用户名: 密码: 验证码:
TGF-β3、BMP-2双基因转染的骨髓基质干细胞联合DBM修复关节软骨缺损的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[目的]探讨同种异体脱钙骨基质(DBM)作为软骨组织工程支架材料的可行性;探索DBM与TGF-β3和BMP-2双基因转染的骨髓基质干细胞(BMSCs)体外复合培养后的最佳移植时机并观察DBM复合双基因转染的BMSCs修复滇南小耳猪膝关节软骨缺损的效果,以明确基因增强组织工程技术修复关节软骨缺损的可行性。
     [方法] 1.根据Urist描述的方法制得同种异体DBM,扫描电镜观察DBM的超微结构,在体外将TGF-β3、BMP-2双基因转染的滇南小耳猪BMSCs,与制备好的DBM复合培养,MTT法测定BMSCs在DBM上生长增殖曲线,并以扫描电镜观察BMSCs在DBM上的增殖情况。
     2.制备滇南小耳猪膝关节软骨全层缺损的动物模型,将BMSCs与DBM复合培养后植入小耳猪膝关节软骨缺损模型中。选用健康成年滇南小耳猪8头,制造双侧膝关节软骨缺损,同时设四组:右膝股骨外髁关节负重面为实验组A组(DBM/双基因转染的BMSCs);右膝股骨内髁关节负重面为对照组B组(DBM/未经转染的BMSCs);左膝股骨内髁关节负重面为空白支架组C组,(单纯植入DBM,不含BMSCs);左膝股骨外髁关节负重面为空白组D组(单纯空白缺损)。于术后2周、4周、8周及12周各处死2只小耳猪,取材对修复组织进行大体、组织学及免疫组化染色观察,根据O'driscoll法对修复组织进行评分,数据输入SPSS11.5软件进行统计学分析,比较各组的评分差异是否具有统计学意义。
     [结果] 1.DBM支架材料外观均呈白色海绵状,SEM观察DBM呈天然的高密度孔隙网架结构;双基因转染的BMSCs能在DBM上附着生长并增殖,且复合培养第6天时达到峰值。
     2.术后12周A组修复组织呈透明样软骨,表面光滑平坦,与周围软骨及软骨下骨结合良好;B组呈透明软骨样,表面光滑,界限仔细可辨;C组有少部分类软骨样修复;D组纤维性修复,凹陷明显。实验组A组术后12周Ⅱ型胶原免疫组化染色呈阳性,术后8周、12周检测TGF-β3和BMP-2蛋白表达呈阳性。修复组织O'driscoll评分结果显示:2周时,各组无明显统计学差异,从4周起,各时间点实验组评分与实验对照组和空白组评分间均具有统计学差异,即实验组修复效果优于实验对照组和空白对照组,实验对照组优于空白对照组;实验组A组四个时间点评分间均有统计学差异,即12周时修复效果优于8周及4周,8周时修复效果优于4周,4周时修复效果优于2周。
     [结论] 1.DBM具有三维天然网状结构和良好的细胞相容性,DBM与双基因转染的BMSCs复合培养后最佳移植时间为第6天。
     2.应用基因增强组织工程学技术,将双基因转染的BMSCs复合DBM支架材料修复全层关节软骨缺损是可行的,为临床运用基因治疗软骨缺损提供实验依据。
[Objective] To observe the possibility of using Demineralized bone matrix as a scaffold for cartilage tissue engineering, determine the optimal co-culture time for implantation, and the feasibility of articular cartilage repair of Diannan small-ear pigs with bone marrow stromal cells transfected by adenovirus vector mediated TGF-β3 and BMP-2 seeded on demineralized bone matrix.
     [Methods] 1.Demineralized bone matrix was made according to Urist's method. The Ultra structure of DBM was observed with scanning electron microscope (SEM). Bone marrow stromal cells transfected TGF-β3 and BMP-2 were cultured with DBM, and MTT assay was used to analyze the growth curve of Bone marrow stromal cells on DBM. The growth of Bone marrow stromal cells on DBM was also observed with SEM.
     2. Prepared full thickness defects both knee joints of Diannan small-ear pig. The DBM/BMSCs transfected TGF-β3 and BMP-2 was co-cultured and transplanted into full thickness defects on femoral condyle of both knee joints. Eight adult Diannan small-ear pigs were used and divided into four groups.Group A is the weight-bearing articular surface of lateral femoral condyle of the right knee (DBM/BMSCs transfected by two genes). Group B is the weight-bearing articular surface of medial femoral condyle of the right knee (DBM/BMSCs). Group C is the weight-bearing articular surface of medial femoral condyle of the left knee (only DBM).Group D is the weight-bearing articular surface of lateral femoral condyle of the left knee(empty defects). Two Diannan small-ear pigs were killed at 2th,4th,8th and 12th week after the operation, and the reparative tissue samples were evaluated grossly, histologically, immunohistochemically and evaluate the repairing effect by O'driscoll's score system. SPSS 11.5 software was applied to proceed the statistic analysis.
     [Results] 1.The DBM scaffold was white three-dimensional cancellous feature which had great biocompatibility, could promote cell adhesion and proliferation. So it should be a good scaffold for tissue-engineered cartilage. SEM showed the holes were connected each other, BMSCs transfected by two genes co-cultured with the DBM ampilified,which had the peak until the sixth day.
     2. Defective regions of group A were repaired by hyaline cartilage at 4 weeks after transplantation and were barely recognizable with natural articular cartilage at 12 weeks.TypeⅡcollagenase immunohistochemistry stain expression was positive after 12 weeks.The positive reaction was showed in TGF-β3,BMP-2 immunohistochemistry stain after 8、12 weeks.
     [Conclusion] 1. The DBM scaffold had a three-dimensional structure of tissue engineering scaffold. DBM could promote the proliferation of target cells. So it should be a good scaffold for tissue-engineered cartilage.
     2. DBM/BMSCs transfected by two genes could be an efficient alternative for articular cartilage defects repair.
引文
[1]Aroen A,Loken S,Heir S et al.Artieular cartilage lesions in 993 consecutive knee arthroseop-Ies. Am J Sports Med,2004,32(5):211-215.
    [2]Curl WW,Krome J,Gordon ES,etal.Cartilage injuries:a review of 516 knee arthroseopies.Arthr-Oseopy,1997,13(4):456-460.
    [3]Hunziker EB. Articular cartilage repair:basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage,2002,10(6):432-436.
    [4]Minas T. The role of cartilage repair techniques, including chondrocyte transplantation, in focal chondral knee damage. Instr Course Lect,1999,48:629-635.
    [5]曹谊林.组织工程学[M].北京科学出版社,2007:471.
    [6]Vacanti CA. The history of tissue engineering. J Cell Mol Med,2006,10(3):569-76.
    [7]Martin J Stoddart,Sibylle Grad,David Eglin. Cells and biomaterials in cartilage tissue engineering. Regen.Med.2009,4(1):81-98.
    [8]金耀峰,李彦林,陈建明等.同种异体脱钙骨基质复合自体骨髓基质干细胞修复兔关节软骨缺损.中国组织工程研究与临床康复,2009,13(51):10055-10059.
    [9]Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science,1999,284:143-147.
    [10]Hannouche D, Terai H, Fuchs JR,et al. Engineering of implantable cartilaginous structures from bone marrow-derive mesenchymal stem cells. Tissue Eng,2007,13(1):87-99.
    [11]林木城,柳一民,等.脱钙骨基质的临床应用与研究进展.中国现代医生,2008,46(1):135-136.
    [12]陈建明,李彦林,金耀峰,等.兔骨髓基质干细胞在不同脱钙骨基质材料上的增殖.中国组织工程研究与临床康复,2009,13(51):10021-10025.
    [13]Jo DY, Rafii S, Hamada T, et al. Chemotaxis of primitive hematopoietic cells in response to stromal cell-derived factor-1. J Clin Invest,2000,105(1):101-111.
    [14]Meyerk,PalmerJw.The polysaccharide of the vitreous houmor.J Biolchem,1934,(107):629-633
    [15]Noble PW. Hyaluronan and its catabolic products in tissue injury and repair. Matrix Biol. 2002,21 (1):25-29.
    [16]Majors AK, Austin RC, Motte CA, et al. Endoplasmic reticulum stress induces hyaluronan deposition and leukocyte adhesion. Biol Chem.2003,278(47):47223-47231.
    [17]Gerard C, Catuogno C, Amargier-Huin C,et al. The effect of alginate, hyaluronate and hyaluronate derivatives biomaterials on synthesis of non-articular chondrocyte extracellular matrix. J Mater Sci Mater Med,2005,16(6):541-551.
    [18]Fioravanti A, Cantarini L, Chellini F,et al. Effect of hyaluronic acid (MW 500-730 kDa) on proteoglycan and nitric oxide production in human osteoarthritic chondrocyte cultures exposed to hydrostatic pressure. Osteoarthritis Cartilage,2005,13 (8):688-696.
    [19]Lisignoli G, Cristino S, Piacentini A,et al. Cellular and molecular events during chondrogenesis of human mesenchymal stromal cells grown in a three-dimensional hyaluronan based scaffold. Biomaterials,2005,26(28):5677-5686.
    [20]Kayakabe M, Tsutsumi S, Watanabe H, et al. Transplantation of autologous rabbit BM-derived mesenchymal stromal cells embedded in hyaluronic acid gel sponge into osteochondral defects of the knee. Cytotherapy,2006,8:343-353.
    [21]Toh YC, Ho ST, Zhou Y, et al. Application of a polyelectrolyte complex coacervation method to improve seeding efficiency of bone marrow stromal cells in a 3D culture system. Biomaterials,2005,26:4149-4160.
    [22]Wendt D, Marsano A, Jakob M, et al. Oscillating perfusion of cell suspensions through three-dimensional scaffolds enhances cell seeding efficiency and uniformity. Biotechnol Bioeng,2003,84:205-214.
    [23]Garcia-Molina JA,Vallespi-Miro G,The role of fibroblast growth factor(FGF)and type beta transforming growth factor(TGF-beta 1-beta 2-beta 3)during rat craniofacial development,Bull Group Int Rech Sci Stomatol Odontol,2003,45(2-3):66-78.
    [24]Roberts AB,SPorn MB,Assoian RK. Transforming growth factor-β:rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro.Proc Natal Acad Sci USA,1986,83:4167-4170.
    [25]Colter DC, Sekiya I, Prockop DJ. Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci USA,2001,98:7841-7845.
    [26]Jiang Y,Jahagirdar BN.Pluripotency of mesenchymal stem cells derived from adult marrow. Nature.2002,418(6893):41-49.
    [27]Urist MR.Bone formation by autoinduetion.Seience,1965,150:893-899.
    [28]John MW,Vicki R.Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair.Clin Orthop,1998,346:26-37.
    [29]Sekiya I, Larson BL, Vuoristo JT, et al. Comparison of effect of BMP-2,-4, and-6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma. Cell Tissue Res, 2005,320:269-276.
    [30]Schmitt B, Ringe J, Haupl T, et al. BMP2 initiates chondrogenic lineage development of adult human mesenchymal stem cells in high-density culture. Differentiation,2003,71(9): 567-577.
    [31]张爱国,董启榕,等.基因强化软骨组织工程的研究进展.中华创伤骨科杂志,2005,7(5):4476-479.
    [32]Mason J,M,Breibart AS,Barcia M, etal.Cartilage and bone regeneration using gene-enhanced tissue engineering[J]. Clin Orthop,2000,379:S171.
    [33]Urist MR. Bone morphogenesis in implants of insoluble bone gelatin.Proe Nat Acad Sci USA,1973,70:3511-3526.
    [34]Pietrzak WS,Woodell MJ,McDonald N. Assay of bone morphogenetic protein 2,4,and 7 in human demineralized bone matrix.Cran Surg,2006,17(1):84-90.
    [35]李彦林,杨浩,韩睿,等.三种生物骨衍生材料修复节段性骨缺损的实验研究.中国修复重建外科杂志,2005,19(2):118-123.
    [36]Terada S, Sato M, Sevy A, et al. Tissue engineering in the twenty first century. Yonsei Med J, 2000,14:685.
    [37]李彦林,韩睿,王福科.骨髓间充质干细胞在骨及即软骨组织工程中的应用,中国临床康复,2006,10(5):121-124.
    [38]聂芳菲,潘柏林,李健宁.脱细胞基质在软骨组织工程中的应用,中国修复重建外科杂志,2009,23(4):501-504.
    [39]Hsu FY, Chueh SC, Wang YJ. Microspheres of hydrox yapatite reconstituted collagen as supports for osteoblast cell growth.Bio-materials,1999,20(20):1931.
    [40]Van Susante, Buma P, van Beuningen HM,et al. Responsiveness ofbovine chondrocytes to growth factors in medium with different serum concentrations.Ortho Res,2000,18:68-77.
    [41]雷荣昌,翦新春,等.松质骨支架的制备及结构特征观察.生物医学工程与临床,2006,10(3):128-130.
    [42]Wilke A, Orth J, Lomb M, et al. Biocompatibility analysis of different biomaterials in human bone marrow cell cultures. J Biomed Mater Res,1998,40(2):301-306.
    [43]Mosmann T. Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays. J Immunol Methods,1983,65(1-2):55-63.
    [44]Nakahara H, Goldberg VM, Caplan AI. Culture-expanded periosteal-derived cells exhibit osteochondrogenic potential in porous calcium phosphate ceramics in vivo. Clin Orthop Relat Res,1992,27(6):291-298.
    [45]王福科,刘流,李彦林,等.骨髓基质干细胞与PDPB体外构建组织工程骨的适宜条件[J].中国组织工程研究与临床康复,2008,12(33):6401-6405.
    [46]Zhu L,Zhou GD,Chen FG,et al.Zhonghua Shiyan Waike Zazhi 2004,21(1):10-13.祝联,周广东,陈付国,等.骨髓基质干细胞与珊瑚复合物体内回植时间的研究[J].中华实验外科杂志,2004,21(1):10-13.
    [47]Mson JM, Breitbart AS, Barcia M, et al. Cartilage and bone regeneration using gene-enhanced tissue engineering. Clin Orthop Relat Res,2000:S171-178.
    [48]Buckwalter JA. Articular cartilage injuries. Clin Orthop Relat Res,2002:21-37.
    [49]Buckwalter JA, Mankin HJ. Articular cartilage:degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect,1998,47:487-504.
    [50]Hangody L, Feczko P, Bartha L, et al. Mosaicplasty for the treatment of articular defects of the knee and ankle. Clin Orthop Relat Res,2001:S328-336.
    [51]Trippel SB, Ghivizzani SC, Nixon AJ. Gene-based approaches for the repair of articular cartilage. Gene Ther,2004,11:351-359.
    [52]Maximilian Rudert. Histological Evaluation of Osteoehondral Defeets:Consideration of Animal Models with Emphasis on the Rabbit,Experimental steup,Follow-up and Applied Methods cells tissues organs.2002,171:229-240.
    [53]李康,李彦林.关节软骨损伤的治疗进展,中国现代医生,2009,47(14):29-30.
    [54]Vacanti CA, Upton J. Tissue-engineered morphogenesis of cartilage and bone by means of cell transplantation using synthetic biodegradable polymer matrices. Clin Plast Surg, 1994,21:445-462.
    [55]Vacanti CA, Vacanti JP. Bone and cartilage reconstruction with tissue engineering approaches. Otolaryngol Clin North Am,1994,27:263-276.
    [56]纯列,徐本法,白朝晖,等.小型猪在医学实验中的应用[J].中国实验动物学杂志,2000,10(2):118-120.
    [57]Liu Y,Chen F, Liu W, et al. Repairing large porcine full-thickness defects of articular cartilage using autologous chondrocyte-engineered cartilage. Tissue Eng,2002,8(4):709-721.
    [58]周新社,戴尅戎,汤亭亭,等.自体软骨细胞移植修复猪膝关节软骨缺损的实验研究.中华骨科杂志,2007,27(6):455-459.
    [59]Marlovits S, Kutscha-Lissberg F, Aldrian S,et al. Autologous chondrocyte transplantation for the treatment of articular cartilage defects inf the knee joint. Techniques and results. Radiologe,2004,44 (8):763-768.
    [60]O'DriscollSW. Preclinical cartilage repair:current status and future perspectives. Clin Orthop, 2001,54(27):391-397.
    [61]Poulsom R,Forbes S J,Hodivala-Dilke K,et al.Bone marrow contributes to renal parenchymal turnover and regeneration.J Patho 1,2001,195:229-235.
    [62]Orlic D,Kajstura J,Chimenti S,et al.Bone marrow cells regenerate infracted myocardium.Natu-re,2001,410:701-705.
    [63]Pittenger M F,Mackay A M,Jaiswal S C,et al.Multilineage potential of adult human mesenchymal stem cells.Science,1999,284:143-147.
    [64]Gfimaud E,Heymann D,et al. Recent advances in TGF-beta effects on chondrocytem etabolism. Potential therapeutic roles of TGF-beta in cartilage disorders. Cytokine Growth Factor Rev,2002,13(3):241-257.
    [65]郑东,杨述华,等.TGF-β3真核表达载体转染骨髓基质干细胞促进其向软骨分化的实验研究.中国矫形外科杂志,2007,15(6):455-458.
    [66]Noel D,Gazit D,Bouquet C,et al. Short-term BMP-2 expression is sufficient for in vivo osteochondral differentiation of mesenchymal stem cells. Stem Cells,2004,22(1):74-85.
    [67]Sellers RS,Zhang R,et al.Repair of articular cartilage defects one year after treatment with recombinant human bone morphogenetic Protein-2(rhBMP-2).J Bone Joint SurgAm 2000,82(2):151-160.
    [68]Shuanhu Z et al.Demineralized bone promotes chondrocyte or osteoblast differentiation of human marrow stromal cells cultured in collagen sponges, Cell and Tissue Banking,2005,6 (2):33-43.
    [69]周呈文,王常勇,Descamps M,卢建熙.磷酸钙多孔生物陶瓷作为组织工程支架的应用研究.生物医学工程学杂志,2002,19(2-Suppl.):7-8.
    [70]Jae I,Ahn S,Terry C,et al.Stem cell repair of physeal cartilage.J Orthopadeic Res,2004,22: 1215-1221.
    [71]Sharma B,Williams CG,Kim TKet al.Designing zonal organization into tissue-engineered cartilage.Tissue Eng.2007,13(2),405-414.
    1 Jadlowiec JA,Celil AB,Hollinger JO.Bone tissue engineering advances and promising therapeutic agents.Expert Opin Biol Ther,2003,3(3):409-423.
    2 Martin J Stoddart,Sibylle Grad,David Eglin Mauro Alini. Cells and biomaterials in cartilage tissue engineering.Regen Med,2009,4(1):81-98.
    3 Joanne Raghuriatch,John Rollo,Kevin M.Sales,Biomaterials and scaffold design:Key to tissue-engineering cartilage.Blotechnol.Appl.Blochem.2007,(46):73-78.
    4韩雪峰,杨大平,郭铁芳,等.纤维蛋白胶塑形、异体微粒软骨脱细胞基质支架的人工软骨研究.中国临床康复,2005,9(2):56-58.
    5 Fox DB,Cook JL,Arnoczky SP,et al.Fibrochondrogenesis of free intra articular small intestinal submucosa scaffolds.Tissue Eng 2004,10(1-2):129-137.
    6鄂征,刘流.医学组织工种技术与临床应用[M].北京出版社,2003.
    7 Cima L QVacanti J P,Vacanti C, et al. Tissue engineering by cell transplantation using degradable polymer substrates. J Biomech Eng,1991 (5):123-143.
    8 颜文龙,孙恩杰,郭海英.组织工程支架材料.上海生物医学工程,2004,25(1):51.
    9 Wefer J,Schlote N,Sekido N,et al.Tunica albuginea acellular matrix graft for penile reconstruction in the rabbit:a model for treating Peyronie's disease.BJU Int,2002,90(3):326-331.
    10 Kajbafzadeh AM,Payabvash S,Salmasi AH,et al.Time-dependent neovasculogenesis and regeneration of different bladder wall components in the bladder acellular matrix graft in rats.J Surg Res,2007,139(2):189-202.
    11 郑锦标,梁杰,张培华.脱细胞真皮基质的制备、作用机理、免疫原性及其在整形外科中的应用现状.广东医学院学报,2008,26(2):208-210.
    12 Schmidt CE,Baier JM.Acellular vascular tissues:natural biomaterials for tissue repair and tissue engineering.Biomaterials,2000,21 (22):2215-2231.
    13 Courtman DW,Pereira CA,Kashef V,et al.Development of a pericardial acellular matrix biomaterial:biochemical and mechanical effects of cell extraction.J Biomed Mater Res,1994,28(6):655-666.
    14 张晨,王者生,高景恒.人耳软骨移植抗原性及脱细胞处理对其的影响.中国修复重建外科杂志,2003,17(3):242-246.
    15 韩雪峰,杨大平,郭铁芳,等.软骨细胞与异体软骨微粒脱细胞基质体外相容性的研究.中华医学杂志,2005,85(27):1895-1898.
    16 张晨,王者生,高景恒.软骨脱细胞基质生物性的实验研究.实用美容整形外科杂志,2003,14(2):59-61.
    17 潘柏林,李健宁,王萍,等.微粒软骨脱细胞基质复合纤维蛋白凝胶构建软骨组织工程支架材料的研究.中国美容医学,2008,17(5):679-682.
    18 Yang Q,Peng J,Guo Q,et al.A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells.Biomaterials,2008,29(15):2378-2387.
    19 杨强,彭江,卢世璧,等.新型脱细胞软骨基质三维多孔支架的制备.中国修复重建外科、杂志,2008,22(3):359-363.
    20 杨宏梅,柏树令,王志军,等.小鼠骨髓基质干细胞与人耳脱细胞软骨复合培养的研究.中国修复重建外科杂志,2004,18(3):214-216.
    21 张晨,景士兵,杨琨,等.软骨脱细胞基质支架材料的软骨组织工程实验研究.中国修复重建外科杂志,2008,22(7):846-850.
    22 Burg KJ,Porter S, Kellam JF.Biomaterrial developments for bone tissue engineering.Biomateri-als,2000,21(23):2347-2359.
    23 Ferreira SD,Dernell WS,Powers BE,et al.Effect of gas-plasmasterilization on the osteoinduct-ive capacity of demineralized bone matrix.Clin Orthop Relat Res,2001,(388):233-239.
    24 Antonios G Mikos,Johnna S,Temenoff. Formation of highly porous biodegradable Scaffolds for tissue engineering.Electronic Journal of Bio-technology,2002,2(7):114-119.
    25 Kasten P, LuginbuhlR, Van GriensvenM, et a.l Comparison of human bone marrows tromal cells seeded on calcium-deficienthy droxyapatite, B-tricalcium phosphate and demineralized bone matrix. Biomaterials,2003,24(15):2593-2603.
    26 Mauney JR,Jaquiery C,Volloch V.et al.In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering.Biomaterials2005,26(16):3173-3185.
    27 Zheng D,Yang S,Li J,et al.Experimental study on allogenic decalcified bone matrix as carrier for bone tissue engineering.J Huazhong Univ Sci Technolog Med Sci 2004,24(2):147-150.
    28 Mauney J R,Sjostorm S,Blumberg J,et al.Mechanical stimulation promotes osteogenic
    differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro.Calcif Tissue Int 2004,74(5):458-468.
    29 Gao J, Knaack D, Goldberg VM, et al. Osteochondral defect repair by demineralized cortical bone matrix. Clin Orthop Relat Res,2004,(427 Suppl):62-66.
    30 Iwata H,Sakano S,Itoh T,ea tl.Demineraled bone matrix and native bone morphogenetic protein in orthopacdic surgery.Clin Orthop Relat Res.2002 Feb,(395):99-109.
    31 Li X, Jin L, Balian G, et al. Demineralized bone matrix gelatin as scaffold for osteochondral tissue engineering. Biomaterials,2006,27(11):2426-33.
    32 Li Qiang,Tang Ji-cun,Sun Zheng-yi, et al. Repairing full-thickness articular cartilage defects with homograft of mesenchymal stem cells seeded onto cancellous demineralized bone matrix. Journal of Clinical Rehabilitative Tissue Engineering Research 2008,12 (45):8943-8947.
    33 Jin XB,Luo ZJ, Wang J.Treatment of rabbit growth plate injuries with an autologous tissue-engineered composite.CellsTissues Organs,2006,183(2):62-67.
    34 尹战海,张璐,王金堂,等.“双相”组织工程软骨修复兔关节骨软骨缺损.中国修复重建外科杂志,2005,8(19):652-657.
    35 黄凯,陈雄生,贾连顺,等.纳米脱钙骨基质的制备及其性能检测.中国矫形外科杂志,2009,17(13):1017-1019.
    36 McDevitt CA,Wildey GM,Cutrone RM.Transformig growth factor-beta in a sterilized tissue derived from the pig small intestine submucosa. J Biomed Cater Res,2003,67(2):637-640.
    37 Hodde JP.Record RD,Liang HA,Badylak SF. Vascular endothelial growth factor in porcine-derived extracellular matrix Endothelium.2001,8(3):11-24.
    38 Beatty MW,Ojqha AK,Cook JL,et al. Small intestinal submucosa versus salt-extracted polyglycolic acid-poly-L-lactic acid:A comparison of neocartilage formed in two scaffold materials. Tissue Eng 2002,8(6):955-968.
    39 Badylak SF.The extracelluar matrix as a biologic scaffold material.Biomaterials,2007,28(25): 3587-3593.
    40 莫湘涛,邓力,李秀群,等.软骨细胞-海藻酸钠水凝胶-SIS复合修复全层关节软骨缺损的实验研究.中国修复重建外科杂志,2009,23(8):974-979.
    41 KrejciNC,Cuonon CB,Langdon RC, et a.l In vitro reconstitution of skin:fibroblasts facilitate keratinocyte growth and differentiation on acellular reticular dermis.J Invest Dermatol,1991, 9(7):84-88.
    42刘旺,郇京宁,陈玉林,等.人表皮细胞与无细胞异种真皮复合移植的试验研究.中华创伤杂志,2001,17(5):289-291.
    43李德绘,蒙诚跃.脱细胞异种(异体)真皮在烧伤创面的应用.广西医学,2003;25(4):560-561.
    44江健,孙磊,冯华,等.脱细胞真皮基质的改建及其作为软骨细胞移植载体在兔软骨缺损修复中的应用.中国运动医学杂志,2008,27(4):412-415.
    45于娟,闰玉华,万涛.软骨组织工程研究进展.生物骨科材料与临床研究,2005,2(3):31-33.
    46 Kim HT,Zaffagnini S,Mizuno S,et al.A peek into the possible future of management of articular cartilage injuries:gene therapy and scaffolds for cartilage repair.J Orthop Sports Phys Ther.2006,36(10):765-773.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700