用户名: 密码: 验证码:
超高分子量聚乙烯粉末表面接枝丙烯酸及其块体材料的摩擦学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高分子量聚乙烯(UHMWPE)以其优异的综合机械性能和生物相容性,在骨替代材料的应用中得到越来越广泛的重视。本实验针对目前UHMWPE失效原因,采用紫外光接枝和溶液接枝的方法,在UHMWPE颗粒表面进行接枝处理,然后再热压成型,并对接枝前后的试样的相关性能进行了测试和评价,得到主要结果如下:
     1.对接枝后试样进行接枝率测试,结果表明利用紫外光进行的接枝,当光敏剂含量不多时,接枝率随着光敏剂的浓度增大而增大,在浓度为4phr时达到最大值,为5.5%,之后增大光敏剂浓度,接枝率几乎不发生变化。溶液接枝时改变单体丙烯酸的浓度,当丙烯酸浓度为10phr时接枝率最大,继续增大丙烯酸浓度接枝量会减小。
     2.未接枝的UHMWPE的润湿角为83-84°,润湿角的变化随接枝率的增大而减小,接枝后的UHMWPE润湿角最低可达34-35°,说明接枝后的UHMWPE亲水性能得到了很大的提高。
     3.接枝后的样品硬度都得到了一定提高,溶液接枝的样品硬度最大。通过光接枝的方法,在接枝率为2.16%时,UHMWPE的抗拉强度和断裂延伸率得到了较大的提高,这是由于接枝的极性支链使分子之间的结合力增大,导致抗拉强度增大。而溶液接枝的试样抗拉强度普遍大幅降低,最低只有纯UHMWPE的1/20。
     4.接枝的UHMWPE在润滑液下,其初始摩擦系数较高,随着滑行距离增大,摩擦系数不断减小。由于接枝表面存在亲水性极性分子,在润滑液中形成润滑膜,阻止了摩擦副与基体的直接摩擦,从而大大降低了磨损率,紫外光接枝率为3.5%的UHMWPE磨损率仅为未接枝试样的1/4。溶液接枝的UHMWPE虽然具有最低的摩擦系数,但由于接枝过程破坏了聚乙烯原有性能,磨损率最为严重,是未接枝样品的2倍。
     5.表面接枝的UHMWPE具有较低的摩擦系数,但随着滑行距离的增大,表面接枝的聚合物层被磨掉,摩擦系数出现上升。而粉末接枝的试样不同,接枝的聚合物存在试样的任何部位,当表层的聚合物层被磨去后,次表层的丙烯酸可以继续形成聚合物刷,保证润滑性能的稳定性和持久性。最后结果表明,经过24h磨损后,粉末接枝的试样磨损率仅为表面接枝的1/2,很好的解决了以往表面聚合物刷不能持久润滑的问题。
     6.对磨损表面进行形貌观察,接枝样品的磨损表面较为光滑平整,未接枝的UHMWPE出现大量犁沟和剥落现象,主要是黏附磨损和磨粒磨损所致:接枝的UHMWPE由于聚合物刷的润滑膜作用,磨损表面主要是疲劳磨损。
Ultra-high molecular weight polyethylene (UHMWPE) get more and more widely appreciated as replacement of the bone because of its excellent comprehensive mechanical properties and biocompatibility. In the present work, aiming at the current failure of UHMWPE, UHMWPE powder is grafted with the method of UV and solution grafting, and then it is molded. A series of experimental approaches were used to investigate performances of the treated and untreated samples, the results are as following:
     1. The result of graft rate test shows that, when the reaction was carried on under the UV, the graft rate rised with the ppm of photosensitizer. And the graft rate reached the maximum,5.5%, when the photosensitizer is 4phr.After that, the graft rate keep steady. In the solution graft, when the acrylic acid(AA) concentration is 10phr, the graft rate is the highest, and then if we went on improve the concentration of AA, the graft rate declined.
     2. The wetting angle of the untreated UHMWPE is 83-84°, and the wetting angle declined with the improvement of grafting, the lowest was 34-35°, which illustrated that the hydrophilicity of UHMWPE was improved.
     3. The hardness of the grafted samples were also improved and the solution grafted samples were the highest. When the graft rate is 2.16% using the UV, the tensile strength and elongation were improved. However, the tensile strength of all samples solution grafted were declined, and the lowest was just the 1/20 of the untreated samples.
     4. Under the lubricating fluid, the initial friction coefficient was higher, but it declined with the increasement of the sliding distance. Because the surface of samples was grafted with polar polymer and then format lubricating film, which prevented the direct contact between the basis material surface and the grinding material. The wear rate declined greatly, the wear rate of the sample with 3.5% grafting was just 1/4 of the untreated sample. Although the solution grafted samples had the lower friction coefficient, the wear rate is the highest and twice untreated, because the graft process broke the original properties of UHMWPE.
     5. Surface grafting of UHMWPE has a low friction coefficient, but with the increasement of the sliding distance, the grafted polymer layer was grinded off and the friction coefficient rised. The powder grafted samples had the different case. The graft polymer existed everywhere of the samples. When the dermal polymer was grinded off, the polymer from the subsurface could form the polymer brush, which could guarantee the stability and durability of lubricity. The result showed that, the wear rate of powder grafted samples is just half of the surface grafted after 24h worn.
     6. The worn surface morphology was observed, the grafted samples looked smoother, the untreated ones had a lot of furrow and peeling, which were the result of adhesion wear and abrasion wear. The major wear mechanism of grafted samples is fatigue wear because of the lubricating film of the polymer brush.
引文
[1]Kurtz S, Mowat F, Ong K, Chan N, Lau E, Halpern M. Prevalence of primary and revision total hip and knee arthroplasty in the United States from 1990 through 2002. J Bone Joint Surg Am 2005;87:1487-97.
    [2]Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 2007;89:780-5.
    [3]Merx H, Dreinhofer K, Schrader P, Sturmer T, Puhl W, Gunther KP, et al. International variation in hip replacement rates. Ann Rheum Dis 2003;62:222-6.
    [4]Zhang W, Moskowitz RW, Nuki G, Abramson S, Altman RD, Arden N, et al. OARSI recommendations for the management of hip and knee osteoarthritis, part Ⅱ:OARSI evidence-based, expert consensus guidelines. Osteoarthr Cartil 2008; 16:137-62.
    [5]Dumbleton JH, Manley MT, Edidin AA. A literature review of the association between wear rate and osteolysis in total hip arthroplasty. J Arthroplasty 2002;17:649-61.
    [6]Manley MT, D'Antonio JA, Capello WN, Edidin AA. Osteolysis:a disease of access to fixation interfaces. Clin Orthop 2002;405:129-37.
    [7]Kim S. Changes in surgical loads and economic burden of hip and knee replacements in the US:1997-2004. Arthritis Rheum 2008;59:481-8.
    [8]Kurtz SM, Ong KL, Schmier J, Mowat F, Saleh K, Dybvik E, et al. Future clinical and economic impact of revision total hip and knee arthroplasty. J Bone Joint Surg Am 2007;89:144-51.
    [9]Jacobs JJ, Roebuck KA, Archibeck M, Hallab NJ, Glant TT. Osteolysis:basic science. Clin Orthop 2001;393:71-7.
    [10]Glant TT, Jacobs JJ, Molnar G, Shanbhag AS, Valyon M, Galante JO. Bone resorption activity of particulate-stimulated macrophages. J Bone Miner Res 1993;8:1071-9.
    [11]刘广建.超高分子量聚乙烯[M].北京:化学工业出版社,2001.
    [12]张知先.合成树脂与塑料牌号手册[M].(上册)中国轻工业出版社.
    [13]吴培熙,张留成.聚合物共混合金[M].北京:化学工业出版社.
    [14]Suh..N.P. Tribology of polyethylene hemocomposites [J]. Wear. 1998,214:213-236.
    [15]孙载坚,周普,刘启澄.接枝共聚合[M].北京:化学工业出版社,1989.
    [16]d'Agostino R, Wertheimer MR. Plasmas Polym 1999;4:93-5.
    [17]Nakamatsu KJ, Delgado-Aparicio VLF. Modificacion desuperficies de polymeros con plasma. Revista Plasticos Modernos 1997;74:262-8.
    [18]Gancarz I, Pozniak G, Bryjak M, Frankiewiez A. Modification of polysulfone membranes. 2. Plasma grafting and plasma polymerization of acrylic acid. Acta Polym 1999;50:317-26.
    [19]Poncin-Epaillard F, Brosse JC, Falher T. Cold plasma treatment:surface or bulk modification of polymer films?Macromolecules 1997;30:4415-20.
    [20]Wright AN. Surface photopolymerization of vinyl and diene monomers. Nature 1967;215:953-5.
    [21]Ogiwara Y, Kanda M, Takumi M, Kubota H. Photosensitized grafting on polyolefin films in vapor and liquid phases. J Polym Sci, Polym Lett Ed 1981;19:457-62.
    [22]Tazuke S, Kimura H. Modification of polypropylene film surface by graft polymerization of acrylamide. Makromol Chem 1978;179:2603-12.
    [23]Allmer K, Hult A, Ra°nby B. Surface modification of polymers. Ⅰ. Vapor phase photografting with acrylic acid. J Polym Sci, Polym Chem 1988;26:2099-111.
    [24]Allmer K, Hult A, Ra°nby B. Surface modification of polymers. Ⅱ. Grafting with lycidyl acrylates and the reactions of the grafted surfaces with amines. J Polym Sci, Polym Chem 1989;27:1641-52.
    [25]Allmer K, Hult A, Ra°nby B. Surface modification of polymers. Ⅲ. Grafting of stabilizers onto polymer films.J Polym Sci, Polym Chem 1989;27:3405-17.
    [26]Allmer K, Hult A, Ra°nby B. Surface modification of polymers. Ⅳ. UV initiated degradation of polymers with stabilizers grafted onto the surface. J Polym Sci, Polym Chem 1989;27:3419-27.
    [27]Allmer K, Hilborn J, Larsson PH, Hult A, Ra°nby B. Surface modification of polymers. V. Biomaterial applications. J Polym Sci, Polym Chem 1990;28:173-83.
    [28]Yang WT. Lamination by photografting. PhD Thesis. RoyalInstitute of Technology, Sweden; 1996
    [29]Yang WT, Ra°nby B. Photoinitiation performance of some ketones in the LDPE-acrylic acid surface photografting system. Eur Polym J,1999; 35(8):1557-68.
    [30]Barbashev EA, Dorofeev YI. Doklady Akademii Nauk SSSR1992;325:730.
    [31]Grossman E, Noter Y, Lifshitz Y. Oxygen and VUV irradiation of polymers:atomic force microscopy and complementary studies. Eur Space Agency 1997;217-23.
    [32]Fozza AC, Roch J, Klemberg-Sapieha JE, Kruse A, Hollaender A, Werthermer MR. Oxidation and ablation of polymers by vacuum-UV radiation from low pressure plasmas. Nucl Instrum Meth Phys Res 1997; 131:205-10.
    [33]Fozza AC, Klemberg-Sapieha JE, Werthermer MR. Vacuum ultraviolet irradiation of polymers. Plasmas Polym 1999; 4(2/3):183-206.
    [34]Priola A,Bongiovanni R, Gozzelino G. Solvent influence on the radical grafting of maleic anhydride on low density polyethylene. Eur Polym Sci,1994,30:1047.
    [35]Devito G,Langzetta N, et al. Functionalization of an amorphous ethylene-propylene copolymer by free radical initiated grafting of unsaturated molecules. J Polym Sci Chem Ed,1984,22:1335.
    [36]Sathe N S, Rao G S S,Devi S. Grafting of maleic anhydride onto polypropylene:synthesis and characterization. J App 1 Po lym Sci,1994,53:239.
    [37]Ruggeri G, Aglietto M, et al. Preparation and properties of PMMA/clay nanocomposite.Eur Po lym J,1983,19:863.
    [38]Good RJ. In:Good RJ, Stromberg RR, editors. Surface and colloid science, vol.11. New York:Plenum Press; 1979.
    [39]Andrade JD, Smith LM, Gregonis DE. The contact angle and interface energetics. In: Andrade JD, editor. Surface and interfacial aspects of biomedical polymer, vol.1. New York:Plenum Press; 1985. p.249-92.
    [40]Neuman AW, Good RJ. In:Good RJ, Stronberg RR, editors. Surface and colloid science, vol.11. New York:Plenum Press; 1979.
    [41]Adamson AW. Physical chemistry of surface,3rd ed. New York:Wiley; 1976. chapter 1.
    [42]Uyama Y, Inoue H, Ito K, Kishida A, Ikada Y. Comparison of different methods for contact angle. J Colloid Interf Sci 1991; 141:275-9.
    [43]Elliott GEP, Riddiford AC. Dynamic contact angles. I. The effect of impressed motion. J Colloid Sci 1967;23:389-98.
    [44]Newcombe G, Ralston J. Wetting dynamics studies on silicasurface of varied hydrophobicity. Langmuir 1992;8:190-6.
    [45]Karlsson JO, Gatenholm P. Surface mobility of grafted hydrogels. Macromolecules 1999;32:7594-8.
    [46]Guo S, Shen L, Feng L. Surface characterization of blood compatible amphiphilic graft copolymers having uniform poly(ethylene oxide) side chains. Polymer 2001;42:1017-22.
    [47]Schmitt FJ, Yoshizawa H, Schmidt A, Duda G, Knoll W,Wegner G, Israelachvili J. Adhesion energy hysteresis and friction between ultrathin polyglutamate films measured with the surface forces apparatus. Macromolecules 1995;28:3401-10.
    [48]Fan YL. Hydrophilic lubricious coatings for medical applications. Am Chem Soc, Polym Mater Sci Engng 1990;63:709-16.
    [49]Reiter G, Demirel AL, Peanasky J, Cai LL, Granick S. Stick to slip transition and adhesion of lubricated surfaces in moving contact. J Chem Phys 1994; 101:2606-15.
    [50]Michielsen S. The effect of grafted polymeric lubricant molecular weight on the frictional characteristics of nylon 6,6fibers. J Appl Polym Sci 1999;73:129-36.
    [51]Ndoni S, Jannasch P, Larsen NB, Almdal K. Lubricating effect of thin films of styrene-dimethylsiloxane block copolymers. Langmuir 1999;15:3859-65.
    [52]Ratway RJ, Balik CM. Surface modification of chlorobutyl rubber by plasma polymerization. J Polym Sci, Polym Phys 1997;35:1651-60.
    [53]Ratway RJ, Balik CM. Surface modification of nitrile rubber by plasma polymerization. Plasmas Polym 1998;3(2):129-47.
    [54]Liu Q, Zhang S. Study on mechanisms of wear of metal by nitrile rubber under boundary lubrication condition. Tribology 1998;18(3):204-8. (Written in Chinese).
    [55]Luo XL, He B, Li S, Zhong YP. Surface UV photo-grafting lubrication modification of medical polyurethane material. Polym Mater Sci Engng 2000; 16(2):132-5. (Written in Chinese).
    [56]Hu X. Tribological behavior of modified polyacetal against MC nylon without lubrication. Tribol Lett 1998;5:313-7.
    [57]笹田值,塚本形男,马渕清资合著.顾正秋译.生物摩擦学——关节的摩擦和润滑[M].北京:冶金工业出版社,2007
    [58]Mow VC, Ateshian GA. Friction, lubrication and wear of diarthrodial joints [M]. In:V. C. Mow and W. C. Hayes. Basic Orthopaedic Biomechanics. New York:Raven Press,1997
    [59]王以进,王介麟编著.骨科生物力学[M].北京:人民军医出版社,1989
    [60]王野平,王成焘.天然关节及人工关节的润滑机理探讨[J].生物医学工程学杂志,2001,18(4):603~607
    [61]Unsworth A, Dowson D, Wright V. Some new evidence on human joint lubrication [J]. Annals of the Rheumatic Diseases,1975,34:277~285
    [62]MacConail MA. The function of intra-articular fibrocartilage, with special reference to the knee and inferior radio-ulnar joints [J]. Journal of Anatomy,1932,66:210~227
    [63]MacConaill MA. The movements of bones and joints 1. Fundamental principles with particular reference to rotation movement [J]. The Journal of Bone and Joint Surgery, 1948,30B(2):322~326
    [64]MacConaill MA. The movements of bones and joints 5. The significance of sHAe [J]. The Journal of Bone and Joint Surgery,1953,35B(2):290~297
    [65]Jones ES. Joint lubrication [J]. The Lancet,1934,223(5783):1426~1427
    [66]Jones ES. Joint lubrication [J]. The Lancet,1936,227(5879):1043~1045
    [67]Kapitza PL. Lubrication of rollers and spheres [J]. Zhurn. Techn. Fiz,1955,25:747~762
    [68]Maroudas A. Hyaluronic acid films [J]. Proc. Inst. Mech. Eng,1967,181:122~124
    [69]Ogston AG, Stanier JE. The physiological function of hyaluronic acid in synovial fluid; viscous, elastic and lubrication properties [J]. J. Physiol,1953,119:244~252
    [70]Dintenfass L. Lubrication in synovial joints:A theoretical analysis. A rheological approach to the problems of joint movements and joint lubrication [J]. J Bone Joint Surg Am,1963,45:1241~1256
    [71]Bloch B, Dintenfass L. Rheological study of human synovial fluid [J]. Aust. N. Z. J. Surg, 1963,33:108~113
    [72]李名扬.关节的润滑机制[J].四川解剖学杂志,1985,3:43~49
    [73]Manohar K, Nigam KM. Squeeze film lubrication of a viscoelastic fluid with reference to human joints [J]. Wear,1981,70:283~293
    [74]Hlavacek M. The role of synovial fluid filtration by cartilage in lubrication of synovial joints-Ⅱ. Squeeze-film lubrication:homogeneous filtration [J]. Journal of Biomechanics, 1993,26(10):1151~1160
    [75]Fein RS. Are synovial joints squeeze film lubricated? Research Report 3. Lubrication and wear in living and artificial human joints [J]. Proc. Inst. Mech. Engrs,1967,181(3J): 125~128
    [76]McCutchen CW. Sponge-hydrostatic and weeping lubrication [J]. Nature,1959, 184:1284~1285
    [77]Lewis PR, McCutchen CW. Experimental evidence for weeping lubrication in mammalian joints [J]. Nature,1959,184:1285
    [78]McCutchen CW. The frictional properties of animal joints [J]. Wear,1962,5:1-17
    [79]Mow MC. On weeping lubrication theory [J]. Zeitschrift fur Angewandte Mathematik und Physik,1969,20(2):156~166
    [80]Charnley J. The lubrication of animal joints in relation to surgical reconstruction by arthroplasty [J].Ann Rheum Dis,1960,19:10~19
    [81]Barnett CH. The structure and functions of fibrocartilages within vertebrate joints [J]. J Anat,1969,88:363~368
    [82]Scott Blair GW, Williams PO, Fletcher ETD, et al. On the flow of certain pathological human synovial effusions through narrow tubes [J]. Biochem. J.,1954,56:504~508
    [83]Sundblad L. Studies on hyaluronic acid in synovial fluids [J]. Acta Soc. Med. Upsaliensis, 1953,58:115~238
    [84]Hcll HN. The normal forces and their thermodynamic significance [J]. Trans. Soc. Rheology,1961,5:115~131
    [85]Reiner M. Cross stresses in the laminar flow of liquids [J]. Phys. Fluids,1960,3:427~432
    [86]Walker PS, Dowson D, Longfield MD, et al. "Boosted lubrication" in synovial joints by fluid entrapment and enrichment [J]. Ann. Rheum. Dis.,1968,27:512~520
    [87]Walker PS, Unsworth A. Dowson D, et al. Mode of aggregation of hyaluronic acid protein complex on the surface of articular cartilage [J]. Ann. Rheum. Dis.,1970,26(6): 591~602
    [88]McCutchen CW. Boundary lubrication by synovial fluid:demonstration and possible osmotic explanation [J]. Fed. Proc.,1966,25(3):1061~1068
    [89]Linn FC. Lubrication of animal joints. Ⅱ. The mechanism [J]. J. Biomechanics,1968,1: 193~205
    [90]Stribeck surfaces [J]. Journal of Biomechanics,2008,41:1910~1918
    [91]Murali J. The mechanism of loosening of cemented acetabular components in total hip arthroplasty:analysis of specimens retrieved at autopsy. J Bone Joint Surg,1997,79:49-58.
    [92]Fisher J. Wear of ultra high molecular weight polyethylene in total artificial joints.Current Orthopaedics,1994 (8):164-169.
    [93]Ang CH, Garnett JL, Levotetal R. Photosensitized grafting of styrene,4-vinyl pyridine andmethylmethacrylate to polypropylene. J Polym Sci:Polym Lett Ed 1980;18:471-5.
    [94]Dworjanyn PA, Garnett JL. Synergistic effect of urea with polyfunctional acrylates for enhancing the photografting of styrene to polypropylene. J Polym Sci:Part C:Polym Lett 1988;26:135-8.
    [95]Jiang W, Awasum JN, Irgum K. Control of electroosmotic flow and wall interactions in capillary electrophoresis capillaries by photografted zwitterionic polymer surface layers. Anal Chem 2003;75:2768-74.
    [96]Deng JP, Yang WT, Rliaby B. Surface photografting polymerization of vinyl acetate (VAc), maleic anhydride (MAH), and their charge transfer complex. Ⅰ. VAc(1). J Appl Polym Sci 2000;77:1513-21.
    [97]Deng JP, Yang WT, Ranby B. Surface photografting polymerization of vinyl acetate (VAc), maleic anhydride (MAH), and their charge transfer complex. Ⅱ. VAc(2). J Appl Polym Sci 2000;77:1522-31.
    [98]Decker C, Zahouily K. Light-stabilization of polymeric materials by grafted UV-cured coatings. J Polym Sci:Part A:Polym Chem 1998;36:2571-80.
    [99]Pan B, Viswanathan K, Hoyle CE, Moore RB. Photoinitiated grafting of maleic anhydride onto polypropylene. J Polym Sci:Part A:Polym Chem 2004;42:1953-62.
    [100]Kondo T, Koyama M, Kubota H, Katakai R. Characteristics of acrylic acid and N-isopropylacrylamide binary monomers-grafted polyethylene film synthesized by photografting. J Appl Polym Sci 1998;67:2057-64.
    [101]Ruckert D, Geuskens G. Surface modification of polymers-IV. Grafting of acrylamide via an unexpected mechanism using a water soluble photo-initiator. Eur Polym J 1996;32:201-8.
    [102]Deng JP, Yang WT. Photo-grafting and cross-linking reaction of LDPE-VAC polymerization system (I). Effects of initiators. J Beijing Univ Chem Technol 2000;27:16-9.
    [103]Geuskens G, Etoc A, Michele PD. Surface modification of polymers Ⅶ. Photochemical grafting of acrylamide and N-isopropylacrylamide onto polyethylene initiated by anthraquinone-2-sulfonate adsorbed at the surface of the polymer. Eur Polym J 2000;36:265-71.
    [104]Cho J-D, Kim S-G, Hong J-W. Surface modification of polypropylene sheets by UV-radiation grafting polymerization. J Appl Polym Sci 2006;99:1446-61.
    [105]Cho J-D, Kim E-O, Kim H-K, Hong J-W. An investigation of the surface properties and curing behavior of photocurable cationic films photosensitized by anthracene. Polym Test 2002;21:781-91.
    [106]Nelson EW, Carter TP, Scranton AB. Fluorescence monitoring of cationic photopolymerizations:divinyl ether polymerizations photosensitized by anthracene derivatives. Macromolecules 1994;27:1013-9.
    [107]Cho J-D, Kim H-K, Kim Y-S, Hong J-W. Dual curing of cationic UVcurable clear and pigmented coating systems photosensitized by thioxanthone and anthracene. Polym Test 2003;22:633-45.
    [108]Cho J-D, Hong J-W. UV-initiated free radical and cationic photopolymerizations of acrylate/epoxide and acrylate/vinyl ether hybrid systems with and without photosensitizer. J Appl Polym Sci 2004;93:1473-83.
    [109]杨万泰,尹梅贞,邓建元等.表面光接枝原理、方法及应用前景.高分子通报,1999(1):60-67
    [110]李文斐,孟庆飞等.超高相对分子质量聚乙烯接枝丙烯酸的制备.合成树脂及塑料.2006,23(3):9-13.
    [111]汪昆华,罗传秋,周啸编著,聚合物近代仪器分析.清华大学出版社,2000年5月
    [112]陈允魁编著,红外吸收光谱法及其应用.上海交通大学出版社,1993年
    [113]焦剑,雷渭媛.高聚物结构、性能与测试.第一版.北京:化学工业出版社,2003
    [114]王正熙.聚合物红外光谱分析和鉴定.第一版.成都:四川大学出版社,1989
    [115]王宗明,何欣翔,孙殿卿.实用红外光谱学.第一版.北京:石油化学工业出版社,1978
    [116]傅建杭.近红外区N-H和O-H振动吸收谱带在定性定量分析中的应用.南开大学学报自然科学版,1994.(1),94—100.
    [117]Cimmino S., Dorazio L., Greco R., et al.Morphology-properties relationships in binary polyamide 6/rubber blends:influence of the addition of a functionalized rubber[J].Polym.Eng.Sci.,1984,24(1):48-56.
    [118]傅政.高分子材料强度及破坏行为.第一版.北京:化学工业出版社,2005.
    [119]查理R.布鲁克斯,阿肖克·考霍莱著.工程材料的失效分析.第一版.北京:机械工业出版社,2003.
    [120]白银龙,屈树新.UHMWPE在人工髋关节中的磨损机制及改性研究.工程塑料应用,2009,37(11):76-79.
    [121]Steven M K, et al. The UHMWPE Handbook [M]. London:Elsevier's Science & Technology Rights Department,2004:1-2.
    [122]Benazzo F, et al. Bioceramics and Alternative Bearings in Joint Arthrop lasty[C]. Rome:Steinkopff,2006:135-139.
    [123]Agarwal S. Current Orthopaedics,2004,18:220-221.
    [124]B.布尚.摩擦学导论。第一版.北京:机械工业出版社.2007.
    [125]Toru Moro, Yoshio Takatoriet,et al. Grafting of Biocompatible Polymer for Longevity of Artificial Hip Joints. Clinical Orthopaedics and Related Research.
    [126]王曼.聚乙烯表面紫外光接枝MPC及其性能研究.南京理工大学.2007.
    [127]Kudo O, Sabokbar A, Pocock A, et al. Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism[J]. Bone,2003,32 (1):1-7.
    [128]Xing L, Carlson L, Story B, et al. Expression of either NF-kappa B p50 or p52 in osteoclast precursors is required for L-1-induced bone resorption[J]. J Bone Miner Res, 2003,18 (2):260-269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700