用户名: 密码: 验证码:
基于透平膨胀机的径向气体轴承流场数值分析及结构优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轴承-转子系统是透平膨胀机中的核心部件,其性能直接影响设备的运转和安全可靠。对于小型透平膨胀机,为了提高工作效率,希望具有高转速,这就对轴承提出了更高的要求。而高转速恰恰是气体轴承的优点之一。
     本文以气体润滑理论为基础,采用有限体积法对静压径向气体轴承的静态流场特性进行了数值模拟,并进行了试验研究,具体主要工作如下:
     (1)垂直供气方式气体轴承:对不同结构参数(如孔边距、供气孔直径)的气体轴承进行不同工况(转轴静止与高速旋转)及偏心率下的数值模拟,分析轴承结构参数对轴承能力(以承载能力、刚度、耗气量为具体指标)的影响,并从仿真结果中选取该供气方式下具有较优结构参数的气体轴承结构形式;(2)切向供气方式气体轴承:对不同供气孔直径的气体轴承进行不同工况及偏心率下的数值模拟,分析轴承结构参数对轴承能力的影响,并从仿真结果中选取该供气方式下具有较优结构参数的气体轴承结构形式;(3)对以上选取的两种较优结构参数的气体轴承进行轴承能力的数值模拟对比分析,比较不同供气方式对轴承能力的影响;(4)搭建试验台,对气体轴承进行试验研究。
     本文从数值模拟和试验研究两个方面对静压径向气体轴承的轴承能力进行了分析,结果表明,本文对基于透平膨胀机的静压径向气体轴承做的数值模拟是可信的。
The performance of core components of turbo-expander-bearing-rotor system affect rotating,safety and reliability of the equipment directly.As small turbo-expander,high rotating speed is needed to improve efficency,and higher requirements are put forward for bearing.And high speed is precisely one of the advantages of gas bearing.
     In this paper,we do numerical simulation and experimental research on static character of hydro-static radial gas bearing's flow field based on the theory of gas lubrication and finite volume method.The main and specific work are following:
     (1)In vertical supply method,some structural parameters(such as hole margin and diameter of supply holes) of gas bearing will be numerical simulated in different conditions(like the shaft is static and high-speed rotating) and eccentricity to show its effect on bearing performance(like load capacity,stiffness and gas consumption).And the optimal structure will be selected out.(2)In tangential supply method,different diameter of supply holes will be numerical simulated in different conditions to show its effect on bearing performance.And the optimal structure will be selected out.(3)This part is comparison of two different methods(vertical and tangential supply methods) on bearing performance.(4)Build a laboratory bench to do experimental research on gas bearing.
     This paper presents numerical simulation and experimental study on bearing performance of hydro-static radial gas bearing,and the results show that the numerical simulation method taken in this paper on hydro-static radial gas bearing based on turbo-expander is creditable.
引文
[1]熊联友,陈纯正.刘立强等.新型氦气体轴承透平膨胀机的研制.低温与特气,2002,20(1):23-25.
    [2]W L Swift, M Z Zagarola, J J Breedlove, et al. Initial test results from a 6-10K turbo-b rayton cryocooler for space applications. Adv In Cryo Engng,2004,49:1643-1649.
    [3]M Z Zagarola, A J Dietz, W L Swift, et al.35K Turbo-brayton cryocooler technology. Adv In Cryo Engng,2004,49:1635-1642.
    [4]W L Swift, J A McCormic,M Z Zagarola.A low temperature turbo-brayton cryocooler for space applications. Adv In Cryo Engng,2002,47:1061-1068.
    [5]Alan H Epstein. Millimeter-Scale,Micro-electro mechanical system's gas turbine engines. Journal of Engineering for Gas Turbines and Power,2004,126:205-226.
    [6]Kousuke Isomura, Motohide Murayama, Susumu Teramoto, et al. Experimental verification of the feasibility of a 100 w class micro-scale gas turbine at an impeller diameter of 10 mm. Journal of M icromechanics and M icro Engineering,2006,16:s254-s261.
    [7]Kousuke Isomura, Shuji Tanaka, Shinichi Togo, et al. Development of high-speed micro-gas bearings for three-dimensional micro-turbo machines. Journal of Micromechanics and Micro-engineering,2005,15:s222-s227.
    [8]Shuji Tanaka, Kousuke Isomura, Shinichi Togo, et al. Turbo test rig with hydroinertia air bearings for a palam top gas turbine. Journal of Micromechanics and Microengineering,2004,14:1449-1454.
    [9]Yong-Bok Lee, Dong-Jin Park, Chang-Ho Kim,et al. Rotordynamic characteristics of a micro turbo generator supported by air foil bearings. Journal of Micromechanics and MicroEngineering,2007,17:297-303.
    [10]Jonathan C Evans, Gregory F Nellis. Design and test of hydrostatic gas bearings for a hybrid cryogenic refrigerator. Proceedings of MECE'03,2003 ASME International Mechanical Engineering Congress, Nov.,2003.
    [11]T Waumans, P Vleugels, J Peirs, et al. Rotor dynamic behavior of a micro-turbine rotor on air bearings:modeling techniques and experimental verification. Proceedings of ISMA 2006.
    [12]Harrison W J. The Hydrodynamic Theory of Lubrication with Special Reference to Air as a Lubricant. Transactions of Cambridge Philosophical Society,1913,22(1):39-54.
    [13]Powell J W. Design of Aerostatic Bearing. London, The Machinery Publishing Co. Ltd.,1970.
    [14]Katto Y, Soda N. Theory of Lubrication by Compressible Fluid with Special Reference to Air Bearing. Proc. of the second Japanese Congress on Applied Mechanics. Japan.1952:267-270.
    [15]Ausman J S. An Improved Analytical Solution for Self-Acting Gas Lubricated Journal Bearing of Finite Length. Trans. ASME, Series D,1961,83(2):188-194.
    [16]Castelti V, Stevenson C H, Gunter E J. Steady state characteristics of Gas Lubricated Self-Acting Partial Arc Journal Bearings of Finite Width. Trans. ASLE, 1964 (7):153-167.
    [17]Reddi M M. Finite Element Solution of the Incompressible Lubrication Problem. Trans. ASME, Series F,1969,91(3):524-533.
    [18]Yabe H. A Study on characteristics of Externally Pressurized Gas Thrust Bearing Bull. JSME.1982,25:207-214.
    [19]Nguyen S H. p-Version Finite Element Analysis of Gas Bearings of Finite Width. Trans. of ASME, Journal of Tribology.1991,113(3):417-420.
    [20]Pandian M C.A new method for the numerical solution of the Reynolds equation for gas-lubrication slider bearings. Journal of Engineering Mathematics.1985,19(3):3-19.
    [21]古林卓嗣.多重格子法にょる動压気体軸受数值解析の高速化.日本機械学会論文集(C編)1996,62(12):4636-4643.
    [22]Nakamura T. Yoshimoto S. Static Tilt Characteristics of Aerostatic Rectangular Double-Pad Thrust Bearing with Compound Restrictors. Tribology International. 1996,29(2):145-152.
    [23]刘暾,王德,吴广玉.外压气浮轴承承载能力的计算.哈尔滨工业大学技术情报资料室,1974.
    [24]刘育华,刘暾.气体静压轴承有限元方法中的收敛问题.哈尔滨工业大学学报,机械工程专辑,1985.
    [25]刘暾,齐乃明.一种提高气体轴承刚度方法的初步分析——自主式气体轴承.全国第五届气体润滑会议论文.1991.
    [26]王云飞.气体润滑理论与气体轴承设计.北京:机械工业出版社.1999.
    [27]侯予,王秉琛,熊联友等.提高小孔供气静压气体径向轴承稳定性方法的探讨.润滑与密封,2004,(2):17-19.
    [28]侯予,王瑾,陈纯正.径向小孔静压气体轴承的试验研究.润滑与密封,2002,(2):15-17.
    [29]侯予,刘立强,熊联友等.透平机小孔气体轴承性能的研究.润滑与密封,1997,(2):31-34.
    [30]刘立强,熊联友,侯予等.透平膨胀机新型切向小孔气体轴承静特性的实验研究.润滑与密封,1998,(5):22-23.
    [31]龚焕荪,张鸿.上海机械学院研究报告.1988.
    [32]景岗,陈尔昌,陈日曜等.表面节流静压气体润滑轴承最近的研究状况.润滑与密封,1994,6:59-64.
    [33]赵三星,李友荣.圆柱气体轴承性能计算分析.第八届全国摩擦学大会,广州,2007:284-286.
    [34]固体润滑透平轴承。固体润滑,1990年7月,第10卷第3期:229-235.
    [35]王养丽.磁悬浮轴承的原理.工科物理,2000,3(10):35-42.
    [36]白城均,宋方臻,邵海燕.磁力轴承的发展及应用.济南大学学报(自然科学版),2007,21(4):325-331.
    [37]汪通悦,陈辽军,周峰,等.磁浮轴承的技术进展.现状·趋势·战略,2002,40(455):21-23.
    [38]刘暾,刘育华,陈世杰著.静压气体润滑.哈尔滨:哈尔滨工业大学出版社.1990.
    [39]李志权,邢桂坤,付大春,肖峰.磁力轴承透平膨胀机/再压缩机组的选型探讨.化工设备与管道,2009,46(1):31-34.
    [40]邵平,陈渭荣,汪希平.电磁悬浮轴承透平机的研制.低温工程,1997,(6):58-59.
    [41]姜军.大型透平膨胀机气体轴承设计.机械设计与制造,1989,(4):27-29.
    [42]http://cryosys. net/ViewCGCP. asp?id=9
    [43]Shuji Tanaka, Masayoshi Esashi, Kousuke Isomura, etc. Hydroinertia gas bearing system to achieve 470 m/s tip speed of 10 mm-diameter impellers. Journal of Tribology,2007,129:655-659.
    [44]陈纯正,侯予,王瑾,林明峰.我国气体轴承低温透平膨胀机的重要进展.第六届全国低温与制冷工程大会,西安,2003.
    [45]江楚标.透平膨胀机及发展动态.深冷技术,2001,(5):1-9.
    [46]K Hayashi. Development of Gas-lubricated foil for high speed rotary machines. Lecture Presented in Xi'an Jiaotong University, Oct.2007.
    [47]http://cryosys. net/ViewXGLW. asp?id=8
    [48]Kyeong-Su Kim, In Lee. Journal of engineering for gas turbines and power,2007,129:843-849.
    [49]L. X. Liu, C. J.Teo, A. H. Epstein,etl.Hydrostatic gas journal bearings for micro-turbomachinery. Journal of Vibration and Acoustics,2005,127:157-164.
    [50]Xuehua Zhu, Luis San Andres. Rotordynamic performance of flexure pivot hydrostatic gas bearings for oil-free turbomachinery. Journal of Engineering for Gas Turbines and Power,2007, (129):1020-1027.
    [51]朱朝辉,姚艳霞,侯予,杨金焕,夏葵,陈纯正.新型动压箔片径向气体轴承低温透平膨胀机的开发.低温与特气.2003,21(2):28-31.
    [52]陈汝刚,侯予,袁秀玲等.低温透平制冷机的静压气体润滑轴承研究.西安交通大学学报,2007,41(7):792-796.
    [53]陈汝刚,侯予,陈纯正.微型气浮轴承高速透平膨胀机的研制.西安交通大学学报,2010,44(1):61-65.
    [54]http://cryosys. net/ViewXGLW. asp?id=8
    [55]王学敏,白红宇,付豹等.低温氦透平膨胀机转轴临界转速求解.低温工程,2008,(5):23-34.
    [56]郭良斌.静压气体轴承静态特性的理论研究综述.武汉科技大学学报(自然科学版),2006,29(1):37-40.
    [57]龙威,李军,包钢.FLUENT软件在空气轴承研究领域的应用.机床与液压,2006,(6):151-153.
    [58]十合晋一著,韩焕臣译.气体轴承:设计、制作与应用.北京:宇航出版社.1988.
    [59]刘暾,刘育华,陈世杰著.静压气体润滑.哈尔滨:哈尔滨工业大学出版社.1990.
    [60]孙昂.高压重载平面止推气体轴承的流场特性研究:(博士学位论文).大连:大连海事大学,2010.
    [61]http://document. e-works. net.cn/rar/41631. htm.
    [62]Andrew T. Kim, Jongwon Seok, John A. Tichy, etl. Soft Elastohydrodynamic Lubrication With Roughness. Transactions of the ASME,2003,125:448-461.
    [63]刘小平,张敏,刘晶等.商用软件GAMBIT的解析和应用.南京工业大学学报(自然科学版),2008,30(1):101-104.
    [64]于贺春,马文琦,王祖温等.基于FLUENT的径向静压气体轴承的静态特性研究.润滑与密封,2009,34(12):77-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700