用户名: 密码: 验证码:
二次包络摆线内啮合齿轮泵研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泵是输送液体或使液体增压的机械,它将原动机的机械能或其他外部能量传送给液体,使液体能量增加。液压泵是整个液压系统的能源装置,液压泵性能的好坏直接决定着整个液压系统性能的好坏。
     摆线内啮合齿轮泵简称摆线泵,它是一种容积式泵,它与渐开线外啮合齿轮泵相比,具有结构紧凑,零件少,噪声低,流量脉动小,自吸性能好,适于高转速等优点。本文应用微分几何和齿轮啮合原理,对二次包络新型摆线泵展开理论和仿真研究,对于揭示其啮合传动的实质、提高泵的性能等具有重要的理论意义和工程实用价值。本文的主要内容包括:
     ①简要介绍了摆线泵的齿廓曲线和二次包络摆线泵齿廓的形成方法,给出了齿廓曲线方程,讨论了二次包络摆线泵的优点,分析了二次包络摆线泵齿廓的顶切问题。
     ②研究了二次包络摆线泵的工作原理以及基本参数和结构尺寸,完成了二次包络摆线泵样机设计。
     ③简述了流体力学的基本理论和CDF软件Fluent,重点介绍在分析二次包络摆线泵内流场用到的动网格理论,以及和动网格理论有关的UDF相关基础理论。
     ④分别建立一次和二次包络摆线泵的流道模型并划分网格,通过Fluent对摆线泵的泵内流场进行仿真,给出了仿真结果,并进行对比分析。
Pump is conveying a liquid or liquid mechanical supercharger. It will prime mover of the mechanical energy or other external energy transmitted to the liquid, so that the liquid energy increases. Hydraulic pump is the energy unite of the whole hydraulic system, the performance of the whole hydraulic system is directly determined by the performance of the hydraulic pump.
     Internal cycloidal gear pump, cycloidal pump for short, is a type of volumetric pump, compared with the external involute gear pump, it has the characteristics of compact structure, less number of part, low noise, low flux pulse, good suction ability and suitability for high rotational speed. By using differential geometry and principle of gear connection, research on related theory and simulation of a new double-enveloping cycloidal pump is carried out in this paper, which has important theoretical meaning and engineering practical value for showing the essence of this gear transmission and improving the performance of the pump.
     The main contents of this paper include :
     ①The design idea of the double-enveloping cycloidal pump as well as the tooth profile generation theory and the curve function is provided in this paper, and the advantages of the double-enveloping cycloidal pump and the influence on the tooth profile of the inter rotor curvature radius are also discussed, afterwards, further study is carried out on the cropped double-enveloping cycloidal pump.
     ②the principle of the double-enveloping cycloidal pump and the corresponding structural parameters is investigated in this paper, and the part drawing or assembly drawing of the double-enveloping cycloidal pump are also provided ultimately.
     ③This paper also introduces the basic theory of fluid mechanics and the CFD software FLUENT, the dynamic mesh theory in the flow field inside of the double-enveloping cycloidal pump is mainly introduced, It involves the relevant basic knowledge of UDF.
     ④after established the channel model and mesh of the double-enveloping cycloidal pump, the simulation of the flow field inside of the double-enveloping cycloidal pump is carried out in the environment of FLUENT.
引文
[1]何存兴.液压元件[M].机械工业出版社. 1981.
    [2]沈阳机电学院机械设计基础教研组(编译).摆线针齿行星传动[M].科学出版社. 1977.
    [3]刘新德.袖珍液压气动手册[M].机械工业出版社. 2003.
    [4]刘性玉.摆线泵设计,生产中的几个问题[J].山东建筑工程学院学报, 1990, 5(1): 44-49.
    [5]毛华永,李国祥,胡云萍等.摆线转子泵进、排油腔的设计计算[J].山东大学学报, 2005, 35(5): 19-24.
    [6]徐学忠.摆线泵基本参数的优化设计[J].液压与气动, 20039(12): 6-7.
    [7]卞学良.摆线泵和摆线马达齿形参数优化设计[J].河北工学院学报, 1995, 24(4): 103-107.
    [8]孟继安,路永太等.内啮合摆线齿轮泵齿廓特征参数优化设计探讨[J].化工机械,1993,20(3): 145-150.
    [9]赵菊娣.圆弧摆线齿轮油泵的齿廓曲线参数优化设计[J].流体机械, 2003, 31(7): 18-21.
    [10]陈博,王平军,胡金山.基于遗传算法的齿轮泵结构优化设计[J].机床与液压, 2004(12): 96-98.
    [11]王浩孚.摆线副齿腔困油的计算方法[J].机床与液压, 1992(2): 35-37.
    [12]赵亮,王冬屏,任喜岩.齿侧间隙很小时齿轮泵困油问题分析[J].机械工程学报, 1999, 35(6): 77-80.
    [13]甘学辉,侯东海,吴晓玲.斜齿齿轮泵无侧隙啮合困油特性的研究[J].机械工程学报, 2003, 39(2): 145-149.
    [14]赵连春,许贤良,栾振辉等.平衡式复合齿轮泵的流量特性[J].机械工程学报, 1999, 35(2): 66-69.
    [15]许贤良,刘小华,朱玉川等.修正齿形的复合齿轮泵的流量特性[J].机械工程学报, 2003, 39(3): 44-47.
    [16]赵菊娣.新型直齿内啮合齿轮泵的齿形分析[J].机械设计与制造, 2003(2): 83-84.
    [17]朱继华,裴帮,侯东海等.外啮合摆线类齿轮泵啮合原理及参数设计[J].机械传动, 2004, 28(1): 10-13.
    [18]叶仲和,陈传銘等.外圆弧及其包络线齿形的楔块式内啮合齿轮泵的齿廓方程及性能分析[J].液压与气动, 2004(3): 43-46.
    [19]范明豪,杨华勇,许贤良等.复合齿轮泵流量特性及计算机仿真[J].机床与液压, 200(6): 10-11.
    [20]刘忠明,侯东海,王小椿.一种复合型线齿轮泵的齿廓反求及分析[J].机械传动, 2000, 24(1): 13-15.
    [21]李毅华,栾振辉.复合齿轮泵优化设计方法研究[J].江西农业大学学报, 1997, 19(3): 132-136.
    [22]赵连春,杨球来,许贤良等.复合齿轮泵惰轮瞬态径向力分析及其平衡措施[J].煤炭科学技术, 2004, 32(11): 66-69.
    [23]赵亮,任喜岩.斜齿齿轮泵流量输出特性分析[J].机械工程学报, 1999, 35(5): 94-97.
    [24]甘学辉,侯东海,吴晓玲.全齿廓啮合斜齿齿轮泵的流量脉动特性[J].石油化工设备, 2002, 31(5): 8-10.
    [25]张有忱,李镜中.圆弧齿轮泵传动平稳性的研究[J] .北京化工大学学报, 2004, 31(5): 90-92.
    [26]甘学辉,侯东海,吴晓玲.液压齿轮泵的性能研究[J].机械设计与制造, 2001(3): 69-70.
    [27]祝海林,邹文.提高高粘度齿轮泵性能和寿命的途径.石油化工设备技术, 1999, 20(1): 43-45.
    [28]徐学忠.摆线泵齿形修正的研究[J].常熟理工学院学报, 2007, 21(8): 63-65.
    [29]徐学忠.摆线泵流量特性分析及计算机仿真[J].机械传动, 2006: 42-44.
    [30]徐学忠.多齿差摆线泵的齿形修正[J].淮阴师范学院学报, 2006, 5(3): 208-211.
    [31]徐学忠.摆线泵几何参数选择及齿廓不产生根切的条件[J].机床与液压, 2004(12): 203-205.
    [32]徐学忠.摆线齿轮泵啮合特性分析[J].液压与气动, 2004(10): 46-48.
    [33]徐学忠.摆线转子泵滑动系数的研究[J].煤矿机械, 2004(8): 25-27.
    [34]徐学忠.多齿差摆线齿轮泵基本参数的优化设计[J].机床与液压, 2005(3): 88-90.
    [35]徐学忠.异型齿廓摆线泵的参数优化设计[J]. FLUID MACHINERY, 2005, 33 (2): 20-23.
    [36]徐学忠.异型齿廓内啮合摆线齿轮泵的研究[J]. Function Units, 2004(12): 101-104.
    [37]韩建文,路潞,谢鑫.摆线泵内外转子间接触应力计算[J]. Fluid Power Transmission and Control, 2007(1): 26-28.
    [38]吴永祥,徐学忠.摆线泵内转子公法线长度的计算和测量[J].机械设计与制造, 2006(5): 13-14.
    [39]徐学忠,吴永祥.多齿差摆线泵的流量特性分析及仿真[J].机械设计与制造, 2006(5): 16-18.
    [40]徐学忠,吴永祥.多齿差摆线泵滑动系数的研究[J].机床与液压, 2006(12): 41-43.
    [41]徐学忠,吴永祥.多齿差摆线齿轮泵设计计算探讨[J]. FLUID MACHINERY, 2005, 33(6): 26-28.
    [42]徐义华,陈为国,韩守磊.摆线泵内转子理论型线参数方程及内外转子的建模[J].机床与液压, 2008, 36(1): 106-107.
    [43]徐学忠,管建峰.摆线泵排量的理论计算[J].设计与计算, 2005(2): 65-66.
    [44]韩建文.摆线轮齿形的简易检测方法[J].流体传动与控制, 2006(2): 14-15.
    [45]戴俊平,白海清,彭玉海.三尖摆线泵研究[J].水利电力机械, 2003, 25(5): 45-47.
    [46]白海清,彭玉海,戴俊平.三尖摆线泵原理及其结构研究[J].机床与液压, 2007, 35(10): 12-121.
    [47]白海清,戴俊平,彭玉海.三尖摆线的形成及其应用[J].机械, 2002(29): 73-74.
    [48]白海清,戴俊平,彭玉海.新型摆线泵研究[J].陕西工学院学报, 2003, 19(3): 1-3.
    [49]毛华永,李国祥,徐秀兰等.摆线转子泵的工作原理及特点[J].山东内燃机, 2002(3): 33-35.
    [50]毛华永,李娜,杨滨等.摆线转子泵转子齿廓的形成[J].山东科学, 2003, 16(1): 26-29.
    [51]侯东海,司春华,吕浮功.少齿差摆线齿轮泵啮合原理及几何参数选择[J].机械传动, 1995, 19(3): 24-27.
    [52]杨元模,黄春英,万曼华.提高内啮合圆弧—泛摆线齿轮泵容积效率的设计[J].液压与气动, 2005(2): 13-15.
    [53]宋如钢,张宝欢,杨延相.新型摆线转子泵啮合特性的研究[J].粉末冶金技术, 2007, 25(2): 99-103.
    [54]孙显生.一种新型摆线两螺许泵的设计[J].海军工程学院学报, 1995(4): 33-37.
    [55] Zhanghe Ye, Weizhang, Qinghai Huang etc. Simple explicit formulae for calculating limit dimensions to avoid undercutting in the rotor of a Cycloid rotor pump[J].Mechanism and Machine Theory. 41 (2006) 405–414.
    [56] Mao Huayong, Li Guoxiang, Xu Xiulan etc. Design in cycloid rotor pump[J]. Powder Metallurgy Technology. 2003(3): 68-72.
    [57] Vecchiato D, Demenego A, Argyris J, Litvin F.L. Geometry of a cycloidal pump. Computer Methods in Applied Mechanics and Engineering. 2001, 190: 4587-4608.
    [58] Demenego, Alberto, Vecchiato etc. Design and simulation of meshing of a cycloidal pump. Mechanism and Machine Theory. 2002, 37: 311-332.
    [59] Song, Rugang, Zhang, Baohuan, Yang, Yanxiang. Study on the meshing characteristic of a new cycloidal pump[J]. Powder Metallurgy Technology. 2007, 25(2): 100-104.
    [60] Li, Yulong, Liu, Kun, Peng, Junhua. Research and development on integrative parameterization design with its solid model for cycloid pump[J]. Transactions of the Chinese Society of Agricultural Machinery. 2006, 39: 153-168.
    [61] G.C. Mimmi,P.E. Pennacchi.Non-undercutting conditions in internal gears.Mechanism and Machine,35(2000) :477–490.
    [62] Ye Zhonghe, Lan Zhaohui, M.R.Smith. Mechanisms and Machine Theory, Higher Education Press, Beijing, 2001, ISBN 7-04-009234-4, July (in English) .
    [63]房婷婷.摆线包络行星传动啮合理论研究[D].硕士学位论文.重庆:重庆大学国家重点传动实验室, 2007, 6 .
    [63]陈兵奎.二次包络摆线轮行星传动装置.中国专利申请号: 200510057431.2.
    [64] Chen Bingkui, Fang Tingting, Li Chaoyang. Gear Geometry of Cycloid Drives[J].Science in China[J].Series E-Technological Sciences, 2008, 51(5) : 598-610.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700