Novel bioactive cube insecticide constituents: isolation and preparation of 13-homo-13-oxa-6a,12a-dehydrorotenoids. J. Org. Chem., 1997, 62(2): 350-353
    277. Feder D, Valle D, Reinhold H, et al. Azadirachtin-induced sterilization in mature female of Rhodnius prolixus. Z Natur forsch, 1988, 43c:908-913
    278. Fekete J, Kery A, Lemberkovics E, Oszagyan M, Sawinsky J. Supercritical fluid extraction of volatile compounds from lavender and thyme. Flavour and Fragrance Journal, 1996, 11:157-165
    279. Fields P G, Xie Y S, Hou X. Repellent effect of pea (Pisum sativum) fractions against stored-product insects. J. Stored Prod. Res, 2001, 37:359-370
    280. G A Montero, C B Smith. Supercritical Fluid Technology in Textile Processing: An overview, Ind Eng Chem Res, 2000, (39): 4806-4812
    281. Gao P, Hou T P, Gao R, et al. Activity of the botanical aphicides 1,5-dipheny l-1-pentanoneand 1,5-dipheny l-2-pentra-1-one on two species of Aphididnae. Pest Manag Sci, 2001, 57(3):307-310
    282. Gonzalez-Coloma A, et al. Persea indica as a natural source of the insecticide Ryam odol. Phytochemistry, 1993,34(2): 397-400
    283. Gracia L, Luque M. Continuous subcritical water extraction of medicinal plant essential oil: comparison with conventional techniques. Talanta, 2000,51:1179-1185
    284. Grainge M, Ahmed S, et al. Handbook of plants with pest control properties [M]. New York USA: John Wiley and Sonx Inc, 1988.
    285. Guada O A, Gurierrez C, Eduardo de la P, et al Insecticidal and mutagenice valuation of two annonaceous acetogenins. J. Nat. Prod., 2000, 63 (6): 773-776.
    286. Guren Zhang, Wenqing Zhang, Bin Lian, et al. Insecticidal effects of extracts from two rice varieties to brown planthopper. Journal of Chemical Ecology, 1999, 25(8): 1843-1853
    287. H. Schmutterer. The Neem Tree. India: Neem Foundation, Vithalnagar,Juhu Scheme. Mumbai, 2002
    288. Haque M A, Nakakita H, Ikenaga H, Sota N. Development-inhibiting activity of some tropical plants against Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). J. Stored Prod. Res, 2000,36: 281-287
    289. Harish Chander, Ahufa D F, Nagender A. A Repellency of different plant extracts and commercial formulations used as prophylactic Sprays to protect bagged grain against Tribolium Castaneum-a field study. J. Stored Prod. Res, 2000,37(6): 582-585
    290. Hartwig U A, Maxwell C A, Joseph C M et al. Interaction among flavonoid nod gene inducers released from alfalfa seeds and roots. Plant Physiol, 1989, 91(3):1138
    291. Hartwig U A, Phillips D A. Release and modification of nod-gene-inducing flaonoids from alfalfa seeds. Plant Physiol, 1991,95: 804
    292. Hartwig U A. Chrysoeriol and luteolin released from alfalfa seeds induce nod genes in Rhizobium meliloti. Plant Physiol, 1990, 92:116
    293. Hill J, Schoonhoven A V. Effectiveness of vegetable oil fractionsin controlling the Mexican bean weevil on stored beans. Journal of Economic Entomology, 1981,74(3): 478-479
    294. Hiort J, Chaidir Fl, Bohnenstengal, et al. New Insecticidal Rocaglamide Derivatives from the Roots of Aglaia cluperreanua. J Nat Prod, 1999,62:1 632-1635.
    295. Ho. S H, Koh L, Ma Y, Huang Y, Sim K Y. The oil of garlic, Allium sativum L. (Amaryllidaceae), as a potential grain protectant against Tribolium castaneum (Herbst) and Sitophilus zeamais Motsch. Postharvest Biology and Technology, 1996,9(1): 41-48
    296. Hu M Y, Klocke J A, Chiu S F. Response offive insect species to a botanical insecticide, Rhodojaponin III.Jour. Econ. Ent, 1993, 86(3): 706-711
    297. Hu M Y, Zhong G H, Wu Q S, et al. Studies on the biological activities of yellow azalea, Rhododen dronmolle G D on against the vegetable leaf miner, Liriomzas ativae. Entomologia Sinica, 2000,7(1): 65-70
    298. Ime E Ebenso. Molluscicidal effects of neem (Azadirachta indica) extracts on edible tropical land snails. Pest Management Science, 2004,160 ( 2) : 178-182
    299. Jembere B, Ahmed H. Blend effects in the toxicity of the essential oil constituents of Ocimum kilimands Charicum and Ocimum kenyense (Labiateae) on two post-harvest insect pests. Phytochemistry, 2001,57: 385-391
    300. JespersAB K. Natural products in plant protection. Jour. Econ. Ent, 1993, 99(3):109-117
    301. Jilani G, H C F Su. Laboratory studies on several plant materials as insect repellents for protection of cereal grains. J.Econ.Entomol., 1983, 76 (1): 54-157
    302. Jilani G, Saxena R, Rua B P. Repllent and growth inhibiting effects of turmeric oil, sweet flag oil, neem oil and"Margosan-O" on red flour beetle (coleoptera:Tenebrionidae). J.Econ.Entomol., 1988, 81, 1226-1230
    303. Kanthi S, Pant J C. Effect of different combinations of cholesterol with caproicacid, isocaproic acid, palmitic acid and linoleic acid on the growth and development of Dacus cucurbitae (Coquillett) maggots under aseptic conditions. Indian Journal of Entomology, 1988, 50(1) :106-112
    304. Keita S M, Charles V, Schmit J P, et al. Efficacy of essential oil of Ocimum basilicum L. and O. gratissimum L. applied as an insecticidal fumigant and Powder to control Callosobruchus maculates (Fab). Coleoptera: Bruchidae. J. Stored Prod. Res, 2001, 37(4): 339-349
    305. Khan Aly, Shankat S, Shahid. Effect of organic amendments and carbofuran on population density of four nematodes and growth and yield parameters of rice (Oryzasativa L.) var IRRI-6. Pakistan Journal of Zoology, 2000, 32(2):145-150.
    306. Kim S I, Park C, Ohh M H, Cho H C, Ahn Y J. Contact and fumigant activities of aromatic plant extracts and essential oils against Lasioderma serricorne (Coleoptera: Anobiidae). J. Stored Prod. Res, 2003a, 39 (1): 11-19
    307. Kim S I, Roh J Y. Insecticidal activities of aromatic plant extracts and essential oils against Sitophilus oryzae and Callosobruchus chinensis. J. Stored Prod. Res, 2003b, 39 (3): 293-303
    308. Kio N D P. Insecticidal activity of fatty acid constituents of fix vegetable oils against Callosobruchus maculates (F.) on cowpea. Pesticide Science, 1990, 30:295-302
    309. Kio N D P. Mode of action of oils against eggs of Callosobruch maculates (F.). Pesticide Science, 1989, 26:107-115
    310. KondoY, Kato A, Kubata Y, et al. Bakuchicin,a new simple furanocoumarin from Psoralea corylifolia L. Heterocycles, 1990, 31(1): 187
    311. Lancas F, Sargenti S. Influence of the extraction mode and temperature in the supercritical fluid extraction of Tangor murcote (Blanco) × Citrus sinensis (Osbeck). Journal of Microcolumn Separations, 1998, 10(2): 213-223
    312. Lang Q Y, Chien M W. Supercritical fluid extraction in herbal and natural product studies - a practical review. Talanta, 2001, (53): 771-782
    313. Latha S, Daniel M. Allelopathic effects of social forestry trees, neem and Meliaon rice. Geobios (Jodhpur), 2003, 30(2-3): 137-142
    314. Li Chong-jiu, Fukushi, Kawabata Y, et al. Antivirad and antifungal activity of some naphthoqulnones isolated from the root of Lithosper mummery. J. of Pestic. Sci. 1998, 23(1):54-57
    315. Lin M C, Tsai M J, Wen K C. Supercritical fluid extraction of flavonoids from Scutellariae Radix. J. Chromatog. A, 1999, (830): 387-395
    316. Liu Z L, Ho S H, Bioactivity of the essential oil extracted from Evodia rutaecarpa Hook E et Thomas again the grain storage insects, Sitophilus zeamais Motsch and Tribolium Castaneum (Herbst). J. Stored Prod. Res, 1999, 35(4): 317-328
    317. Luque M. Strategies for supercritical fluid extraction of polar and ionic compounds. Trends in Analytical Chemistry, 1996, 15(1): 32-37
    318. Maddrid F J, White N D G, Loschiavo S R. Insect in stored cereals, and their association with farming practiced in southern Manitoba. Canadian Entomologist, 1990, 122:515-523
    319. Marsh C D, The locoweed disease of the plains, USD A Farmer Bull,1936,1-32
    320. Martin J. Plants, Insects, and Man-Their Interrelation-ships. Economic Botany, 1982, 36(3):346-354
    321. Matsuda K, Kimura M, Komai K, et al. Nematicidal activities of (-)-N-methylcytisine and (-)-angyrine from Sophora flavescens against pine wood nematodes.Agri .Biol Chem, 1989, 53(8): 2287-2288
    322. Matsuda K, Kimura M, Komai K, et al. Nematicidal activities of matrine and its derivatives against pine wood nematodes.Agri Food Chem, 1991,39(1):189-191
    323. Mazibur M, Eahman, Gerhard H, Schmidt. Effect of Acorus calamus (L.) (Araceae) essential oil vapours from various origins on Callosobruchus phaseoli (Gyllenhal) (Coleopteraf: Bruchidae). J. Stored Prod. Res, 1999,35 (3): 285-295
    324. Meen J J. Neem based pesticides. (C.Proceding for International Symposium on Neem based Products for Industrilization in China, February, 2001. Kun ming, China), 2001,34
    325. Menaker A, Kravets M, Koel M, et al. Identification and characterization of supercritical fluidextracts from herbs. Comptes Rendus Chimie, 2004, (7): 629-633
    326. Mijeong L J, David J C. Investigation of modifier effects in supercritical CO_2 extraction from various solid matrices.J. Supercrit. Fluid, 1999, (16): 33-42
    327. Miller J A, Chamberlain W F. Azadirachtin as a larvicide against the horn fly, stable fly and housefly (Diptera:Muscidae). J Econ Entomol, 1989, 82:1375-1378
    328. Mincione B, Poiana M, Sicari V Supercritical carbon dioxide (SC-CO_2) extraction of grapefruit flavedo. Flavour and Fragrance Journal, 1998,13:125-130
    329. Miyachi H, Manabe A, Tokumori T, et al. Application of supercritical fluid extraction to components of crude drugs and plants. I. effects of pressure, temperature, time and exterainerson supercritical fluid extraction of cnidium for mosanum yabefruits. Yakugaku Zasshi, 1987,107(5): 367
    330. Modey W, Mulholland D, Raynor M. Review: analytical supercritical fluid extraction of natural products. Phytochemical Analysis, 1996, 7:1-15
    331. Morallo-Rejesus B. Botanical insecticides against the diamond-back moth[C]In:Diamondback Moth Management(Procedings of the First International Workshop, 11-15 March, 1985, Asian Vegetable Research and Development Center, Taiwan), 1986, 241
    332. Mordue A J, Blackwell A. Azadirachtin: anupdate.J Insect Physiol, 1993, 39: 903-924
    333. Mulla M S, Su T Y. Activity and biological effects of neem products against arthropods of medical and veterinary importance. Journal of the American Mosquito Control Association, 1999, 15(2) :133-152
    334. Nakakita H, Winks R G. Phosphine resistance in immature staged of a laboratory selected strain of Tribolium castaneum. J. Stored Prod. Res, 1981,17: 43-52
    335. National Research Council. Neem: A Tree Solving Global Problems [A]. Washington, D. C: National Academy Press, 1992.
    336. Nishida R. Synthesis of highly active juvenile horm on eanalogs, Juvocimune I and. from the oil of sweet basil, Ocimum basilicum L. 1984, J Chem Ecol, 10:1435
    337. Nugroho B W, Edrada R A, Wray V, et al. An insecticidal rocaglamide derivatives and related compounds from Aglaia oddorata(Meliaceae). Phytochemistry, 1999, 51: 367-376
    338. Okonkwo E U, Okpye W I. The efficacy of four seed powders and the essential oils as protectants of cowpea and maize grain against infestation by Callosobruchus maculates (Fabricius) (Coleoptera: Bruchidae) and Sitophilus zeamais (Motschulsky) (Coleoptera:Curculionidae) in Nigeria. International Journal of Pest Management, 1996. 42: 143-146
    339. Pandji C. Insectidal constituents from species of Zingiberacen. Phytochemistry, 1993, 34(2): 415-419
    340. Paul Pachlatko J. Natural products in crop pretection. Chimia, 1998, (52): 29-47.
    341. Penninger J M L, et al. Supercritical Fluid Technology Elsevier. Science Publishers, 1985,13(10): 2247
    342. Phillsps T W, Jiang X L, Burkholder W E. et al. Behavioral responses to food volatiles by two species of stored-product Coleoptera Sitophilus oryzae (Curculionidae) and Tribolium castaneum (Tenebrionidae). J. Chem. Ecol, 1993,19(4): 723-734
    343. Philogene B J R. et al. Bernerine-a naturally occurring phototoxic alkaloid. J.Chem.Ecof, 1984, 10:115 -124
    344. Philogene B J R. et al. Synthesis and evaluation of the naturally occurring phototoxin , alphaterthienyl as acontrol agent for larvae of Aedes intrudens, Aeded atropalpus (Diptera: Culiciae) and Simulium verecundum (Diptera: Simulidae), J. Econ. Ent, 1985, 78 :121-126
    345. Polhill R M. Synopsis of legume genera. In: ILDIS and CHCD, eds. Phytochemical Dictionary of the Leguminosae. 1: London: Chapman & Hill, 1994
    346. Pourmortazavi S, Sefidkon F, Hosseini S. Supercritical carbon dioxide extraction of essential oils from Perovskia atriplicifolia Benth. Journal of Agricultural and Food Chemistry, 2003, 51: 414-541
    347. Powell W, Pickett J A. Manipulation of parasitoids for aphid pest management: progress and prospects. Pest Manag Sci, 2003,59(2): 149-155
    348. Raja N, Albert S, Ignacimutnu S. Effect of plant volatile oils in Protecting Stored Cowpea Vigna unguiculate (L) Walpers against Callosobruchus maculates (F) (Coleptera:Bruchidae) infestation. J. Stored Prod. Res, 2001,37(2): 127-132
    349. Ratanyake S, Rupprecht J K, Potter W M, et al. Evalution of commercial sources of the pesticidal annonaceous acetogenins. J Econ Entomol, 1992,85 (6): 2353-2356
    350. Rembold H, Sieber K P. Inhibition of oogenesis and ovarian ecdysteroid synthesis by azadirachtin in Locusta migratoria. Migratorioides (R&F). Z Naturforsch, 1981,36c: 466-469
    351. Roaday R M, Duffey S S. Plant proteinase inhibitors: Mechanism of action and effect on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua. J. Insect physiol, 1986,32: 827-833
    352. Rong Tsao. Starting from nature to make better insecticides. Chemtech, 1995, 25(7): 23-27.
    353. Rupprecht J K, Hui Y H, Mclaughlin J L, et al. Annonaceous acetogenins: a review. J Nat Prod, 1990,53 (2): 237-238.
    354. S. Ramarethinam, S. Loganathan, Studies on the biology and management of swallow tail butterfly, Papiliode moleus L. ( Lepidoptera: Papilionidae) in festing the curry leaf, Murraya koenigii (L.) sprenge. Pestology, 2001, 25 (12): 970-3012
    355. S. Ramarethinam, S. Marimuthu, S. Loganathan, N. V. Murrgesan, Effect of Nimbecidine (0.03% percent Azadirachtin) on sphingid caterpillar Deilephila sp. (Lepidoptera: Sphingidae) in East Indian Rosebay. Tabernaemontana divericata (Linn.) R. Br. ex Roem. & Schulte. Pestology, 2002, 26 (4): 9-14.
    356. Sangappa, H. K. Effectiveness of oils as surface protectant against the bruchid Callosobruchus chinensis Linn. Infestation on redgram. Mysore Journal Agricultural Sciences, 1977, 11(3): 391-397
    357. Sayah F, Fayet C, Idaomar M, et al. Effects of azadirachtin on vitellogenesis of Labidura riparia (Insecta:Dermaptera).Tissue&Cell, 1996, 28: 741-749
    358. Sayed N H, Mogahed M I, Haron A A, Mabry T J. Flavonoids and other constituents of Vernonia biopontani and insecticidal and fungicidal activities. Revista Latinoamericana de Quimica, 1999, 27(1): 5-8
    359. Schmutterer H. Properties and potential of natural pesticides from the neem tree, Azadirachta India.Annu. Rev. Entomol., 1990, 35: 271-297
    360. Schmutteret H. The Neem Tree. Sources of Unique Natural Products for Integrated Pest Management, Medicine, Industry and Other Purposes [M] VCH Weinheim Germany, 1995,1-696
    361. Schneider C, Bohnenstengel F I, Nugroho B W, et al. Insecticidal rocaglamide derivatives from Aglaia spectabilis (Meliaceae), Phytochemistry, 2000,54: 731-736
    362. Sekou M K, Charles V, Jean P S. Efficacy of essential oil of Ocimum basilicum L. and O. gratissimum L. applied as an insecticidal fumigant and Powder to control Callosobruchus maculates (Fab). Coleoptera:Bruchidae. J. Stored Prod. Res, 2001,37(4): 339-349
    363. Sexena R C. Its Potential in Pest and Vector Management[C] In:Proceding for International Symposium on Neem-based Products for Industrilizaion in China(23-25 February. 2001. Kun ming, China), 2001,196
    364. Sharma V P, Ansari M A, Razdan R K.Mosquito repellent action of neem (Azadirachtaindica) oil.J Am Mosq Contr Assoc, 1993, 9:359-360.
    365. Sherer T B, Kim J H, Betarbet R, et al. Subcutaneous rotenone exposure cause highly selective dopaminergic degeneration and asynuclein aggregation. Experimental Neurology, 2003, 179: 9-16
    366. Shivay Y S, Prasad R, Singh S, et al. Coating of prilled urea with neem (Azadirachtaindica) for efficient nitrogen use in low land transplanted rice. Indian Journal of Agronomy, 2001, 46(3): 453-457.
    367. Simmonds M S J, et al. The antifeedant activity of Clerodance diterpenoids from Teucrium. Phytochemistry, 1989,28(4): 1069-1071
    368. Simmoods M S J. Azadirachtin: Structural requirements for reducing growth and increasing mortality in lepidopterous larvae. Entomol Exp Appl, 1990,55(2): 169-182
    369. Sinha R N, Watters F L. Insect pests of flour mills, grain elevators, and feed mills and their control. Ottawa: Agriculture Canada Publication, 1985
    370. Soon-Il Kim , Jee-Hwan Yi , Jun-hyung Tak, Young-Joon Ann. Acaricidal activity of plant essential oil against Dermanyssus gallinae (Acari: Dermanyssidae). J. Stored Prod. Res, 2004, 120(4): 297-304
    371. Soon-Il Kim, Chan Park, Myung-Hee Ohh et al. Contact and fumigant activities of aromatic plant extracts and essential oils against Lasioderma serricorne (Coleoptera: Anobiidae). J. Stored Prod. Res, 2003,39(1): 11-19
    372. Subrahmanyam B. Azadirachtin-a naturally occurring insect growth regulator. Proc Indian Acad Sci, 1990, 99:277-288
    373. Sudesh Jood, A. C. Kapoor, Ram Singh. Evaluation of some plant products against Trogoderma granarium Everts in sorghum and their effects on nutritional composition and organoleptic characteristics.J. Prod. Res, 1996, 32(4): 345-352
    374. Sun Y P, Johnson E R. Analysis of insecticides against houseflies. J Econ.Entomol, 1960, 53: 887-892
    375. Sunclaram K M S, Root uptake, Translocatin, accumulation and dissipation of the botanical insecticide, azadirachtin, in yong spruce trees. J.Environ.Sci. Health, Part B , 1996, B31(6):1289-1306
    376. Sundram K M S. Eiffects of some UV light absorbers on the photostability of azadirachtin, a neem based biopesticide. Chemosphere, 1996, 32: 649- 658
    377. Sung-Eun Lee, Won-sik Choi, Hoi-Seon Lee et al. Cross-resistance of achlorpyrifos-methyl resistant strain of Oryzaephilus surinamensis (Coleoptera:Cucujidae) to fumigant toxicity of essential oil extracted from Eucalyptus tlobulus and its major monoterpene, 1,8-cineole. J. Stored Prod. Res, 2000, 36:383-389
    378. Swain T. Secondary compounds as protective agents. Ann Rev Plant Physiol. 1977, 28:479-501
    379. Szeto S Y. Hydrolysis of azadirachtin in buffered and natural waters. A Agric Food Chem, 1996,44:1160-1163
    380. T R Bott. Fundamentals of Carbon Dioxide in Solvent Extraction. Chemistry & Industrial. 1982, (1): 394-396
    381. Talukder F A, Howse P H. Evaluation of Aphanamixis polystachya as a source of repellents, antifeedants, toxicants and protectants in storage against Tribolium castaneum (Herbst). J. Stored Prod. Res, 1995, 31,55-61
    382. Tapondjou L A, Adler C, Bouda H, Fontem D A. Efficacy of powder and essential oil from Chenopodium ambrosioides leaves as post-harvest grain protectants against six-stored product beetles. J. Stored Prod.Res, 2002, 38:395-402
    383. Towers G H N. International of light with phytochemicals in some natural and novel systems. Can.1. Bot, 1984, 62:2900-2911
    384. Tyler P S, Taylor R W, Rees D P. Insect resistance to phosphine fumigation in food warehousers in Bangladesh. International Pest Control, 1983, 25: 10-13, 21
    385. Walsh J M, et al. Fluid Phase Equilib, 1987, 33:295
    386. Wood E, Lafli B, Casida J E, Fenazaquin acaricide specific binding sites in NADH: ubiquinone oxidoreductase and apparently the ATP synthase stalk. Pesticide Biochemistry and Physiology, 1996, 54(2): 135-145.
    387. Y. Huang, J. M. W. L. Tan, R. M. Kini and S. H. Ho. Toxic and antifeedant action of nutmeg oil against Tribolium castaneum (Herbst) and Sitophilus zeamais motsch. J. Stored Prod. Res, 1997, 33(4): 289-298
    388. Y. Huang, S. L. Lam, S. H. Ho. Bioactivities of essential oil from Elletaria cardamomwn (L.) Maton. to Sitophilus zeamais Motschulsky and Tribolium castaneum (Herbst). J. Stored Prod. Res, 2000, 36(1): 107-117
    389. Zhao B G, Grant G G, Langevin D, et al. Deterring and inhibiting effects of quinolizidine alkaloids on spruce budworm oviposition. Physiological and Chemical Ecology, 1998, 27(4):984-992
    390. Zhao B G. Nematicidal activity of quinolizidine alkaloids and the functional group pars in their molecular structure. J. Chem. Ecology, 1999, 25 (10): 2205-2214

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700