用户名: 密码: 验证码:
金属带式无级变速器夹紧力及速比控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属带式无级变速器由于其良好的匹配性能以及驾驶舒适性,越来越受到市场的青睐,其关键技术包括夹紧力速比控制技术是难点,本文结合国际合作项目“新一代大功率密度无级变速器”项目开发,进一步挖掘自动变速器降低能量损耗的潜能,提出了一些创新结构及设计思想,并进行了大量的试验。结果表明:在保证变速器可靠地传递转矩的前提下,能量损失明显降低,进一步提高了整车的燃油经济性。本文主要的内容如下:
     1、无级自动变速器电液系统是CVT的执行机构,夹紧力控制、速比控制都是通过液压系统实现的。为此,课题先从液压系统原理入手,围绕低损耗、高密度及高效CVT的总体要求,对CVT的创新结构和策略做了详尽的说明。(1)采用了流量自适应的用双油泵回路,可满足变工况下对不同流量的需求,大大降低了液压溢流损失;(2)选用相同的比例电磁阀作为先导阀,在满足液压控制精度和可靠性的条件下,降低了液压系统复杂性和制造成本:(3)主从动轮的液压缸采用独立液压系统,主动液压缸径不再依赖从动缸径,可以独立设计,使得变速器结构设计更加合理;(4)主/从动缸的压力可以独立控制,可降低系统的总压力,提高CVT夹紧力、速比的控制精度。最后,建立了元件模块化的数学建模,通过硬件在环仿真研究了液压系统动态特性,通过模型的仿真结果和实测数据对比,两者达到了很好的一致性。
     2、传统夹紧力控制采用安全系数为1.3,变速器夹紧机构的能量损耗占很大一部分。为保证金属带传递可靠,在任何时候不出现打滑现象,进一步试验研究了不增加新的传感器的原技术方案。在搭建的专用CVT夹紧力试验台上,进行了大量的相关测试,发现了一个非常重要的关系:Fax|η=ηmax     3、极值搜索控制方法可降低夹紧力,提高CVT传动效率。但CVT在变速过程中,极值搜索控制法的动态跟踪较慢。所以为了同时兼顾在动态变速时金属带不打滑,在稳态时效率高,课题重点研究了极值搜索控制法与传统夹紧力控制法的组合控制方式。即在相对稳定的工况下,采用极值搜索控制方式,而当控制系统检测到不稳定因素时,采用传统夹紧力控制方式,同时关闭极值搜索控制方式。组合控制策略既提高了CVT变速控制的鲁棒性及抗转矩的冲击能力,又可以提高整车的燃油经济性。
     4、极值搜索法和传统夹紧力组合控制方式是否完善还需通过变速器的耐久和可靠性试验验证。课题从带轮失效机理出发,为找出CVT控制失效的关键因素,开发了适合变速器耐久和可靠性测试的台架,并对测试方法和检测内容进行了分析。整车道路试验更是直接反应了CVT产品的状态,还对匹配的CVT车辆进行试验场的2.5万公里可靠性试验,并对油品进行了检测,结果表明磨损在合理的范围之内,室内试验和路面试验同时验证了组合控制方式的可靠性。
     5、嵌入式控制系统是CVT重点之一,也是CVT产业化技术的瓶颈之一,只有掌握了嵌入式系统的开发,CVT才真正拥有完全的自主产权。CVT嵌入式控制系统的内容包括:动力总成的一体化控制(即发动机与变速器的协调控制)、起步离合器控制、液力变矩器控制、CVT速比控制、CVT夹紧力控制、CVT系统故障诊断与CAN通信数据网络等核心技术组成。CVT嵌入式控制系统可分为嵌入式硬件系统和嵌入式软件系统两部分。论文在CVT前期课题的基础上,进一步丰富和完善了CVT软件系统和故障诊断系统,使国产CVT嵌入式控制系统从实验室走向了市场,并经受住了国内外巨大市场的严酷的考验。
Because of the good drivability and comfort, CVT becomes more and more popular in the market, clamping force control and ratio control is one of the most difficult technologies of CVT. Based on the International Cooperation Project "New generation Continuously Variable Transmission with higher Torque Density", to decrease the CVT power consuming, in this paper some new design ideas and new structures are cited, which are evaluated bv a lot of test. The test results shows that CVT power consuming can be significantly decreased by this control method and also the vehicle economic is improved. The main research content includes:
     1Hydraulic system is the actuator of CVT, clamping force control and ratio control are realized via it. So, in this paper, to meet the requirements of lower power consuming, higher torque density and higher efficiency, starting from the hydraulic principle, the creative new structure and new strategy is detailed described.(1)the dual-acting pump is used, not only meet the flow requirements under different working conditions, and also can greatly decrease the overflow power loss is decreased.(2)Taken the proportional solenoid as the pilot valve, which satisfies the precondition of control precision, the structure complexity and manufacturing cost are both reduced.(3) The primary pressure is independent, i.e, the primary pressure does not depend on the secondary pressure, so the primary cylinder can be designed more freely and the CVT structure can also be better than the dependent circuit.(4) The primary/secondary pressure can be controlled respectively without depending on each other, which can enable lower system pressure. By this method the control precision of clamping force control and ratio control can be both improved. At last, the mathematic model of hydraulic components are built up, then the dynamic performance of hydraulic system is simulated. Simulation result and test result show good consistency after comparison.
     In the traditional control strategy, the power loss is mainly caused by the variator because of the1.3safety factor. To guarantee the torque safety and to get rid of belt slip, one control scheme without any sensor added is tested on the clamping force test rig. One importance relation is founded that Fαx|η=max     3Extreme-seeking controller can reduce the clamping force and increase the transmission efficiency. But for ratio changing process, the dynamic tracing is slower. Consideration to belt safety under dynamic condition and high efficiency under stable condition, in this paper, the comprehensive control of extreme-seeking control and traditional safety factor control is one main research content, i.e, under stable condition the extreme-seeking method will be used, while under unstable condtion the extreme-seeking will be disabled and traditional method will be used. This comprehensive control can not only increase the robustness of ratio control and the ability of anti-shock, also the vehicle economic performance can be improved.
     4The comprehensive control method needs to be evaluated by fatigue test and reliability test. Starting from the variator failure mechanism, to find the key factor that causes control failure, the fatigue and reliability test rig is developed, then the test method and test data are analyzed. The road test can reflects the CVT status more directly, so the25,000kilo-meter road test is also carried out. The oil inspection result shows that the wear is of the normal level. The reliability of this comprehensive control is proved by rig test and road test.
     5The embedded control system is one of the key technology in CVT, also is one bottleneck technique. Only after this technology is grasped, the CVT industrialization can be realized. The embedded system includes:the integrated control of power system(i.e, comprehensive control of engine and CVT), starting clutch control, torque convertor control, ratio control, clamping force control, failure diagnosis and the CAN bus communication, Etc. The embedded control system can be divided into hardware and software. In this paper, based on the previous working foundation, the failure diagnosis system is further perfected, which promoting the self-developed software move from test-room towards market. The software is proved can endure the market test.
引文
[1]产销快讯,中国汽车工业协会,2012.
    [2]Linnenbrugger,A.,Englisch,A.,Simon et al. High Performance CVT Components by LuK-A Key Factor for Improved Fuel Efficiency.In Proceedings of the 2007 Inernational Congress on Continuously Variable and Hybrid Transmissions,302, pages 177-182. Yokohama, Japan,2007.
    [3]Van der Sluis, Francis et al.Fuel economy potential of the pushbelt CVT. Fisita 2006 congress, Yokohama 2006.
    [4]Van der Sluis, Francis, Van Dongen. Tom,Van Spijk, Gert-Jan Fuel Consumption Potention of The Pushbelt CVT. FISITA 2006,P218.
    [5]Ohashi et al., "Development of high-efficiency CVT for luxury compact vehicle", SAE paper 2005-01-1019, SAE 2005.
    [6]Francis van der Sluis. A New Pump for CVT Applications. SAE Technical Paper 2003-01-3207.
    [7]Ing,G. Van Spijk, Dr.ir.B.Veenhuizen. An upshift in CVT-efficiency-The design of the next generation of continuous vatiable transmission with a push belt. VDI BERCHTENR.1393,1998.
    [8]Tohru Ide. Effect of belt loss and oil pump loss on the fuel economy of a vehicle with a metal V-belt CVT.2000-05-0130.
    [9]S.Akehurst,N.D.Vaughan,D.A.Parker,D.Simner金属推型V带无级变速箱损耗机理仿真部分3:带的滑动损失[J].传动技术.2006(02).
    [10]S.Akehurst,N.D.Vaughan,D.A.Parker,D.Simner金属推型V带无级变速箱损耗机理仿真部分2:带轮变形损失和总转矩损失的论证[J].传动技术.2006(01).
    [11]Kim, W. and Vachtsevanos, G. Fuzzy Logic Ratio Control for a CVT Hydraulic Module. In Proceedings of the 2000 IEEE International Symposium on Intelligent Control, volume 1, pages 151-156. Rio,Patras, Greece,2000.
    [12]Adachi, K., Wakahara, T., Shimanaka, S., Yamamoto, M., and Oshidari, T. Robust control system for continuously variable belt transmission. JSAE Review,20(1):49-54,1999.
    [13]Kim, H., Song, H., Kim, T., and Kim, J. Metal Belt CVT and Engine Optimal Operation by PWM Electro-Hydraulic Control. In Proceeding of the 1996 Internal Conference on Contiuously Variable Power Transmissions,304, pages 157-160. Yokohama, Japan,1996.
    [14]Bonsen, B., Klaassen, T. W. G. L., van de Meerakker, K.G. O., Steinbuch, M., and Veenhuizen, P.A. Analysis of slip in a Continuously Variable Transmission. In Proceedings of the 2003 ASME International Mechanical Engineering Congress, volume 2. Washington, DC,2003. CD-ROM.
    [15]Simons, S. W. H., Klassen, T. W. G. L., Veenhuizen, P.A., and Carbone, G.Shift dynamics modeling for optimization of variator slip control in a pushbelt CVT Inernational Journal of Vehicle Design,48(1/2):45-64,2008.
    [16]Rothenbuhler, Y. New Slip Synthesis and Theoretical Approach of CVT Slip Conrol. Ph,D. Thesis, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland,2009.
    [17]张伯英,周云山,张友坤等.金属带式无级变速器电液控制系统的研究[J].汽车工程,2001,23(5):315-318.
    [18]薛殿伦,张友坤,周云山等.EQ6480客车CVT电控系统试验[J].汽车工程,2004,26(4):446-449.
    [19]孙冬野,汪新国,胡建军等.金属带式无级变速器传动液压系统的设计方法[J].重庆大学学报,2005,28(12):1-5.
    [20]王红岩,秦大同,张伯英等.无级变速汽车性能要求的液压控制实现[J].传动技术,2000,(4):21-25.
    [21]宋锦春,姚利松,程乃士等.汽车金属带式无级变速器液压控制原理及数学模型[J].东北大学学报,1999,20(3):279-282.
    [22]程乃士,张德臻,刘温.金属带式车用无级变速器[J].中国机械工程,2000,11(12):1421-1423.
    [23]胡建军.汽车无级变速器传动系统建模、仿真及匹配控制策略研究[D].重庆大学,2001.
    [24]周云山,于秀敏.汽车电控系统理论与设计[M].北京:北京理工大学出版社,1999.
    [25]程乃士.汽车金属带式无级变速器-CVT原理和设计[M]机械工业出版社,2007.
    [26]Nishiyama, H., Murota, K., Hirotsu, S., Amano, K. et al., "Vane Pump for New Generation CVT," SAE Technical Paper 2007-01-1456,2007, doi:10.4271/2007-01-1456.
    [27]刘金刚.金属带式无级变速器电液控制系统关键技术的研究[D].湖南大学2008.
    [28]周云山,刘金刚,邹乃威,蔡源春.无级变速传动装置夹紧力控制系统建模、辨 识及实验验证[J].中国机械工程.2007(19).
    [29]Vaughan N D, Gubell M, Burrows C R. The effect of hydraulic circuit design and control on efficiency of continuously variable transmission. SAE Transactions, paper No.961797:1652-1659.
    [30]Vroemen B G, Veldpaus E E. Hydraulic circuit design for CVT control. IN: Inernational Congress on Continuously Variable Power Transmission Eindhoven, Netherlands,1999:111-116.
    [31]吴光登,杨阳,秦大同,胡建军,杨亚联.CVT液压系统功率的匹配分析与仿真[J],汽车工程,2004(Vol.26)No.6.
    [32]杨阳,秦大同,杨亚联,胡建军,吴光登.车辆CVT液压系统功率匹配控制与仿真[J].中国机械工程,2006,17(4):426-430.
    [33]张伯英.金属带式无级变速器传动机理与控制的研究[D].吉林大学2002.
    [34]王红岩.金属带式无级变速器传动系统分析、匹配与综合控制的研究[D].吉林大学1998
    [35]宋锦春,姚利松,程乃士等.汽车金属带式无级变速器液压控制原理及数学模型.东北大学学报(自然科学版),1999,20(3):297-282.
    [36]付铁军,周云山,张宝生.金属带式无级变速器电液控制系统的试验研究.汽车工程,2003,34(4):71-75.
    [37]杨新桦.金属带式无级变速器控制系统和控制策略研究[D].华中科技大学2010.
    [38]张飞铁.无级变速器器湿式离合器起步系统研究[D].湖南大学2008.
    [39]Gerbert B G. Pressure distribution and belt deformation in V-belt drive. ASME Journal of Engineering for Industry,1975,97(3):976-982.
    [40]Ide, T., Udagawa, A., and Kattaoka, R. Simulation Approach to the Effect of the ratio Changing Speed of a Metal V-Belt CVT on the Vehicle Response. Vehicle System Dynamics,24(4-5):377-388,1995.
    [41]Hyunsoo K,Jaeshin L. Analysis of belt behavior and slip characteristic for a metal V-belt CVT. In:MPT91 JSME International Conference on Motion and Power Transmission.Hiroshima, Japan,1991:98-103.
    [42]Guebeli M, MIcklem J D, Burrows C R. Maximum transmission efficiency of a steel belt continuously variable transmission. Transaction of the ASME, 1993,115(4):1044-1048.
    [43]van der Sluis, F., van Dongen, T., van Spijk, G., van der velde, A. et al., "Efficiency Optimization of the Pushbelt CVT," SAE Technical Paper 2007-01-1457,2007, doi:10.4271/2007-01-1457.
    [44]van der Noll, E., van der Sluis, F., van Dongen, T., and van der Velde, A., "Innovative Self-optimising Clamping Force Strategy for the Pushbelt CVT," SAE Int. J. Engines 2(1):1489-1498,2009, doi:10.4271/2009-01-1537.
    [45]Guebeli M, MIcklem J D, Burrows C R. Maximum transmission efficiency of a steel belt continuously variable transmission. Transaction of the ASME, 1993,115(4):1044-1048.
    [46]Nishizawa, H., Yamaguchi, H., Suzuki, H., Osawa, M. et al., "Friction Characteristics Analysis for Clamping Force Setup in Metal V-Belt Type CVT," SAE Technical Paper 2005-01-1462,2005, doi:10.4271/2005-01-1462.
    [47]B.Bonsen, T.W.G.L.Klaassen, K.G.O.van de Meerakker, P.A.Veenhuizen and M.Steinbuch,"Measurement and control of slip in a continuously variable transmission", in Mechatronics 2004,Sydney,Australia,2004.
    [48]R.J. Pulles, B. Bonsen, M. Steinbuch and P. A. Veenhuizen, "Slip controller design and implementation in a Continuously Variable Transmission" American Control Conference, Portland, Oregon,2005.
    [49]Saito, T. and Miyamoto, K., "Prediction of CVT Transmission Efficiency by Metal V-Belt and Pulley Behavior with Feedback Control," SAE Technical Paper 2010-01-0855,2010, doi:10.4271/2010-01-0855.
    [50]付铁军.王建华,周云山,李飞强.金属带式无级变速器夹紧力控制的研究[J].汽车技术.2006(02).
    [51]Hartmut Faust,Manfred Homm,Franz Bitzer. CVT夹紧系统优化[J].传动技术.2004(04).
    [52]Gerbert B G. Some notes on V-belt drives. ASME Journal of Mechanical Design,1981,103(1):8-18.
    [53]Gerbert B G. Skew V-belt pulleys. In:Proceedings of International Conference on Continuously Variable Power Transmission. Yolahamajanpan,1996:1-8.
    [54]Heera Lee and Hyunsoo Kim. Analysis of Primary and Secondary Thrusts for A Metal Belt CVT Part 1:New Formula for Speed Ratio-Torque-Thrust Relationship Considering Band Tension and Block Compression. SAE TECHNICAL PAPER SERIES 2000-01-0841.
    [55]Shimizu, H., Kobayashi, D., Kawashima, J., and Kato, Y., "Development of 3-D Simulation for Analyzing the Dynamic Behavior of a Metal Pushing V-Belt for Cvts," SAE Technical Paper 2000-01-0828,2000, doi:10.4271/2000-01-0828.
    [56]Lee, H. and Kim, H., "Analysis of Primary and Secondary Thrusts for A Metal Belt CVT Part 1:New Formula for Speed Ratio-Torque-Thrust Relationship Considering Band Tension and Block Compression," SAE Technical Paper 2000-01-0841,2000, doi:10.4271/2000-01-0841.
    [57]Minoru K, Junji K, Atsushi T, et al, Mechanism of metal pushing belt. JSAE Review,1995,16:137-143.
    [58]Ishikawa, T., Murakami, Y., Yauchibara, R., and Sano, A., "The Effect of Belt-Drive CVT Fluid on the Friction Coefficient Between Metal Components," SAE Technical Paper 972921,1997, doi:10.4271/972921.
    [59]Fujii, T., Kurokawa, T., and Kanehara, S., "A Study of a Metal Pushing V-Belt Type CVT-Part 1:Relation Between Transmitted Torque and Pulley Thrust," SAE Technical Paper 930666,1993, doi:10.4271/930666.
    [60]Brandsma, A., van Lith, J,. Hendriks, E. Push belt CVT developments for high power applications. Proc. of CVT99, Eindhoven University of Technology 1999, pp.142-147.
    [61]Vahabzadeh, H. and Linzell, S., "Modeling, Simulation, and Control Implementation for a Split-Torque, Geared Neutral, Infinitely Variable Transmission," SAE Technical Paper 910409,1991, doi:10.4271/910409.
    [62]T.Ide, H.Ucheiyama, and R.Kataoka, Experimental investigation on shift speed characteristic of a metal V-belt CVT, in Proceeding of the International Conference on Continuously Variable Power Transmissions, September 1996,pp.59-64.
    [63]Kitagawa T, Fujii T, Kanehara S. A Study of a Metal Pushing V-Belt Type CVT-Part 4:Forces act on metal blocks when the speed ratio is changing. SAE Transactions, paper No.950671,1995:1344-1353.
    [64]Michael Henry Smith. Vehicle power train Modeling and Ratio Optimization for a Continuously Variable Transmission, Georgia Institute Technology, 1998.
    [65]Xuexun, G., Qi, S., and Chang, F., "Intelligent Control of Metal-belt CVT Based on Fuzzy Logic," SAE Technical Paper 2009-01-1535,2009, doi:10.4271/2009-01-1535.
    [66]Yasuoka, M., Uchida, M., Katakura, S., and Yoshino, T., "An Integrated Control Algorithm for an SI Engine and a CVT," SAE Technical Paper 1999-01-0752,1999, doi:10.4271/1999-01-0752.
    [67]K.Engelsdorf, K.-H.Senger, and M.-P.Bolz, Electronic CVT control for power train optimization, in Proceeding of the International Conference on Continuously Variable Power Transimissions, September 1996,pp71-76.
    [68]Lee, H., Kim, C, Kim, T., and Kim, H., "CVT Ratio Control Algorithm by Considering Powertrain Response Lag," SAE Technical Paper 2004-01-1636, 2004, doi:10.4271/2004-01-1636.
    [69]Dipak Patel, Jeff Ely, Mike Overson, CVT drive research study[C]. SAE 2005-01-1459.
    [70]Jantos, J., "Control of the Transmission Ratio Derivative in Passenger Car Powertrain with CVT," SAE Technical Paper 2001-01-1159,2001, doi:10.4271/2001-01-1159.
    [71]Dipak Patel. CVT cyber bulletin board study[C]. SAE 2006-01-1311.
    [72]Togai, K. and Tamaki, H., "Human Driving Behavior Analysis and Model Representation with Expertise Acquiring Process for Controller Rapid Prototyping," SAE Technical Paper 2011-01-0051,2011, doi:10.4271/2011-01-0051.
    [73]Osamura, K., Itoyama, H., and Iwano, H., "Study of an Integrated Diesel Engine-CVT Control Algorithm for Improving Drivability and Exhaust Emission Performance," SAE Technical Paper 2001-01-3452,2001, doi:10.4271/2001-01-3452.
    [74]Zhang, J., LU, X., Wang, L., Chen, S. et al., "A Study on the Drivability of Hybrid Electric Vehicle," SAE Technical Paper 2008-01-1572,2008, doi:10.4271/2008-01-1572.
    [75]Abuasaker, S. and Sorniotti, A., "Drivability Analysis of Heavy Goods Vehicles," SAE Int. J. Commer. Veh.3(1):195-215,2010, doi:10.4271/2010-01-1981.
    [76]de Assis, E., Kurauchi, R., Carloti, M., Ribeiro, J. et al., "Drivability Improvements on Electronic Diesel Engines," SAE Technical Paper 2003-01-3656,2003, doi:10.4271/2003-01-3656.
    [77]Abe, T., Minami, H., Atago, T., Fujiwara, Y. et al., "Nissan's New "High-Drivability" Vibration Control System," SAE Technical Paper 891157, 1989, doi:10.4271/891157.
    [78]Liu S, Paden B. A Survey of Today's CVT controls. In:Proceedings of the 36th IEEE Conference on Decision and Control. San Diego, Canada, 1997:4738-4743.
    [79]Dipak Patel, Jeff Ely, Mike Overson, CVT drive research study[C]. SAE 2005-01-1459.
    [80]Liu S, Paden B. A Survey of Today's CVT controls. In:Proceedings of the 36th IEEE Conference on Decision and Control. San Diego, Canada, 1997:4738-4743.
    [81]张树培,张友坤,王庆年,张雷.坡道行驶工况下CVT传动比控制[J].江苏大学学报(自然科学版).2010(03).
    [82]张艳玲,王耀南,薛殿伦.模糊自适应PID控制器在CVT速比控制中的应用[J].自动化技术与应用.2005(02).
    [83]罗勇.金属带式无级变速传动系统匹配控制研究[D].重庆大学2011.
    [84]薛殿伦,张友坤,郑联珠,张伯英.金属带式无级变速器的速比控制[J].农业机械学报.2003(03).
    [85]薛殿伦,陈伟生,冯显武.金属带式无级变速器速比匹配与控制研究[J].中国公路学报.2009(02).
    [86]周萍,聂晋,孙跃东.基于模糊PID控制的CVT速比仿真研究[J].机械传动.2011(08).
    [87]邹乃威.无级变速混合动力汽车动力耦合及速比控制研究[D].吉林大学2009.
    [88]付铁军.金属带式无级变速器智能控制技术研究[D].吉林大学2004.
    [89]王立公,王红岩,秦大同,张伯英,裘熙定.金属带式无级变速器速比控制的试验研究[J].汽车工程.2003(06).
    [90]余志生.汽车理论[M].机械工业出版社,1981.
    [91]皮秋生.CVT硬件在环仿真试验平台研究[D].湖南大学2008.
    [92]车晓镭.汽车动力总成电控单元硬件在环测试系统研究[D].吉林大学2011.
    [93]范睿,吴光强,罗君赟.自动变速器半实物仿真试验台CAN总线接口设计[J].山东理工大学学报(自然科学版).2006(03).
    [94]胡建军,秦大同,刘振军.金属带式无级变速传动速比变化特性研究[J].汽车工程.2003(01).
    [95]张树培.金属带式无级变速器耦合问题研究[D].吉林大学2011.
    [96]EGGERT, U., Dipl-Ing,., and SCHNEIDER, H., "Control strategies for a chain drive CVT," SAE Technical Paper 841302,1984, doi:10.4271/841302.
    [97]Sakaguchi, S., Kimura, E., and Yamamoto, K., "Development of an Engine-CVT Integrated Control System," SAE Technical Paper 1999-01-0754, 1999, doi:10.4271/1999-01-0754.
    [98]o, J., Ishizu, T., Sudou, H., and Hino, A., "Adaptive Cruise Control System Using CVT Gear Ratio Control," SAE Technical Paper 2001-01-3244,2001, doi:10.4271/2001-01-3244.
    [99]Kim, T., Kim, H., Yi, J., and Cho, H., "Ratio Control of Metal Belt CVT," SAE Technical Paper 2000-01-0842,2000, doi:10.4271/2000-01-0842.
    [100]Bert P., Mark P., Arjen B. et al., "Van Doorne CVT Fluid Test:A Test Method on Belt-Pulley Level to Select Fluids for Push Belt CVT Applications" SAE Technical Paper 2003-01-3253,2003, doi:10.3200/2003-01-3253.
    [101]Thomas, J., Constans, B., Gresser, E., Maillard, M. et al., "Testing the Torque Capacity of CVT Fluids" SAE Technical Paper 2004-01-2007,2004, doi:10.4271/2004-01-2007.
    [102]Kobayashi, D., Mabuchi, Y., and Katoh, Y., "A Study on the Torque Capacity of a Metal Pushing V-Belt for CVTs," SAE Technical Paper 980822,1998, doi:10.4271/980822.
    [103]Kato, Y., Yamashita, H., and Kono, Y., "A Study on the Torque Capacity of Belt CVTs for 2.0-Liter and 3.5-Liter Front-Drive Cars," SAE Technical Paper 2004-01-0478,2004, doi:10.4271/2004-01-0478.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700