用户名: 密码: 验证码:
紫色土丘陵区农田土壤不同坡位取样单元确定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采样调查是获取土壤信息及空间分布的基本方法,但土壤样品采集是一项费时、费力和耗财的活动,用尽可能少的样品获取准确的土壤信息就成为土壤调查追求的目标。我国西南紫色土丘陵区同源母质发育的旱坡地土壤,在作物类型、气候条件相同,田间管理措施基本一致的条件下,土壤理化性质仍具有典型的空间异质性,这表明地形对土壤属性具有显著的影响,在进行土壤采样时必须要将地形因素考虑在内。同时,由于紫色土丘陵区地形复杂,使得该区域的土壤采样活动花费更高。到目前为止,对紫色土丘陵区农田土壤取样单元的研究还很少,能应用于采样实践的取样单元更是鲜见。为此,本研究将数字土壤制图技术、组合优化算法和模糊坡位分类技术相结合提出一种分坡位确定取样单元的方法,并将该方法应用于重庆市江津区一面积约为2km2的典型紫色土丘陵区农田地块(母质、气候、作物类型和管理措施基本一致),确定出不同土壤属性(土壤pH、有机质、碱解氮、有效磷和速效钾)在不同坡位(山脊、坡肩、背坡、坡脚和沟谷)的取样单元,同时在另外一块与研究区具有相似环境条件的区域对确定的取样单元进行了验证。主要研究结果如下:
     1.紫色土丘陵区农田土壤属性空间分布预测
     相关分析表明土壤pH值、有机质含量和碱解氮含量与地形因子之间的相关性比较强,而土壤有效磷含量和速效钾含量与地形因子之间的相关性比较弱,说明该研究区中地形对土壤pH值、有机质含量和碱解氮含量的空间分布影响显著,而对土壤有效磷含量和速效钾含量影响比较弱。方差分析表明土壤pH值、有机质含量、碱解氮含量和有效磷含量在水田和旱地中的均值之间的差异达到了显著性水平,而土壤速效钾没有,说明土地利用方式对土壤pH值、有机质含量、碱解氮含量和有效磷含量的空间变异有显著性影响,而对土壤速效钾含量作用不明显。
     构建的土壤有机质、碱解氮和pH预测模型能解释各自空间变异的较大部分,而土壤有效磷和速效钾预测模型的解释力则比较弱,这是因为磷和钾主要受母质的影响,而在本研究区内受地形因子的影响比较弱,这与前人的研究结果是一致的,预测结果也是可以接受的。
     基于地形因子的土壤属性预测模型与基于地形因子和土地利用方式组合的土壤属性预测模型预测结果精度对比表明,在预测变量中加入土地利用类型不一定能提高模型的预测精度,其中,对土壤pH值的预测精度有所降低,对土壤碱解氮含量的预测精度几乎没有变化,对土壤有机质和有效磷含量的预测精度略有提高。这是因为在紫色土丘陵区,地形对土地利用方式布局影响很大,由此导致地形因子与土地利用类型对土壤属性的影响存在较大部分的交互作用,除去交互作用后土地利用方式对土壤属性变异解释能力非常微小。
     2.利用模拟退火优化土壤样点布局和土壤—景观模型
     本研究利用模拟退火算法结合多重线性回归对训练集中原始200个土壤样点的空间布局进行了系统优化,对5种土壤属性都给出了从2-199的样点布局优化组合,同时针对每一个样点组合还给出了与其对应的土壤—景观模型及预测误差(均方误差),从预测误差可以看出,对土壤pH值而言,最少只需6个优化的样点就可以替代原始200个采样点;对土壤有机质含量和碱解氮含量而言,最少都只需7个优化的样点就可以替代原始200个采样点;对土壤有效磷含量和速效钾含量而言,最少只需3个优化的样点就可以替代原始200个采样点。
     从预测误差还可以看出,优化的采样点数分别为136、124、136、48和95时,模型预测土壤pH值、有机质含量、碱解氮含量、有效磷含量和速效钾含量空间分布的精度最高,将这些优化后的土壤—景观模型预测精度与原始200个样点构建的土壤—景观模型相比较会发现,优化后的土壤—景观模型的拟合度比原始土壤—景观模型都有提高,其中土壤有效磷和速效钾提高最明显,分别提高了263.82%和192.25%,其次为土壤pH值,提高了18.86%,土壤碱解氮也提高了8.38%,土壤有机质提高了4.56%;而预测误差和模型复杂度都有减小,对MAE而言,土壤pH值和有效磷降低明显,分别减少了11.83%和11.20%,土壤有机质、速效钾和碱解氮分别减少了3.99%、1.79%和1.63%;对RMSE而言,土壤有效磷和速效钾减少明显,分别降低了12.14%和11.06%,其次为土壤pH,降低了9.29%,土壤碱解氮减少了6.88%,土壤有机质减少了3.93%;对AIC而言,土壤pH、有效磷、速效钾、有机质和碱解氮分别降低了4.33%、2.78%、1.87%、1.39%和1.27%。
     3.紫色土区田间尺度农地景观坡位划分
     本研究运用基于相似度的模糊推理方法对紫色土丘陵区田间尺度下农地景观的一块复杂地形区域进行了坡位分类,通过分类图可以看出,坡位分类结果整体上符合研究区的实际地形地貌特征;为了进一步验证该方法在地形复杂区域中的可行性与可靠性,又分别将土壤物理(土层厚度)、土壤化学(土壤养分)、土壤发生属性(土壤类型)以及土地利用类型与坡位分类结果相结合,利用单因素方差分析比较了土壤养分在不同坡位之间的差异,同时,又利用关系图验证了土层厚度和土壤类型与坡位隶属度之间存在明显的关系,最后,又运用对应分析验证了土地利用类型在坡位上的分布状况,这些结果更加明确地验证了分类结果的合理性,表明基于相似度的模糊推理模型在紫色土丘陵区进行坡位划分是合理的和可行的。
     与确定性坡位分类方法相比,基于相似度的模糊推理不但可以给出坡位的定性分类(“硬化”分类),而且还能对“硬化”分类的不确定性作出定量评估(最大相似度图),以及能定量描述每类坡位的渐变信息(坡位相似度图),这可以为精细尺度上的坡面侵蚀、预测性土壤制图等模拟过程提供详细的信息,有助于提高模型的预测精度。例如,本研究发现在“硬化”分类中确定性较大的区域(相似度[0.8,1]),土种的空间分布与确定性坡位有明显的关系,而在确定性较小的区域(相似度[0,0.5]),土种的空间分布与确定性坡位的关系不明显,表明在进行土壤-景观的研究时,坡位分类的不确定性是一个不可忽视的因素,否则可能会导致错误的结果或推断。
     4.紫色土丘陵区农田土壤不同坡位取样单元的确定
     利用地统计方法拟合了不同土壤属性在不同坡位和整个研究区的半方差模型,半方差模型中的变程参数可以反映土壤属性的变异程度,土壤属性在不同坡位上的变程各不相同,且差异明显,表明土壤属性在不同坡位中的变异性是有明显差异的,同时再将土壤属性在不同坡位上的变程与在整个研究区的变程相比,发现不同坡位上的变程都大于整个研究区中的变程,这表明土壤属性在不同坡位上的变异性要低于整个研究区。这些结果说明:(1)分坡位确定取样单元是合理的,若按照传统均一的取样单元进行取样就会造成某些坡位的土壤样点过密,而另外一些坡位的土壤样点可能不足;(2)分坡位取样可以降低土壤属性的空间变异性,提高土壤取样效率。
     本研究结合模拟退火算法、多重线性回归和坡位分类在15%的均值误差条件下确定出研究区土壤属性在不同坡位上的取样单元,其中,土壤pH值在山脊、坡肩、背坡、坡脚和沟谷的取样单元分别为8.6、9.4、10.4、10.4和11.5ha,土壤有机质含量在山脊、坡肩、背坡、坡脚和沟谷的取样单元分别为8.6、7.5、5.8、6.2和5.7ha,土壤碱解氮含量在山脊、坡肩、背坡、坡脚和沟谷的取样单元分别为8.6、6.2、5.8、5.2和11.5ha,土壤有效磷在山脊、坡肩、背坡、坡脚和沟谷的取样单元分别为2.9、2.5、2.3、1.8和3.8ha,土壤速效钾在山脊、坡肩、背坡、坡脚和沟谷的取样单元分别为4.3、3.7、3.3、2.8和5.7ha。进一步我们将确定的土壤属性在不同坡位上的取样单元应用于一个与本研究区具有相似环境条件的区域,对其实用性进行验证,验证结果表明,在验证区除了土壤有效磷和速效钾在山脊处的精度达不到要求外,其他按照推荐的取样单元所取的土壤样点均能满足给定的精度要求,这说明我们所确定的取样单元在整体上能满足取样精度的要求,是合适的。
Soil sampling is essential for acquiring soil information and spatial distribution; however, sampling across an area is usually time-and labor-consuming as well as costly. It is desirable for a survey to collect the minimum number of soil samples necessary to estimate the values of soil properties within a specified area. In purple soil hilly region, southwestern China, the dry sloping soils developed on the identical parent material are generally planted with the same crop and under the uniform management practice; even so soil still exhibits evident heterogeneity at spatial space. The fact indicates that topography imposes an influential effect on soil properties, and the effect must be taken into consideration when establishing a sampling scheme. In addition, complex terrains of this region make it more difficult to collect soil samples compared with an area with flat terrain. Therefore, it is necessary to determine an appropriate sampling density to guide soil sampling in this area. A method of determining soil sampling density was developed by combining digital soil mapping, combinational optimizing algorithm, and slope classification. The proposed method was applied to a farmland area (covering an area of approximately2km2) located in Yongxing, Jiangjin, Chongqing (calibration area), which is representative of a purple soil hilly region; and sampling density of soil properties (soil pH, organic matter, alkali-hydrolyzable N, available P, and available K) for slope positions (ridge, shoulder, backslope, footslope, and valley) was determined. Then the determined soil sampling density was used to select soil samples in another area (validation area) which is similar in environmental conditions with calibration area. The main results are as follows:
     1. Spatial prediction of soil properties within a farmland in purple soil hilly region
     Pearson correlation coefficients showed that soil pH, organic matter, and alkali-hydrolyzable N strongly correlated with terrain attributes, while the relations between soil available P, available K and topographical indicators were poor. This information indicated that topography markedly influenced variation of soil pH, organic matter, and alkali-hydrolyzable N; however, the effect of terrain attributes on soil available P, and available K were weak. One-way analysis of variance (ANOVA) found significant differences for soil pH, organic matter, alkali-hydrolyzable N, and available P with land use types (crop land and paddy field), while not for available K. The results revealed that land use types significantly affected variance of these soil properties (except available K).
     Prediction models (based on terrain attributes and based on combination of terrain attributes and land use types) could account for3.1~72.4%of the variability in soil properties (soil pH, organic matter, alkali-hydrolyzable N, available P, and available K). The models in predicting organic matter, alkali-hydrolyzable N, and pH had a good predictive ability, however, that of available P and available K prediction models was poor because of P and K were mainly controlled by parent materials while not by topography in this study area. The result was consistent with findings of previous researchers and could be accepted.
     Comparisons between prediction models based on terrain attributes and based on combination of terrain attributes and land use types indicated that inclusion of land use types in the prediction models was not always improving the prediction accuracy. For example, the precision of the model based on combination of terrain attributes and land use types in predicting pH was poorer than that of the model based on terrain attributes; and for alkali-hydrolyzable N, the predictive ability of the two types of prediction models were nearly the same; there were only a little improvements in predicting soil organic matter and available P of inclusion of land use types in prediction models. It could be explained that topography determined the spatial distribution of land use types to a great extent in the current study area, thus topography and land use jointly influenced soil properties and their effects were mostly interactered. If the interactive effects were filtered out, the contribution of the land use types in explaining the variability of soil properties would be very limited and could be ignored.
     2. Optimizing spatial distribution of soil sampling points and soil-landscape model using simulated annealing (SA) algorithm
     Simulated annealing combined with multiple linear regression was used to optimize the spatial distribution of original200soil sampling points in the calibration data set. The original200soil sampling points were optimized in spatial distribution from2to199for each soil property. An optimized soil-landscape model and corresponding prediction error (mean squared error) were given to each combination of optimized soil sampling points. From the prediction error, it could be seen that6,7,7,3, and3optimized soil sampling points could be used to replace the original200soil sampling points to predict the spatial variation of pH, organic matter, alkali-hydrolyzable N, available P, and available K, respectively.
     As also seen from the prediction errors, accuracies of the prediction models (for soil pH, organic matter, alkali-hydrolyzable N, available P, and available K, respectively) were the most high when the number of optimized soil sampling points was136,124,48, and95, respectively. Values of adjusted determination coefficient (R2adj) of optimized soil-landscape models were all larger than that of the original soil-landscape models. The values of R2adj of optimized soil-landscape models were improved by263.82,192.25,18.86,8.38, and4.56%for available P, available K, pH, alkali-hydrolyzable N, and organic matter, respectively, compared with those of the original soil-landscape models. On the contrary, prediction errors of the optimized soil-landscapes were all lower than those of the original soil-landscape models. Values of mean absolute error (MAE) of the optimized models were reduced by11.83,11.20,3.99,1.79, and1.63%for pH, available P, organic matter, available K, and alkali-hydrolyzable N, respectively, compared with those of the original soil-landscape models. Values of root mean squared error (RMSE) of the optimized models were reduced by12.14,11.06,9.29,6.88, and3.93%for available P, available K, pH, alkali-hydrolyzable N, and organic matter, respectively, compared with those of the original soil-landscape models. Values of akaike information criterion (AIC) of the optimized models were reduced by4.33,2.78,1.87,1.39, and1.27%for soil pH, available P, available K, organic matter, and alkali-hydrolyzable N, respectively, compared with those of the original soil-landscape models.
     3. Field scale slope position segmentation at agricultural landscape in purple soil hilly region
     Field scale slope positions segmentation was carried out by using similarity-based approach at agricultural landscape in purple soil hilly region. The classified slope positions (ridge, shoulder, backslope, footslope, and valley) generally followed the actual feature of the landform. To further validate the usefulness of the similarity-based model in complex terrain area, one-way ANOVA was applied to examine differences of soil properties (soil pH, organic matter, alkali-hydrolyzable N, available P, and available K) among slope positions. The results of ANOVA showed that significant differences for soil properties were found with slope positions. In addition, the relationships between soil thickness, soil types and quantified spatial gradient were also investigated and obvious trends were found. Finally, correspondence analysis (CA) was employed to examine the relations between slope positions and spatial distribution of land use types. The results showed that topography controlled the spatial distribution of land use types. All these information verified the validity of similarity-based approach used in the complex terrain area.
     Compared with the traditional slope position classification method, the similarity-based approach not only could produce the "harden" map of the slope positions, but also could quantitatively describe the spatial gradient of slope information. The latter could provide detailed information for simulation process, such as slope erosion or predictive soil mapping, at fine scale. Areas with little fuzziness correspond well to soil species, while areas with high ambiguity correspond to miscellaneous soil species at the transitional areas of slope positions. This indicated that uncertainties in slope position classification must be considered in soil-landscape modeling, otherwise it would lead to wrong inference.
     4. Determination of soil sampling density for slope positions at agricultural landscape in purple soil hilly region
     Geostatistical method was employed to fit semi variogram of soil properties (soil pH, organic matter, alkali-hydrolyzable N, available P, and available K) for slope positions (ridge, shoulder, backslope, footslope, and valley) and the whole study area. The parameter range of the semi variogram could reflect the degree of soil variation. The larger a range the less variable a soil property would be, and vice versa. The ranges of soil properties for slope positions were different from each other, which indicated that variation of soil properties among slope positions were not the same. This verified the justifiability of the proposed method determining soil sampling density for slope positions. Further, ranges of soil properties for slope positions were all larger than that of the whole study area. This showed that soil properties variability was more homogeneous within slope positions than that of the whole study area, which implied that slope position segmentation could improve efficiency in soil sampling.
     The proposed method combining simulated annealing, multiple linear regression, and slope position classification was used to determine soil sampling density for slope positions (ridge, shoulder, backsloe, footslope, and valley) with15%proper relative error. The sampling densities of pH were8.6,9.4,10.4,10.4, and11.5ha for ridge, shoulder, backslope, footslope, and valley, respectively. The sampling densities of soil organic matter were8.6,7.5,5.8,6.2, and5.7ha for ridge, shoulder, backslope, footslope, and valley, respectively. The sampling densities of soil alkali-hydrolyzable N were8.6,6.2,5.8,5.2, and11.5ha for ridge, shoulder, backslope, footslope, and valley, respectively. The sampling densities of soil available P were2.9,2.5,2.3,1.8, and3.8ha for ridge, shoulder, backslope, footslope, and valley, respectively. The sampling densities of soil available K were4.3,3.7,3.3,2.8, and5.7ha for ridge, shoulder, backslope, footslope, and valley, respectively. Further, the determined soil sampling density was applied to another area which was similar in environmental conditions with the calibration area. The results showed that the determined soil sampling density could meet the given accuracy requirement.
引文
Ahn C W, Baumgardner M F, Biehl L L. Delineation of soil variability using geostatistics and fuzzy clustering analyses of hyperspectral data [J]. Soil Science Society of America Journal,1999,63:142—150.
    Anderson K E, Furley P A. An assessment of the relationship between surface properties of chalk soils and slope form using principal component analysis [J]. Journal of Soil Science,1975,26:130-143.
    Anderson J A. Introduction to neural networks [M]. MA, Cambridge:The MIT Press, 1996.
    Bai J H, Xiao R, Gong A D. Assessment of heavy metal contamination of surface soils from typical paddy terrace wetlands on the Yunnan Plateau of China [J]. Physics and Chemistry of the Earth, doi:10.1016/j.pce.2010.03.025.
    Barshad I. Factors affecting clay formation.6th National Conference on Clays and Clay Mineralogy,1958, pp.110—132.
    Behrens T, Zhu A X, Schmidt K, et al. Multi-scale digital terrain analysis and feature selection for digital soil mapping [J]. Geoderma,2010,155:175—185.
    Bell J C, Cunningham R L, Havens M W. Calibration and validation of a soil— landscape model for predicting soil drainage class [J]. Soil Science Society of America Journal,1992,56:1860—1866.
    Bell J C, Cunningham R L, Havens M W. Soil drainage probability mapping using a soil—landscape model [J]. Soil Science Society of America Journal,1994,58: 464-470.
    Binder K. Monte Carlo Methods in Statistical Physics [M]. Berlin:Springer,1978.
    Bishop T F A, McBratney A B, Whelan B M. Measuring the quality of digital soil maps using information criteria [J]. Geoderma,2001,105:93—111.
    Birkeland P W. Soils and Geomorphology [M]. New York:Oxford University Press, 1999,430pp.
    Breiman L. Classification and regression trees [M]. Belmont:Wadsworth International Group,1984.
    Brus D J, Heuvelink G B M. Optimization of sample patterns for universal kriging of environmental variables [J]. Geoderma,2007,138:86—95.
    Bui E N, Moran C J. A strategy to fill gaps in soil survey over large spatial extents:an example from the Murray-Darling basin of Australia [J]. Geoderma,2003,111: 21—44.
    Burrough P A. Soil variability:A late 20th century view [J]. Soil and Fertilizers,1993, 56:529—562.
    Burrough P A, van Gaans P F M, Hootsmans R J. Continuous classification in soil survey:spatial correlation, confusion and boundaries [J]. Geoderma,1997,77: 115—135.
    Burrough P A, van Gaans P F M, MacMillan R A. High-resolution landform classification using fuzzy k-means [J]. Fuzzy Sets and Systems,2000,113:37 —52.
    Castrignano A, Buttafuoco G, Comolli R, et al. Using digital elevation model to improve soil pH prediction in a alpine doline [J]. Pedosphere,2011,21(2):259 —270.
    Cerny V. Thermodynamical approach to the traveling salesman problem:an efficient simulation algorithm [J]. Journal of Optimization Theory and Applications,1985, 45:41—51.
    Chang C W, Laird D W, Mausbach M J, et al. Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties [J]. Soil Science Society of America Journal,2001,65:480—490.
    Chang D H, Islam S. Estimation of soil physical properties using remote sensing and artificial network [J]. Remote Sensing of Environment,2000,74:534—544.
    Chaplot V, Bernoux M, Walter C, et al. Soil carbon storage prediction in temperate hydromorphic soils using a morphologic index and digital elevation model [J]. Soil Science,2001,166:48—60.
    Chen L D, Wang J, Fu B J, et al. Land-use change in a small catchment of northern Loess Plateau, China [J]. Agriculture, Escosystems & Environment 2001,86: 163-172.
    Clark L A, Pregibon D. Tree-based models. In:Chambers J M, Hastie T J (Eds.), Statistical Models. California:S. Wadsworth and Brooks,1992,377—420.
    Cox G M, Martin W M. Use of a discriminant function for differentiating soils with different azotobacter populations [J]. Iowa Experimental Journal,1937,451:323 —332.
    de Bruin S, Stein S. Soil-landscape modeling using fuzzy c-means clustering of attribute data derived from a digital elevation mkodel (DEM) [J]. Geoderma,1998,83: 17—33.
    Dharmakeerthi R S, Kav B D, Beauchamp E G. Factors contributing to changes in plant available nitrogen across a variable landscape [J]. Soil Science Society of American Journal,2005,69:453—462.
    Fels J E, Matson K C. A cognitively-based approach for hydrogeomorphic land classification using digital terrain models, in 3rd Internat. Conf./Workshop on Integrating GIS and Environmental Modeling, Santa Fe, New Mexico,21—25 January 1996, National Centre for Geographic Information and Analysis, Santa Barbara, CA, USA, CD-ROM,1996.
    Ferreyra R A, Apezteguia H P, Sereno R, et al. Reduction of soil water spatial sampling density using scaled semivariograms and simulated annealing [J]. Geoderma, 2002,110:265—289.
    Fisher R A. The use of multiple measurements in taxonomic problems [J]. Annals of Eugenics,1936,7:179—188.
    Fisher R F, Binkley D. Ecology and management of forest soils [M]. New York:John Wiley and Sons,2000,512pp.
    Florinsky I V, Eilers R G, Manning G R, et al. Prediction of soil properties by digital terrain modeling[J]. Environmental Modeling & Software,2002,17(3):295— 311.
    Franzen D W, Peck T R. Field soil sampling density for variable rate fertilization [J]. Journal of Production Agriculture,1995,8(4):364—370.
    Franzen D W, Cihacek L J, Hofman V L, et al. Topography—based sampling compared with grid sampling in the northern great plains [J]. Journal of Production Agriculture,1998,11:568—574.
    Fu B J, Gulinck H. Land evaluation in area of severe erosion:The Loess Plateau of China [J]. Land Degradation & Development 5(1):33—40.
    Fu B J, Chen L D, Ma KM, et al. The relationships between land use and soil conditions in the hilly area of the Loess Plateau in northern Shanxi, China [J]. Catena,2000,39:69-78.
    Fu B J, Zhang Q J, Chen L D, et al. Temporal change in land use and its relationship to slope degree and soil type in a small catchment on the Loess Plateau of China [J]. Catena,2006,65:41—48.
    Fu W J, Tunney H, Zhang C S. Spatial variation of soil nutrients in a dairy farm and its implications for site—specific fertilizer application [J]. Soil & Tillage Research, 2010,106:185—193.
    Furley P A. Soil formation and slope development:2. The relationship between soil formation and gradient angle in the Oxford area [J]. Zeitschrift fur Geomorphologie,1968,12:25—42.
    Gamma Design Software.2004. GS+ User's Guide Version 7, Gamma Design Software, Plainwell, MI.
    Gerrard J. Soil Geomorphology [M]. London:Chapman & Hall,1992, p14.
    Gessler P E, Moore I D, McKenzie N J, et al. Soil—landscape modeling and spatial prediction of soil attributes [J]. International Journal of Geographical Information Systems,1995,9:421—432.
    Gessler P E, McKenzie N J, Hutchinson M. Progress in soil-landscape modeling and spatial prediction of soil attributes for environmental models.1996. source: http://www.bbg.ncgia.ucsb.edu/SANTA-FE-CD-ROM/main.html
    Gessler P E, Chadwick O A, Chamran F, et al. Modeling soil-landscape and ecosystem properties using terrain attributes [J]. Soil Science Society of American Journal, 2000,64:2046—2056.
    Glina K D. The Great Soil Groups of the World and Their Development [M]. Michigan, Ann Arbor:Edwards Bros.,1927.
    Gobin A, Campling P, Feyen J. Soil-landscape modeling to quantify spatial variability of soil variables [J]. Physics and Chemistry of the Earth Part B,2000,26:41— 45.
    Goovaerts P. Geostatistics for Natural Resources Evaluation, Applied Geostatistics Series[M]. New York:Oxford University Press,1997.
    Griffiths R P, Madritch M D, Swanson A K. The effects of topography on forest soil characteristics in the Oregon Cascade Mountains (USA):Implications for the effects of climate change on soil properties [J]. Forest Ecology and Management, 2009,257:1—7.
    Guo P T, Wu W, Liu H B, et al. Effects of land use and topographical attributes on soil properties in an agricultural landscape [J]. Soil Research,2011,49:606—613.
    Hastie T J, Tibshirani R J. Generalized Additive Models [M]. UK, London:Chapman & Hall,1990.
    Hastie T J, Pregibon D. Generalized linear models. In:Chambers J M, Hastie T J (Eds.), Statistical Models. S. Wadsworth and Brooks, California, USA,1992, 195—248.
    Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning:Data Mining, Inference and Prediction [M], USA, New York:Springer-Verlag,2001.
    Hay R L. Rate of clay formation and mineral alteration in a 4000-years-old volcanic ash soil on St. Vincent, B.W.I [J]. American Journal of Science,1960,258:354— 368.
    Henderson R, Ragg J M. A reappraisal of soil mapping in an area of Southern Scotland: Part Ⅱ. The usefulness of some morphological properties and of a discriminant analysis in distinguishing between the dominant taxa of four mapping units [J]. Journal of Soil Science,1980,31:573—580.
    Hengl T, Rossiter D G, Stein A. Soil sampling strategies for spatial prediction by correlation with auxiliary maps [J]. Australian Journal of Soil Research,2003, 41:1403—1422.
    Hengl T, Heuvelink G B M, Stein A. A generic framework for spatial prediction of soil variables based on regression-kriging [J]. Geoderma,2004,120:75—93.
    Heuvelink G B M. Burrough P A. Error propagation in cartographic modeling using Boolean logic and continuous classification [J]. International Journal of Geographical Information Systems,1993,7:231—246.
    Heuvelink G B M, Webster R. Modeling soil variation:past, present, and future [J]. Geoderma,2001,100:269—301.
    Horton R E. Drainage-basin characteristics [J]. Transaction of American Geological Union,1932,13:350—361.
    Ibrahim A A, Stigter C J, Adeeb Ali M, et al. On-farm sampling density and correction requirements for soil moisture determination in irrigated heavy clay soils in the Gezira, central Sudan [J]. Agricultural Water Management,1999,41:91—113.
    Irvin B, Ventura S, Slater B. Fuzzy and Isodata classification of landform elements from digital terrain data in Pleasant valley, Wisconsin [J]. Geoderma,1997,77(2/4): 137-154.
    Isaaks E H, Srivastava R M. An Introduction to Applied Geostatistics [M]. New York: Oxford University Press,1989.
    Janik L J, Forrester S T, Rawson A. The prediction of soil chemical and physical properties from mid-infrared spectroscopy and combined partial least-squares regression and neural networks (PLS-NN) analysis [J]. Chemometrics and Intelligent Laboratory Systems,2009,97:179—188.
    Jenny H. Factors of soil formation, a system of quantitative pedology [M]. New York: McGraw—Hill,1941.
    Jin J Y, Jiang C. Spatial variability of soil nutrients and site—specific nutrient management in the P. R. China [J]. Computers and Eletronics in Agriculture,2002, 36:165—172.
    Jones M J. The organic matter content of the savanna soils of West Africa [J]. Journal of Soil Science,1973,24:42—53.
    Journel A G, Huijbregts C J. Mining geostatistics [M]. London:Academic Press, 1978.
    Kerry R, Oliver M A. Average variograms to guide soil sampling [J]. International Journal of Applied Earth Observation and Geoinformation,2004,5,307—325.
    Kim D, Zheng Y B. Scale-dependent predictability of DEM-based landform attributes for soil spatial variability in a coastal dune system [J]. Geoderma,2011,164: 181—194.
    King D, Bourennane H, Isambert M, et al. Relationship of the presence of a non-calcareous clay-loam horizon to DEM attributes in a gently sloping area[J]. Geoderma,1999,89:95—111.
    King G J, Acton D F, St. Arnaud R J. Soil-landscape analysis in relation to soil distribution and mapping at a site within the Weyburn Association [J]. Canadian Journal of Soil Science,1983,63:657—670.
    Kirkpatrick S, Gelatt Jr C D, Vecchi M P. Optimization by simulated annealing [J]. Science,1983,220:671—680.
    Lagacherie P, Holmes S. Addressing geographical data errors in a classification tree soil unit prediction [J]. International Journal of Geographical Information Science, 1997,11:183—198.
    Lane P W. Generalized linear models in soil science [J]. European Journal of Soil Science,2002,53:241-251.
    Lark R M. Soil-landform relationships at within-field scales:an investigation using continuous classification [J]. Geoderma,1999,92:141-165.
    Legates D R, McCabe Jr G J. Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation [J]. Water Resource Research, 1999,35:233-242.
    Lesch S M, Strauss D J, Rhoades J D. Spatial prediction of soil salinity using electromagnetic induction techniques 2. An efficient spatial sampling algorithm suitable for multiple linear regression model identification and estimation [J]. Water Resources Research,1995,31:387-398.
    Li M, Yao W Y, Li Z B, et al. Effects of landforms on the erosion rate in a small watershed by the 137Cs tracing method [J]. Journal of Environment Radioactivity, 2010,101:380-384.
    Li Y, Shi Z, Wu C F, et al. Optimised spatial sampling scheme for soil electrical conductivity based on Variance Quad—Tree (VQT) method [J]. Agricultural Sciences in China,2007,6(12):1463-1471.
    Lindsley C M, Bauer F C. Test your soil for acidity. University of Illinois. Agricultural Experimental Station Special Circular, pp.346.
    Lopez-Granados F, Jurado-Exposito M, Pefia-Barragan J M, et al. Using geostatistical and remote sensing approaches for mapping soil properties [J]. European Journal of Agronomy,2005,23:279-289.
    MacMillan R A, Pettapiece W W. Soil landscape models:Automated landform characterization and generation of soil-landscape models. Research Branch, Agriculture and Agri-Food Canada Technical Bulletin No.1997-1E. Lethbridge, AB.75 pp.
    MacMillan R A, Pettapiece W W, Nolan S C, et al. A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristics rules and fuzzy logic [J]. Fuzzy sets and systems,2000,113:81—109.
    Martin W K E, Timmer V R. Capturing spatial variability of soil and litter properties in a forest stand by landform segmentation procedures [J]. Geoderma,2006,132: 169-181.
    Martz L W. The variation of soil erodibility with slope position in a cultivated Canadian prairie landscape [J]. Earth Surface Processes and Landforms,1992,17:543— 556.
    MATLAB.2011. MATLAB 7.12.0 Help and demos, for MATLAB reference, regress toolbox, the Math Works Inc, Natick, MA.
    McBratney A B, Webster R. Choosing functions for semi-variograms of soil properties and fitting them to sampling estimates [J]. Journal of Soil Science,1986,37:617 —639.
    McBratney A B, Pringle M J. Estimating average and proportional variograms of soil properties and their potential use in precision agriculture [J]. Precision Agriculture,1999,1:125—152.
    XeBratney A B, Odeh I O A, Bishop T F A. An overview of pedometric techniques for use in soil survey [J]. Geoderma,2000,97:293—327.
    McBratney A B, Mendonca Santos M L, Minasny B. On digital soil mapping [J]. Geoderma,2003,117:3—52.
    McCullagh P, Nelder J A. Generalized Linear Models [M]. UK, Cambridge:Cambridge University Press,1983.
    McKenzie N J, Smettem K R J, Ringrose-Voase A J. Evaluation of methods for inferring air and water properties of soil from field morphology [J]. Australian Journal of Soil Research,1991,29:587-602.
    McKenzie N J, Austin M P. A quantitative Australian approach to medium and small scale surveys based on soil stratigraphy and environmental correlation [J]. Geoderma,1993,57:329-355.
    McKenzie N J, Ryan P J. Spatial prediction of soil properties using environmental correlation [J]. Geoderma,1999,89:67—94.
    Metropolis M, Rosenbluth A, Rosenbluth M, et al. Equation of state calculations by fast computing machines [J]. Journal of Chemical Physics,1953,21:1087—1092.
    Milne G. Some suggested units of classification and mapping, particularly for East African soils [J]. Soil Research,1935,4:183—198.
    Milne J D G, Clayden B, Singleton P L, et al. Soil Description Handbook [M]. New Zealand, Landcare Research:Manaaki Whenua Press,1995.
    Minasny B, McBratney A B. A conditioned Latin hypercube method for sampling in the presence of ancillary information [J]. Computers & Geosciences,2006,32(9): 1378-1388.
    Minda J, Smith J. Prototypes in category learning:the effects of category size, category structure, and stimulus complexity [J]. Journal of Experimental Psychology Learning, Memory, and Cognition,2001,27:775—799.
    Moore I D, Grayson R B, Ladson A R. Digital terrain modelling:a review of hydrological, geomorphological and biological applications [J]. Hydrological Processes,1991,5(1):3—30.
    Moore I D, Gessler P E, Nieslen GA, et al. Soil attribute prediction using terrain analysis [J]. Soil Science Society of American Journal,1993,57:443—452.
    Mora-Vallejo A, Claessens L, Stoorvogel J, et al. Small scale digital soil mapping in Southern Kenya [J]. Catena,2008,76:44—53.
    Nizeyimana E, Bicki T. Soil and soil-landscape relationships in the north central of Rwanda, East-Central Africa [J]. Soil Science,1992,153:225-236.
    Noy-Meir I. Multivariate analysis of the semiarid vegetation in south-eastern Australia: Ⅱ. Vegetation catena and environmental gradients [J]. Australian Journal of Botany,1974,22:115-140.
    Nye P H, Greenland D J.1960. The Soil under Shifting Cultivation. Commonwealth Bureau of Soils, Harpenden, UK.
    Odeh I O A, McBratney A B, Chittleborough D J. Soil pattern recognition with fuzzy c-means:applications to classification and soil landform interrelationships [J]. Soil Science Society of American Journal,1992,56:505—516.
    Odeh I O A, Chittleborough D J. Fuzzy c-means and Kriging for mapping soil as a continuous system [J]. Soil Science Society of American Journal,1992,56:1848 —1854.
    Odeh I O A, McBratney A B, Chittleborough D J. Spatial prediction of soil properties from landform attributes derived from a digital elevation model [J]. Geoderma, 1994,63:197—214.
    Odeh I O A, McBratney A B, Chittleborough D J. Further results on prediction of soil properties from terrain attributes:heterotopic cokiging and regression-kriging [J]. Geoderma,1995,67:215—225.
    Odeh I O A, McBratney A B, Slater B K. Predicting soil properties from ancillary information:non-spatial models compared with geostatistical and combined methods.5th International Geostatistics Congress, Wollongong,1997,22—27.
    Pachepsky Y A, Timlin D J, Rawls W J. Soil water retention as related to topographic variables [J]. Soil Science Society of America Journal,2001,65:1787—1795.
    Park S J, McSweeney K, Lowery B. Identification of the spatial distribution of soils using a process-based terrain characterization [J]. Geoderma,2001,103:249 —272.
    Park S J, van de Giesen. Soil—landscape delineation to define spatial sampling domains for hillslope hydrology [J]. Journal of Hydrology,2004,295:28—46.
    Peck T R. Soil testing-making it work. In Hoeft R G (ed.) 1988 Illinois Fertilizer Conference Proceedings. Peoria, Illinois.26-27 January,1988, pp.23—36.
    Pei T, Qin C Z, Zhu A X, et al. Mapping soil organic matter using the topographic wetness index:A comparative study based on different flow-direction algorithms and kriging methods [J]. Ecological Indicators,2010,10:610—619.
    Pennock D J, Zebarth B J, De Jong E. Landform classification and soil distribution in hummocky terrain, Saskatchewan, Canada [J]. Geoderma,1987,40:297— 315.
    Pennock D J, Corre M D. Development and application of landform segmentation procedures [J]. Soil & Tillage Research,2001,58:151—162.
    Pennock D J. Terrain attributes, landform segmentation, and soil redistribution [J]. Soil & Tillage Research,2003,69:15—26.
    Puvaneswaran P, Conacher A J. Extrapolation of short-term process data to long-term landform development [J]. Catena,1983,10:321—337.
    Qin C Z, Zhu A X, Shi X, et al. Quantification of spatial gradation of slope positions [J]. Geomorphology,2009,110:152—161.
    Quinlan J R. Learning with continuous classes. Proceedings of the 5th Australian Joint Conference on Artificial Intelligence,1992,343—348.
    Rosch E H. Natural categories [J]. Cognitive Psychology,1973,4:328—350.
    RuleQuest Research,2000. Cubist. RuleQuest Research, Sydney, Australia.
    Sacks J, Schiller S. Spatial designs. In'Statistical Decision Theory and Related Topics IV (Eds S Gupta, J Berger)[M]. New York:Springer Verlag Publishing,1988, vol.2:385-399.
    Schaap M G, Leij F J, Van Genuchten M Th. Neural network analysis of hierarchical prediction of soil hydraulic properties [J]. Soil Science Society of America Journal,1988,62:847—855.
    Schaap M G, Leij F J. Improved prediction of unsaturated hydraulic conductivity with the Mualem-van Genuchten model [J]. Soil Science Society of America Journal, 2000,64:843—851.
    Schmidt J, Hewitt A. Fuzzy land element classification from DTMs based on geometry and terrain position [J]. Geoderma,2004,121:243—256.
    Seibert J, Stendahl J, Sorensen R. Topographical influences on soil properties in boreal forest [J]. Geoderma,2007,141 (1/2):139—148.
    Shary, PA. The second derivative topographic method. In:Stepanov N. (Ed.), The Geometry of the Earth Surface Structures. Pushchino:Pushchino Research Centre Press,1991 (in Russian).
    Shatar T M, McBratney A B. Empirical modeling of relationships between sorghum yield and soil properties [J]. Precision Agriculture,1999,1:249—276.
    Shi X, Zhu A X, Wang R X. Deriving fuzzy representations of some special terrain features based on their typical locations. In:Cobb M., Petry F, Robinson V, (eds). Fuzzy Modeling with Spatial Information for Geographic Problems. Berlin: Springer-Verlag,2005,233—251.
    Simbahan G, Dobermann A. Sampling optimization based on secondary information and its utilization in soil carbon mapping [J]. Geoderma,2006,133:345—362.
    Simonett, D S. Soil genesis in basalt in North Queensland. Transactions of the 7th International Congress of Soil Science, Madison, Wisconsin,1960, pp.238-243.
    Siqueira D S, Marques Jr. J, Pereira G T. The use of landforms to predict the variability of soil and orange attributes [J]. Geoderma,2010,155:55—66.
    Skidmore A. Terrain position as mapped from a gridded digital elevation model [J]. International Journal of Geographical Information Systems,1990,4:33— 49.
    Snepvangers J J J C, Heuvelink G B M, Huisman J A. Soil water content interpolation using spatio-temporal kriging with external drift [J]. Geoderma,2003,112:253 —271.
    Somaratne S, Seneviratne G, Coomaraswamy U. Prediction of soil organic carbon across different land-use patterns:a neural network approach [J]. Soil Science Society of America Journal,2005,69:1580—1589.
    Speight J G. Australian Soil and Land Survey:Field Handbook,2nd ed [M]. Melbourne: Inkata Press,1990.
    SPSS.2004. SPSS Base 13.0 User's Guide, SPSS, Chicago, IL.
    Stolt M H, Baker J C, Simpson T W. Soil-landscape relationships in Virginia:Ⅱ. Reconstruction analysis and soil genesis [J]. Soil Science Society of America Journal,1993,57:422—428.
    Sumfleth K, Duttmann. Prediction of soil property distribution in paddy soil landscape using terrain data and satellite information as indicators [J]. Ecological indicators, 8:485—501.
    Thompson J A, Pena-Yewtukhiw E M, Grove J H. Soil-landscape modeling across a physiographic region:Topographic patterns and model transportability [J]. Geoderma,2006,133:57—70.
    Tsai C C, Chen Z S, Duh C T, et al. Prediction of soil depth using a soil-landscape regression model:a case study on forest soils in Southern Taiwan [J]. Proc. Natl. Sci. Counc. ROC(B),2001,25(1):34—39.
    Tsui C C, Chen Z S, Hsieh C F. Relationships between soil properties and slope position in a lowland rain forest of southern Taiwan [J]. Geoderma,2004,123:131—142.
    University of Illinois. Illinois agronomy handbook,1979-80 [M]. Cooperative Extension Service Circular,1978, pp.1049.
    van Groenigen J W, Stein A. Constrained optimization of spatial sampling using continuous simulated annealing [J]. Journal of Environmental Quality,1998,27: 1078-1086.
    van Groenigen J W, Siderius W, Stein A. Constrained optimization of soil sampling for minimization of the kriging variance [J]. Geoderma,1999,87:239—259.
    van Groenigen J W, Pieters G, Stein A. Optimizing spatial sampling for multivariate contamination in urban areas [J]. Environmetrics,2000,11:227—244.
    Vasat R, Heuvelink G B M, Bruvka L. Sampling design optimization for multivariate soil mapping [J]. Geoderma,2010,155:147—153.
    Venables W N, Ripley B D. Modern Applied Statistics with S-PLUS [M]. USA, New York:Springer-Verlag,1994.
    Venterea R T, Lovett G M, Groffman P M, et al. Landscape patterns of net nitrification in a northern hardwood-conifer forest [J]. Soil Science Society of America Journal,2003,67:527-539.
    WangHB, YangQ, LiuZJ, etal. Determining optimal density of grid soil-sampling points using computer simulation [J]. Transactions of the CSAE,2006,22(8): 145-148.
    Wang H J, Shi XZ, Yu D S, et al. Factors determining soil nutrient distribution in a small-scaled watershed in the purple soil region of Sichuan Province, China [J]. Soil & Tillage Research,2009,105:300-306.
    Webster R, Burrough P A. Multiple discriminant analysis in soil survey [J]. Journal of Soil Science,1974,25:120-134.
    Webster R. Quantitative spatial analysis of soil in the field [J]. Advances in Soil Science,1985,3:1-70.
    Webster R, McBratney A B. On the Akaike Information Criterion for choosing models for variogramsof soilproperties [J]. European Journal of Soil Science 1989,40: 493-496.
    Webster R, Oliver M A. Statistical Methods in Soil and Land Resource Survey [M]. Oxford:Oxford University Pressing,1980.
    Webster R. The development of pedometrics [J]. Geoderma,1994,62:1—15.
    Willmott C J. On the validation of models [J]. Physical Geography,1981,2:184— 194.
    Yu D S, Zhang Z Q, Yang H, et al. Effects of soil sampling density on detected spatial variability of soil organic carbon in a red soil region of China [J]. Pedosphere, 2011,21:207-213.
    Zebarth B J, de Jong E. Water flow in a hummocky landscape in central Saskatchewan, Canada, I. Distribution of water and soils [J]. Journal of Hydrology,1989,107: 309-327.
    Zhang Z Q, Yu D S, Shi X Z, et al. Effects of sampling classification patterns on SOC variability in the red soil region, China [J]. Soil & Tillage Research,2010,110: 2-7.
    Zhu A X, Band L. A knowledge-based approach to data integration for soil mapping [J]. Canadian Journal of Remote Sensing,1994,20(4):408—418.
    Zhu A X. A similarity model for representing soil spatial information [J]. Geoderma, 1997,77:217—242.
    Zhu A X, Hudson B, Burt J, et al. Soil mapping using GIS, expert knowledge, and fuzzy logic [J]. Soil Science Society of American Journal,2001,65:1463—1472.
    Zhu A X, Qi F, Moore A, et al. Prediction of soil properties using fuzzy membership values [J]. Geoderma,2010,158:199—206.
    Ziadat F M. Analyzing digital terrain attributes to predict soil attributes for a relatively large area [J]. Soil Science Society of America Journal,2005,69:1590-1599.
    Ziadat F M. Prediction of soil depth from digital terrain data by integrating statistical and visual approaches [J]. Pedosphere,2010,20(3):361—367.
    鲍士旦.土壤农化分析[M].北京:中国农业出版社,2002,47—56.
    陈永刚,汤国安,周毅,等.基于多方位DEM地形晕渲的黄土地貌正负地形提取[J].地理科学,2012,32(1):105—109.
    邓惠平,李秀彬.地形指数的物理意义分析[J].地理科学进展,2001,21(2):103—110.
    高毅平,汤国安,周毅,等.陕北黄土地貌正负地形坡度组合研究[J].南京师大学报(自然科学版),2009,32(2):135—140.
    郭澎涛,武伟,刘洪斌,等.DEM栅格分辨率对丘陵山地去定量土壤—景观模型的影响[J].农业工程学报,2010,26(12):330—336.
    郭澎涛,李茂芬,刘洪斌,等.丘陵地区田间尺度农地景观坡位划分[J].农业工程学报,2011,27(4):324-329.
    贺文慧,汤国安,杨昕,等.面向DEM地貌综合的山脊线等级划分研究-以黄土丘陵沟壑区为例[J].地理与地理信息科学,2011,27(2):30-33.
    黄昌勇.土壤学[M].北京:中国农业出版社,2000,205-208.
    雷能忠,王心源,蒋锦刚,等.基于BP神经网络插值的土壤全氮空间变异[J].农业工程学报,2008,24(11):130-134.
    李启权,王昌泉,岳天祥,等.基于RBF神经网络的土壤有机质空间变异研究方法[J].农业工程学报,2010,26(1):87—94.
    李兴旺,冯宝平.基于BP神经网络的土壤含水量预测[J].水土保持学报,2002,16(5):117—119.
    连纲,郭旭东,傅伯杰,等.黄土高原小流域土壤容重及水分空间变异特征[J].生 态学报,2006a,26(3):647—654.
    连纲,郭旭东,傅伯杰,等.黄土丘陵沟壑区县域土壤有机质空间分布特征及预测[J].地理科学进展,2006b,25(2):112—122.
    齐文虎,谢高地,丁贤忠.精准农业土壤采样密度研究—以上海精准农业示范基地为例[J].中国生态农业学报,2003,11(1):48—52.
    秦承志,朱阿兴,施迅,等.坡位渐变信息的模糊推理[J].地理研究,2007,26(6):1165—1174.
    秦承志,卢岩君,包黎莉,等.简化数字地形分析软件(SimDTA)及其应用—以嫩江流域鹤山农场区的坡位模糊分类为例[J].地球信息科学学报,2009a,11(6):737—743.
    秦承志,朱阿兴,李宝林,等.坡位的分类及其空间分布信息的定量化[J].武汉大学学报,2009b,34(3):374—377.
    史舟,李艳,金辉明.基于方差四叉树法的滨海盐土电导率采样布局研究[J].土壤学报,2007,44(2):294—299.
    孙孝林,赵玉国,赵量,等.应用土壤—景观定量模型预测土壤属性空间分布及制图[J].土壤,2008,40(5):837—842.
    王珂,沈掌泉,Bailey J S,等.精确农业田间土壤空间变异与采样方式研究[J].农业工程学报,2001,17(2):33—36.
    王秀,赵春江,孟志军,等.精准农业土壤采样栅格划分方法的研究[J].土壤学报,2005,42(2):199—205.
    翁永玲,戚浩平,方洪宾,等.基于PLSR方法的青海茶卡-共和盆地土壤盐分高光谱遥感反演[J].土壤学报,2010,47(6):1255—1263.
    徐明星,周生路,丁卫,等.苏北沿海滩涂地区土壤有机质含量的高光谱预测[J].农业工程学报,2011,27(2):219—223.
    阎波杰,潘瑜春,赵春江.区域土壤重金属空间变异及合理采样数确定[J].农业工程学报,2008,24(增刊2):260—264.
    晏实江,汤国安,李发源,等.利用DEM边缘检测进行黄土地貌沟沿线自动提取[J].武汉大学学报(信息科学版),2011,36(3):363—367.
    杨琳,朱阿兴,秦承志,等.一种基于样点代表性等级的土壤采样设计方法[J].土壤学报,2011,48(5):938—946.
    姚荣江,杨劲松,赵秀芳,等.滩涂土壤电磁感应仪与方差四叉树法采样布局研究[J].农业机械学报,2010,26(5):188—194.
    张继光,陈洪松,苏以荣,等.喀斯特地区典型峰丛洼地表层土壤水分空间变异及合理取样数研究[J].水土保持学报,2006,20(2):114—117.
    张素梅,王宗明,张柏,等.利用地形和遥感数据预测土壤养分空间分布[J].农业工程学报,2010,26(5):188—194.
    张秀英,孙棋,王珂,等.基于决策树的土壤Zn含量预测[J].环境科学,2008,29(12):3508—3512.
    张振明,余新晓,王友生,等.森林不同土壤层全氮空间变异特征[J].生态学报,2011,31(5):1213—1220.
    赵伟,谢德体,刘洪斌,等.精准农业中土壤养分分析的适宜取样数量的确定[J].中国生态农业学报,2008,16(2):318—322.
    赵永存,史学正,于东升,等.不同方法预测河北省土壤有机碳密度空间分布特征的研究[J].土壤学报,2005,42(3):379—385.
    郑小佳,邓良基,张世熔,等.川中丘陵区不同地形位置下土壤养分特征研究[J].西南农业学报,2005,18卷增刊:17—20.
    中国科学院南京土壤研究所土壤系统分类课题组,中国土壤系统分类课题研究协作组.中国土壤系统分类检索(第三版)[M].合肥:中国科学技术大学出版社,2001,193—210.
    仲腾,汤国安,周毅,等.基于反地形DEM的山顶点自动提取[J].测绘通报,2009,4:35—37.
    周毅,汤国安,王春,等.基于高分辨率DEM的黄土地貌政府地形自动分割技术研究[J].地理科学,2010,30(2):261—266.
    朱阿兴,李宝林,杨琳,等.基于GIS、模糊逻辑和专家知识的土壤制图及其在中国应用前景[J].土壤学报,2005,42(5):844—851.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700