用户名: 密码: 验证码:
飞机液压系统管道流固耦合分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞机液压系统作为飞机飞行控制系统和起落架等负载的动力源,对飞机的安全飞行起着关键的作用。飞机液压系统液压泵脉动式的输出使管道产生强迫振动和谐振,如果固体管道的固有频率与流体的谐振频率相接近,或者与液压泵的脉动频率相接近,则会产生流固耦合振动。流固耦合振动会降低管道及液压部件的寿命,严重时甚至会造成管壁破裂、管路支撑结构破坏,引起支撑刚度下降、管路系统失效、液压油液泄露,从而导致严重的灾难性事故。因此,弄清楚飞机液压系统管道流固耦合振动的机制,对于设计安全可靠的新型液压系统和现有飞机液压系统的振动抑制对策都是非常重要的。
     本文对飞机液压系统管道流固耦合振动情况进行了分析研究,具体工作包括以下几个方面:
     1)研究了飞机液压系统流固耦合振动的机制,讨论了飞机液压系统管道的布局和流固耦合振动的一般规律。由分析可知,管道支承结构刚度逐渐下降的慢变参数特性,是造成飞机液压系统管路及相关固定结构破坏失效的真正原因。
     2)建立了输液管道流体运动及管道运动的线性微分方程,并通过流体与结构之间的边界接触来实现流固耦合;推导了飞机液压系统管道流固耦合振动的动力学方程和有限元方程。
     3)利用有限元软件ANSYS进行输液管道流固耦合振动仿真设计。仿真算例表明,不同管道支撑结构、不同管道长度、不同管内流体流速及不同管道类型都对管道振动有较大的影响,管道结构设计时应根据不同的情况选择合适的支撑结构和管道类型、并设置合适的相邻支撑结构间距。
As the power source of the aircraft flight control system and landing gear loads, aircraft hydraulic system plays a key role for the safety of aircraft flying. The pulse flow output of the Aircraft hydraulic system pump forced vibration and resonance in the fluid-conveying pipe. If the pump pulse frequency closes to the natural frequency of the pipe, it will produce a fluid-solid interaction (FSI) resonance. FSI vibration will cause the reduced life of piping and hydraulic components, pipe support structure damaging, serious pipe wall rupture, support stiffness dropping, piping system failure and hydraulic oil leak, and then results in a serious catastrophic accidents. Therefore, it is very important to clarify the aircraft hydraulic system piping FSI vibration mechanism so as to design a new safe and reliable hydraulic system and the vibration suppression measures of existing aircraft hydraulic systems.
     In this paper, the piping FSI vibration mechanism of the aircraft hydraulic system is analyzed. The research work involves several aspects as follows:
     1) Analyze the piping FSI vibration mechanism of the aircraft hydraulic system, discuss and summarize the aircraft hydraulic system piping layout and the general law of FSI. Analysis shows that a gradual decline in pipeline supporting structure stiffness characteristics of the slow-varying parameters is real reason for the damage and failure of the aircraft hydraulic system pipelines and related supporting structure.
     2) Summarize and develop the linear differential equations of the derivation of the fluid and pipe movement, established the dynamic equations and the finite element equations of aircraft hydraulic system piping FSI vibration. As can be seen, the effect of FSI is achieved by the interaction of the fluid and the structure of the piping.
     3) Based on the FSI dynamic equations of pipe flow and the finite element equations, use the finite element software ANSYS to simulate and analyze FSI vibration of straight pipe flow. The simulation example shows that the different pipe supporting clips,different pipe length and different fluid flow speed greatly impact the pipeline vibration, pipe structural design shall be based on different circumstances choose a suitable support structure, pipe type and suitable pitch between adjecent supporting clips.
引文
[1] F.J.Hatfield,L.C.Davidson&D.C.Wiggert. Acoustic Analysis of Liquid-filled Piping by Component Synthesis: Experimental Validation and Examination of Assumptions[J].A SME-PVP,1982 Vo1.64,Fluid Transients and Fluid Structure Interaction,106-115.
    [2] D.C.Wiggert,R.S.Otwell&F.J.Hatfield.The Effect of Elbow Restrainton Pressure Transients [J].ASEM Journal of Fluids Engineering.1985,402-406.
    [3] D.C.Wiggert, FJ. Hatfield&S. Stucdenbruck. Analysis of Liquid and Structural Transients by the Method of Characteristics[J].ASME Journal of Fluids Engineering.1987,161-165.
    [4] D.C .Wiggert&F.J. H atfield.R esponse of Pipelinesto Seismic Motionin the Axial Direction. In Proceedings of the ASME Pressure Vessels and Piping Conference,Symposium of Recent Advances in Design, Analysis,Testing and Qualification Methods.SanDiego,USA.July 1987.
    [5] A.E.Vardy,D.Fan. Waterhammer Including Fluid Structure Interactions. In Proceedings of the First International Conference on Flow Interaction. Hong Kong.1994,September.439-442.
    [6] A.T.Tisseling,A.E.Vardy&D.Fan.Fluid Structure Interaction and Cavitation in a Single–elbow Pipe System[J].Journal of Fluids and Structures.1996.Mol.10,395-42.
    [7] C.S.W.Lavooij&A.T.Tijsseling.Fluid Structure Interactionin Liquid-filled Piping Systems[J]. Jounral of Fluids and Structures.1991,5:573-595.
    [8] J.S.Walker&J.W.Phillips. Pulse Propagation in Fluid-filled Tubes[J].Journal of Applied Mechanics.1977,44:31-35.
    [9] R.A.Valentin, J.W.Phillips&J.S.Walker. Reflection and Transmission of Fluid Transients at an Elbow[J].Tr ans.of SmiRT5.Beriln,August,1979:BZ/6.
    [10] J.D.Regetz.Jr.An Experimental Determination of the Dynamic Response of a Long Hydraulic Line[J].Washington:Natonal Aeronautics and Space Administration,Technical Note:D-576.
    [11] D.J.Wood. A Study of the Response of Coupled Liquid Flow-structural Systems Subjected to Periodic Disturbances[J]. ASME Journal of Basic Engineering.1968,90:532-540.
    [12] J.Ellis. A Study of Pipe-liquid Interaction Following Pump-trip and Check-Valve1.JClosurein a Pumping Station.In Proceedings of the 3th Intenrational Conference on Pressure Surges[J]. BHRA,Canterbury,U.K.March,1980.203-220.
    [13] D.J.Williams.Waterhammer in Non-rigid Pipes: Precursor Waves and Mechanical Damping. ImechE[J].Journal of Basic Engineering Science.1977,19:237-242.
    [14] M.P.Paidoussis&GX.Li. Pipe Conveying Fluid: a Model Dynamical Problem[J].Jounral of Fluid and Structures.1993,7:137-204.
    [15] V.Lee,C.H.Pak&S.C.Hong. The Dynamic of a Piping System with Internal Unsteady Flow[J].Jounral of Sound and Vibration.1995,182:297-311.
    [16] D.Stephenson.. Effect of Air Valve and Pipework on Water Hammer Pressures[J]. Transportation Engineering,1997,101-106.
    [17] M.A.Chaiko and K.W.Brickman. Models for Analysis of Water Hammer in Piping with Entrapped Air[J].Transactions of ASME,Vol.124,2002:194-204.
    [18] J.P.Vayda. Influence of Gap Size on the Dynamic Behavior of Piping System[J].Journal of Nuclear Engineering and Design,Vol.67,145-164.
    [19] E.Haas Lockau and F.Steinweder. The influence of High-Frequency Excitation on Piping and Support Design[J].Journal of Pressure Vessel Technology,Vol.106,175-187.
    [20] M.P.Sarkar. A cantilever conveying fluid: coherentmodes versus beam modes[J]. International Journal of Non-LinearMechanics,2004,39:467-481.
    [21] M.P.Sarkar and Li.GX. Pipes conveying fluid: amodel dynamical problems[J].Journal of Fluid and Structures,1993,7:137-204.
    [22] F.T. Brown, SC.Tentarelli. Dynamic behavior of complex fluid-filled systems-Part I:tubing analysis[J].Journal of Dynamic Systems, Measurement and Control 2001,123(1):71-79.
    [23] SC.Tentarelli, FT.Brown. Dynamic behavior of complex fluid-filled systems-Part II:system analysis[J].Journal of Dynamic Systems, Measurement and Control 2001,123(1):78-84.
    [24] Lixiang Zhang,AS.Tijsseling,AE.Vardy. FSI analysis of liquid-filled pipes[J].Journal of Sound and Vibration,1999,224(1):66-99.
    [25]徐慕冰,张小铭.充液圆柱壳中的振动能量流[J].华中理工大学学报,1997,25(2):85-87.
    [26]徐慕冰,张小铭.充液壳中管壁接头对振动波传播的控制作用[J].振动工程学报,1996, 9 (4):389-394.
    [27]诸葛起,杨建东等.建立流固耦合管路系统数学模型的一种方法[J].水动力学研究与进展(A辑),1989, 4(1):6-12.
    [28]费文平,杨建东等.管道系统流体-结构耦合边界条件的分析方法[J].武汉水利电力大学学报,1997, 20(4):10-14.
    [29]焦宗夏,华清等.传输管道流固耦合振动的模态分析[J].航空学报,1999,20(4):316-320.
    [30]张立翔,A.S.Tijsseling.弱约束充液管道FSI频响分析[J].工程力学,1996,13 (2):69 -77.
    [31]张立翔,黄文虎等.水锤诱发弱约束管道流固耦合振动频谱分析[J].工程力学,2000,17(I): 1-12.
    [32]张立翔,黄文虎.输流管道非线性流固耦合振动的数学建模[J].水动力学研究与进展, 2000,15(1):116-128.
    [33]孙玉东,刘忠族,刘建湖,张效慈等.水锤冲击时管路系统流固耦合响应的特征线分析方法研究[J].船舶力学, 2005, 9(4):130-137.
    [34]张立翔,汪正军,张洪明等.长管耦合水击控制的试验研究[J].水电能源科学, 2002, 20(4):62-65.
    [35]任建亭,姜节胜.输流管道系统振动研究进展[J].力学进展,Vol.33.No.3.Aug.25.2003.
    [36]王卫东,章思睽,张世基.细长管道耦合振动频率特性及结构可靠性分析[J].航空学报, Vol.13,No.11,Nov.1992.
    [37]居荣初,梁传.输送流体管道的弯曲振动及稳定性[J].浙江工学院学报,No.2,1993.
    [38]李琳.降低发动机管道振动的优化设计[J].航空动力学报,Vol.10,No2,Apr.1995.
    [39]李琳,喻立凡.管道及管路系统流固耦合振动问题的研究[J].动态应用,14,No.3,Sep.1997.
    [40]曹亮,张立翔等.输流管道流固耦合振动特性分析.昆明理工大学,2004.
    [41]王本利,王世忠,安为民,于永德.用有限元法分析导管固液耦合振动[J].哈尔滨工业大学学报,1985,17(2):8-13.
    [42]王占林.飞机高压液压能源系统[M].北京:北京航空航天大学出版社,2004.
    [43]王建,金志浩.输流管道流固耦合非线性动力学分析[J].沈阳化工学院学报,2007,21(4): 292-295.
    [44]王世忠,王茹.三维管道固液耦合振动分析[J].哈尔滨工业大学学报,1992,8(4):43-49.
    [45]周苏枫,杨智春,齐丕骞等.飞机燃油管系结构动力学优化技术,西北工业大学. 2005.
    [46]陈贵清,杨翊仁.受非线性支承的板状梁结构流致振动研究[J].固体力学学报, 2003,(3): 277-284.
    [47]王树人.水击理论与水击计算[M].北京:清华大学出版社,1981(5):21-24.
    [48]胡海岩.应用非线性动力学[M].北京:航空工业出版社,2000.
    [49]王福军.计算流体力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [50]刘希云等.流体力学中的有限元与边界方法[M].上海:上海交通大学出版社,1993.
    [51]杜平安.有限元网格划分的基本原则[J].机械设计与制造,2000(1):36-38.
    [52]何永森,刘邵英.机械管内流体数值预测[M].北京:国防工业出版社,1999.
    [53]徐鉴,杨前彪.输液管模型及其非线性动力学近期研究进展[J].力学进展,2004,34(2):182- 194.
    [54]王琳,倪樵.具有非线性运动约束输液曲管振动的分岔[J].振动与冲击,2006,25(1):67-69.
    [55]任建亭,林磊,姜节胜.管道轴向流固耦合振动的行波方法研究[J].航空学报,2006,27(2): 280-284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700