用户名: 密码: 验证码:
工业阀门用新型液动执行器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着工业自动化要求越来越高,液动执行机构发展十分迅速。小型化、轻量化、高效节能、高可靠性成为执行器发展的主要趋势。特别是在石化行业中,往往需要执行器在小空间,高温,高压,易燃,易爆,有害,有毒的环境之中能够可靠地运行,对工业阀门进行调节控制。这样的较为恶劣的环境对液动执行器的各种性能有更高的要求。目前,很多应用中的液动执行器通常需要配套使用一个液压站或一套伺服驱动系统,致使其体积庞大、节流损失大、对油液污染特别敏感、伺服阀加工精度高、价格贵、维修不方便等。另一种液动执行器采用的是容积调速回路,该系统采用电动机与变排量泵组合,其原理为通过改变变量泵的斜盘倾角来改变输出排量以实现控制执行元件运行速度和位移的目的。该回路没有溢流和节流损失,效率较高,可用于大功率系统。但这套系统也有其缺点,首先,变量泵斜盘摆角范围有限,这就限制了系统的调速范围,并且变量泵噪声大,抗污染能力弱。各种工况下电机转速不变,系统大部分时间都是欠负载运行,这样电机提供的功率与执行元件需要的功率无法匹配,轻载时效率较低,浪费能源并会造成变量泵磨损。
     与传统液动执行器的使用伺服阀或变量泵进组合的调速方式不同,新型液动执行器采用定量泵和伺服电机,通过变频器或控制器控制伺服电机转速来改变定量泵的转速来实现对执行机构位移和速度的控制。这种改进的元件组合方式与液压原理可以进一步减小液动执行器的体积。本文基于传统液动执行器液压原理的基础,为了节省空间和成本放弃了传统的动力补油方式,采用无动力补油方式。并对液压系统元件进行计算选型。对所选元件匹配性进行分析。其次,根据液动执行器液压原理,基于AMESim软件对执行器液压系统建模。在建好的AMESim模型中对不同频率正弦信号输入时系统的响应情况进行了仿真计算。并对系统输入阶跃信号、不同的目标位移条件下不同伺服电机转速、不同管长、不同油液弹性模量和转动惯量对系统响应快速性的影响。通过仿真计算使元件选用与关键参数设置更为合理,达到进一步提高系统的运行性能的目的。并选择合适的控制策略,提高系统的动态特性。参照现有液动执行器产品的外形布局,提出合理可行的外形布局方案,使液动执行器更为小巧、便于安装。
In recent years, the hydraulic actuator has developed quickly accompany with the high demand of industry automation. The major trend of hydraulic actuator development is miniaturization、light weight、high efficiency、energy conservation and high reliability. Especially in the petrochemical industry, we need hydraulic actuator work reliability in the small area、high temperature、high pressure、inflammable、explosive、 poisonous and harmful environment to control the valve. These environment need high quality hydraulic actuator. Currently, there is one type of actuator only can be used acccompany with a hydraulic pressure station or a set of servo valve, this made the actuator with problem such as a high volume、 high throttle loss、 sensitive with the oil contaminate、 the servo valve need high machining accuracy、 expensive、 hard to maintain and so on. Another type of actuator use the volume control circuit, this system use servo motor and variable-stroke pump. It's principle is change the swashplate's angle to change the pump's output and use this to control the speed of actuator. This loop without overflow and throttling loss so the system's efficiency is high. This system could be used in high-power system. But this system also has it's weak point. First, the variable-stroke pump's swashplate's angle is limited, and this restrict the system's speed governing range. Second, the noise of variable-stroke pump is too loud and the system's ability of resistance pollution is weak. Finally, in all working condition the servo motor's speed is invariability, most of time the system is working under load. And so the motor provide power always more than the actuator need. So the efficiency is low, waste of energy and make the pump abrasion.
     New type hydraulic actuator use the constant rate pump and servo motor, control the servo motor to control the displacement of actuator. In order to improve the performance of the actuator, reduce the volume of the actuator, first, we need to make better the hydraulic actuator's hydraulic principle, count and select the hydraulic component. Analyse the matching of the hydraulic component. Second, Build a hydraulic system model use the AMESim software, simulation analyse on different frequency signal input, different servo motor speed and different pipe length. Also need to Select a appropriate control strategy to achieve a more efficient and reliable control of the hydraulic actuator.Finally, rational design the appearance of the actuator configuration for a small volume and convenient to install.
引文
[1]控制阀手册第四版[M].费希尔控制设备国际有限公司,2006
    [2]李蕊,魏宏林,肖军.一种新型电液执行器与传统电液伺服执行器的比较[J].机械研究与应用,2003(B08).
    [3]陈永辉,高名园,陈永红.我国执行器的现状及发展趋势[J].《电力建设》,2001.11.30
    [4]姜继海液压与气压传动[M].北京:高等教育出版社,2010
    [5]Peter Dahmann. Closed loop and position control of a hydraulic manipulator in brick workswith a frequency controlled internal gear pump in motor/pump operation[R]. Aachen, Germany:3rd international fluid power conference.2002.
    [6]直驱式液压传动系统的特点及设计要点[J].机床与液压2010.11 80~84
    [10]Masanori ITO, Noriki, HIROSE, Etsuro SHIMIZU. Main Engine Revolution Control for Ship with Direct Drive Volume Control System. ISME TOKYO,2000. Volume Ⅱ.
    [11]M.ITO, H.SATO, Y.Maeda. Direct Drive Volume Control of Hydraulic System and its Application to the Steering System of Ship. FLUCOME'97, Hayama. Vol.1:445~450.
    [12]Williams K, Brown D. Electrically powered actuator design (EPAD) [R].NASA/USAF/ Navy,1997.
    [13]Richard T Schneider. F-35 Fighter incorporates EHA[J]. Hydraulics & Pneumatics.Vol. 55.2002:12.
    [14]John A. Anderson,. Variable displacement electro-hydrostatic actuator[R]. NAECON91' IEEE National Aerospace and electronics Conference Dayton,1991:529~534.
    [15]Saeid Habibi, Andrew Goldenberg. Desing of a New High-Performance ElectroHydraulic Actuator[R]. IEEE/ASME transactions on Mechtronics,2006.05 Vol(5):158~164.
    [16]Helbig.A.Injection moulding machine with electric-hydrostatic drives[R].Aachen, German:3rd international fluid power conference.2002.
    [17]Peter Dahmann. Closed loop and position control of a hydraulic manipulator in brick workswith a frequency controlled internal gear pump in motor/pump operation[R]. Aachen, Germany:3rd international fluid power conference.2002.
    [18]J. Heintze, P. C. Teerhuis and A. J. J. v. d. Weiden. Controlled hydraulics for a direct drive brick laying robot. Automation in Construction, Volume 5, Issue 1,1996,5(3):23-29
    [19]Habibi S, A Goldenberg. Design of a new high performance electro hydraulic actuator. Advanced Intelligent Mechatronics 1999. Preoceeding1999.IEEE/ASME. International conference on,1999:227-232
    [20]Achim Hellbig. Injection moulding machine with electric-hydrostatic drives.3rd international fluid power conference. Aachen, Germany,2002
    [21]Hong Sun,T George,C Chiu.Nonlinear Observer Based Force Control of Electro-Hydraulic Actuators. Proceedings of the American control conference.Sandiego, California.1999: 764-768
    [22]McClellan J H, Burrus C S, Oppenheim A V, etc. Computer-Based Exercises for Signal Processing Using MATLAB 5, Prentice-Hall. Inc,1998
    [23]REXA液动执行器技术资料
    [24]姜继海,苏文海,刘庆和.直驱式容积控制电液伺服系统[J].军民两用技术与产品,2003.09.21
    [25]齐海涛,付永领,王占林.泵阀协调控制电动静液作动器方案分析[J].北京航空航天大学学报,2008,34(2):131-134.
    [26]于凤辉.摆式列车直驱式容积控制电液伺服作动器的研究[D].成都:西南交通大学,2008.12
    [27]Reineke电液执行机构介绍.
    [28]宁波海宏液压件厂官方网站
    [29]李萌.直驱式六自由度运动平台单通道装置研制[D].哈尔滨工业大学,2006.06.01
    [30]吕杰.直驱式电液伺服系统补油技术及系统特性研究.液压与气动.2010(9):20~22
    [31]王益群,孔祥东主编.控制工程基础.北京:机械工业出版社,2001
    [32]刘金馄主编.先进PID控制及其MATLAB仿真.北京:电子工业出版社,2003
    [33]李剑,谷俊杰.PID参数整定方法进展[J].电力情报,2001,(3):11-13.
    [34]仇慎谦.PID调节规律和过程控制[M].南京:江苏科学技术出版社,1987
    [35]付永领,齐海涛AMESim系统建模和仿真实例教程.北京:北京航空航天大学出版社,2011.
    [36]付永领,祁晓野.AMESim系统建模和仿真—从入门到精通.北京:北京航空航天大学出版社,2006.6.
    [37]邱兆湘.直驱式电液伺服装置油源及系统性能的研究[D].哈尔滨:哈尔滨工业大学,2007.7
    [38]秦二卫.直驱式电液伺服位置及压力控制系统的研究[D].哈尔滨:哈尔滨工业大学,2010.6
    [39]RPMTECH公司技术资料
    [40]孚罗泰公司官方网站
    [41]李壮云.液压元件与系统.机械工业出版社.P92-93
    [42]徐峰.液压集成体设计应用研究南京工业职业技术学院学报[J].第四卷第一期
    [43]余国城,陈继河,陈莺.液压系统集成块的设计与制造.起重运输机械[J].1999.5
    [44]杨啸,倪建成,张东宁.液压阀块的设计要点,锻压机械[J].1999.
    [45]冯玉龙,李俊红.液压阀块的设计、制造与调试.机械工程与自动化[J].2012.10.15
    [46]徐薇莉,曹柱中,田作华.自动控制理论与设计.上海交通大学出版社p55-70
    [47]涂婉丽.直驱式容积控制电液伺服系统动态特性的研究.哈尔滨工业大学.2005.6
    [48]StoneJA.DischargeCoefficientsandSteady-StateFlowForcesforHydraulicPoppetValvesl Tra ns.ASME,Jour.Engng,82Ser.D-1 March1960:144~158
    [49]周新建.球阀流量系数的研究.流体机械[J].2001年第29卷第5期
    [50]张一丁,徐兵,杨华勇,丁惠公.变转速泵控液压缸实验仿真分析.液压与气动.2003,(1):18~20
    [51]彭天好,徐兵,杨华勇.变频泵控马达调速系统遗传算法PID控制.液压与气动.2003,(11):1-3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700