用户名: 密码: 验证码:
硼酸钙型阻燃剂的合成及改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硼酸钙是一种重要的化工原料和产品,可广泛应用于玻璃、油漆、钢铁、陶瓷等行业。此外,还可应用于阻燃剂、非线性光学材料、农业、防腐剂以及医药等领域。基于对硼酸钙物化特性的考察,为了拓宽其应用范围力求开发出一种质优价廉的无卤阻燃剂,本文对硼酸钙表面极性进行了有机化修饰,从而改善矿物填料与有机聚合物的亲合性、相容性,提高有机复合材料的机械性能,增加填充量,降低生产成本,扩大矿物填料的应用领域,提高矿物填料的工业价值和经济价值。
     本文以硼酸和氢氧化钙为原料,通过水热合成考察了各工艺条件对合成硼酸钙类型、粒度及产率的影响;通过对合成产物进行化学成分、XRD、TG、FT-IR、SEM、粒度分布等表征分析,确定硼酸钙生成的类型、失重温度、及颗粒分布等物理化学信息,为硼酸钙阻燃剂的筛选提供有用的信息。水热反应合成白硼钙石的适宜条件为:在160℃、原料B2O3/CaO摩尔比为1.7、液固比为6时,反应4小时,可获得单一物相的白硼钙石。合成的白硼钙石在110-600℃范围内失重约17.40%,对应连续脱除7个水分子,在200℃之前,失重小于2%,产品的平均粒径5.96μm,粒径主要分布在3-8μm范围内。
     在水热合的成产物白硼钙石基础上,以硬脂酸钠为改性剂对白硼钙石进行湿法改性,考察了工艺条件对白硼钙石湿法改性的影响;此外,利用合成改性一步完成的方法,考察了硬脂酸钠的用量对产物的改性效果。结果表明:湿化学法改性白硼钙石的适宜工艺条件为:改性时间75min,改性温度80℃,改性的硬脂酸钠用量5%,改性的液固为3(mL/g)时,得到的改性产物的活化指数为97.16%,接触角为125.55°;一步法得到的改性白硼钙石活化指数测得的结果表明,硬脂酸钠的用量在4%时比较适宜,活化指数达到86.80%,接触角为104.9°。
     对土耳其硬硼钙石进行了化学分析,并用X射线衍射、热重分析、离心粒度分析等方法对其进行了表征。考察了土耳其硬硼钙石的球磨前后,不同改性剂及改性方法等因素对改性效果的影响。结果表明:在湿法改性中,硬脂酸钠的用量为2%,80℃下,液固比为2:1,改性75min时,原料球磨前与球磨后,改性得到的活化指数分别为45.95%和64.95%,对应的接触角为别129.3°和112.7°。实验还采用NDZ-311溶液对土耳其硬硼钙石进行机械化学法球磨,得到产物活化指数为67.85%,对应接触角为85.6°并对其改性的机理做了初步的探讨。本文还对两种改性硼酸钙单独在乙烯—醋酸乙烯酯中进行了添加并对测试了其力学性能,简单讨论了产物燃烧的情况和残渣的微观结构。
Calcium borate (xCaO·yB2O3·nH2O) is one of the important chemical materials and products. It can be widely used in glass, paint, steel, ceramics industries, etc. In addition, it also can be applied in flame retardants, nonlinear optical materials, agricultural, antiseptic and medicine industries, etc. The synthesis of calcium borate depends on many conditions, such as raw materials, pH value, process route, etc. In order to develop caicium birate as a high-quality halogen-free flame retardants with less cost, the superficial polarity features of calcium borate should be modified based on its physical and chemical characteristics. The affinity and compatibility of calcium borate with polymer minerals would be improved when modifying calcium borate and the mechanical properties of polymer materials can also be enhanced when adding modified calcium borate. With the filling of the modified calcium borate into the organic materials, the production cost of polymer minerals can be reduced and the application field of calcium borate can be also widened. In addition, the industrial value and economic value of calcium borate is expected to rise.
     In this paper, calcium borate was synthesized with using boric acid and calcium hydroxide as raw materials by a hydrothermal synthesis, the influences of raw material ratio, solid to liquid ratio, reaction time and reaction temperature on the type, particle size and yield of calcium borate were studied, respecyively. The perferred reaction conditions were acquired. Calcium borate obtained by hydrothermal synthesis was characterized by XRD, TG/DTG, SEM, chemical analysis and particle size distribution analysis. Many useful physics and chemistry information, such as the type of calcium borate synthesized, temperature of weight loss, the distribution of particles size, were provided for screening a proper flame retardant. The suitable synthesis conditions are as follows:reaction temperature 160℃, raw materials' B2O3/CaO molar ratio 1.7, liquid to solid ratio 6 and reaction time 4h. Pure preceite was synthesized under these conditions. The contents of B2O3 and CaO in the synthesized preceite are 47.65wt% and 30.41wt%. The weight loss of preceite is about 17.40% between 110 and 600℃, indicating removing 7 water molecules, and the weight loss of preceite is less than 2% before 200℃. The average particle size of preceite is about 5.96μm and particle size distribution is mainly between 3 and 8μm。The priceite was modified using sodium stearate as a modification reagent by a wet chemical process. Effects of temperature, time, surfactant addition and liquid to solid ratio on the modification of priceite were discussed. In addition, modified priceite was evaluated by FT-IR, SEM, contact angle, activation index and suspension performance in water. The preferred modification conditions for priceite was achieved when priceite was treated at 80℃for 75min with a liquid to solid ratio of 3 by adding 5wt.% of sodium stearate. The activation index of the modified priceite can reach to 97.16% and the contact angle of the modified priceite is up to 121.23°. In addition, the process for the modified priceite with one-step hydrothermal synthesis/surface modification was also discussed. The activation index of the modified priceite can reach to 86.80% and the contact angle of the modified priceite is 104.9°with 4.0wt.% of sodium stearate addition.
     The colemanite of Turkey was characterized by chemical analysis, XRD, TG/DTG and particle size distribution analysis. The raw colemanite, ball milling colemanite, different modifiers and different modification method were investigated in the process of modification. The modified products were characterized by FT-IR, contact angle, activation index and SEM. Results showed that when the colemanite was treated at 80℃for 75min with a liquid to solid ratio of 2 by adding 2.0wt.% of sodium stearate, the activation indexes of modified raw colemanite and modified ball milling colemanite were 45.95%, with a contact angle at 129.3 0 and 64.95%, with a contact angle at 112.7°, respectively. The activation index of colemanite modified by NDZ-311 with ball milling was also reached to 67.85%, with a contact angle at 85.6°. In addition, the modification mechanism was also discussed. The modified calcium borates were filled into EVA, and the mechanical properties of the composite materials were tested. The composite materials were then burned and surface morphologies were observed by microscope.
引文
[1]郑学家.硼化合物手册[M].北京:化学工业出版社,2010.
    [2]王文侠,李洪岭.硼酸钙的合成方法探析[J].河南化工,2001,(05):4-6.
    [3]孙新华.硼酸钙的研究开发与应用[J].现代化工,1996,(11):24-26.
    [4]全跃.硼及硼产品的研究开发与进展[M].大连:大连理工大学出版社,2008.
    [5]张克从,张乐惠.晶体生长科学与技术[M],第二版.北京:科学出版社,1997.
    [6]陶连印,郑学家.硼化合物的生产与应用[M].成都:成都科技大学出版社,1992.
    [7]Li S L, LONG B H, WANG Z C, et al. Synthesis of hydrophobic zinc borate nanoflakes and its effect on flame retardant properties of polyethylene [J].Journal of Solid State Chemistry,2010,183(4):957-962.
    [8]周建国,牛新书.精细无机化工[M].开封:河南大学出版社,1999.
    [9]郭凤瑜,彭夷安.Ca_3La_3(BO_3)_5中Eu~(3+)的光致发光[J].无机化学学报,1993,9(02):177-180.
    [10]陈国云.掺Dy的MgB_40_7磷光体的研制及其热释光特性[J].核技术,2007,30(02):130-134.
    [11]唐国宏,张兴华,陈昌麒.碳化硼超硬材料综述[J].材料导报,1994,(04):69-72.
    [12]秦明礼,杜学丽,孙伟等.氮化铝粉末特性对氮化铝-氮化硼复合陶瓷结构和性能的影响[J].硅酸盐学报,2007,35(03):332-336.
    [13]刘然,薛向欣,姜涛等.硼及其硼化物的应用现状与研究进展[J].材料导报,2006,20(06):1-4.
    [14]SALEH M N, GAWISH M M. Conduction Models of Semiconducting Calcium borate glasses containing iron-oxide [J].Journal of Applied Physics,1980,51(1):459-465.
    [15]TRICKER M J, THOMAS J M, OMAR M H, et al.Mossbauer and x-ray photoelectron spectr oscopic studies of heat-treated calcium borate glasses containing iron [J]. Journal of Materials Science,1974,9(7):1115-1122.
    [16]GAWISH M, SALEH M N. Electronic properties of calcium borate glasses containing ir on-oxide [J]. Journal of Applied Physics,1976,47(12):5349-5355.
    [17]曹春娥,曹惠峰,卢希龙等.硼酸钙的研究现状及其应用[J].中国陶瓷,2007,43(1):12-15.
    [18]王文侠,李洪岭.硼酸钙的合成方法探析[J].河南化工,2001,(5):4-6.
    [19]UnitedStatesPatent.6096816[P].2000
    [20]胡德生,苗华安,仲剑初.偏硼酸钙的制造方法.中国,发明专利,CN00118524.1[P].2000.
    [21]胡德生,仲剑初,王洪志.由硼砂和石灰制造偏硼酸钙的方法.中国,发明专利,CN2004101 00480.5[P].2004.
    [22]王斐,仲剑初,胡德生等.石灰法分解钠硼解石制备硼酸钙[J].化工矿物与加工,2007,(01):3-5.
    [23]王斐,仲剑初,胡德生等.水热法解聚钠硼解石制备硼酸钙[J].无机盐工业,2007,39(09):27-30.
    [24]王凯,于天明,仲剑初等.由硼砂和消石灰制备偏硼酸钙[J].无机盐工业,2009,41(04):31-34.
    [25]KRAMER H, ALLEN R D. A Restudy of Bakerite, Priceite, and Veatchite [J]. American Min eralogist,1956,41(9-10):689-&.
    [26]王凯.由硼砂和消石灰制备偏硼酸钙和过硼酸钠[D].大连:大连理工大学,2009
    [27]比利奥派皮.在碱性介质中解聚钠硼钙石以生产硼酸钠和硼酸钙的方法.中国,CN11058003A[P],1995.
    [28]薛林,刘志宏.球状硼酸钙纳米片的制备与表征.中国化学会2008年中西部地区无机化学、化工学术交流会[C],乌鲁木齐.2008
    [29]曹春娥,曹惠峰,卢希龙等.水热法合成硼酸钙的场发射扫描电镜分析[J].人工晶体学报,2008,37(05):1228-1232.
    [30]左传凤,刘志宏,杨荣榛等.白硼钙石的合成新方法及其热化学研究(英文)[J].无机化学学报,2004,20(08):964-966.
    [31]周宝石.四硼酸钙钾在沸点温度下水溶液中的相转化研究[J].陕西师范大学学报(自然科学版),2004,32(03):69-70.
    [32]王晓英,毕成良,李俐俐等.新型环保阻燃剂的研究进展[J].天津化工,2009,23(01):8-11.
    [33]张月琴,叶旭初.硼系阻燃剂的发展及现状[J].塑料科技,2007,35(09):110-113.
    [34]童孟良,周芝兰,许沅沅.无机阻燃剂的研究进展[J].化工文摘,2008,(02):45-48.
    [35]史翎,段雪.阻燃剂的发展及在塑料中的应用[J].塑料,2002,31(03):11-15.
    [36]B Y. Heat and fire resistant crosslinked siloxanes. JP,0920827[P].1997
    [37]C. TRAN S L L H. The role of boron in flame retardant treatments.First Internationa 1 Conference On Wood protection with diffusible Preservatives [J],39-41.
    [38]佟芍朋,钱立军,韩鑫磊等.硼系阻燃剂的发展及现状.2009年中国阻燃学术年会[C],合肥,2009.
    [39]林苗,郑利民.硼系阻燃剂的发展及现状[J].印染,2000,(09):44-45.
    [40]张月琴,叶旭初.硼系阻燃剂的发展及现状[J].塑料科技,2007,35(09):110-113.
    [41]赵雪,朱平,张建波.硼系阻燃剂的阻燃性研究及其发展动态[J].染整技术,2006,28(04):9-12.
    [42]WAKELY. P. J. Cotton and flammability-Overview development [J].American Dyestuff Rep orter,1998, (02):13-21.
    [43]JACKSON. D. FR Cotton is still On top [J]. Safety And Protective Fabrics,1993, (3):18-21.
    [44]ABDEL-MOHDY F A. Graft copolymerization of nitrogen- and phosphorus-containing mon omers onto cellulosics for flame-retardant finishing of cotton textiles [J].Journa 1 of Applied Polymer Science,2003,89(9):2573-2578.
    [45]张英杰.聚丙烯Al(OH)3/Mg(OH)2复合材料阻燃性能及其机理的研究[D].广州:华南理工大学,2009
    [46]郑慧敏.棉和涤棉混纺织物整理中磷、硼阻燃协同效应的研究[J].染整技术,1996,18(6):20-21.
    [47]SHEN K K. Zinc borates:thirty years of successful development as multifunctional fire retardants [J]. Abstracts of Papers of the American Chemical Society,2000,220: U342-U342.
    [48]WU Z P, HU Y C, SHU W Y.Effect of ultrafine zinc borate on the smoke suppression and toxicity reduction of a low-density polyethylene/intumescent flame-retardant S ystem [J]. Journal of Applied Polymer Science,2010,117(1):443-449.
    [49]VIK R. Zinc borate as an alternative non-halogen flame retardant system in epoxy r esins [J].Chemicke Listy,2010,104(8):798-802.
    [50]YILDIZ B, SEYDIBEYOGLU M 0,GUNER F S. Polyurethane-zinc borate composites with hi gh oxidative stability and flame retardancy [J]. Polymer Degradation and Stability, 2009,94 (7):1072-1075.
    [51]PAWLOWSKI K H, SCHARTEL B, FICHERA M A, et al. Flame retardancy mechanisms of bisp henol a bis(diphenyl phosphate) in combination with zinc borate in bisphenol a pol ycarbonate/acrylonitrile-butadiene-styrene blends [J]. Thermochimica Acta,2010,498 (1-2):92-99.
    [52]欧育湘,陈宇.无机阻燃剂的最新进展[J].现代化工,1996,01):15-18.
    [53]蔡永源.国外难燃不饱和聚酯树脂概况[J].化工新型材料,1985,13,(7):7-11.
    [54]叶慧敏,郑利民.棉和涤棉混纺织物整理中磷、硼阻燃协同效应的研究[J].染整技术,1996,18(06):20-22
    [55]江红,郑利民.棉织物整理中硼、磷阻燃协同效应的研究[J].新疆工学院学报,1997,18(02):159-162.
    [56]林苗,郑利民,江红等.新型含硼阻燃剂的合成、表征及其性能的研究[J].印染,2000,26(03):8-10.
    [57]林苗,郑利民.硼系阻燃剂的发展及现状[J].化工新型材料,2000,28(07):8-9.
    [58]林苗,郑利民,江红.硼/磷系阻燃剂协同效应的研究[J].中国纺织大学学报,2000,26(05):105-107.
    [59]ISHII T, KOKAKU H, NAGAI A, et al.Calcium borate flame retardation system for epo xy molding compounds [J]. Polymer Engineering and Science,2006,46(6):799-806.
    [60]薛恩钰,曾敏修.阻燃科学及应用[M].北京:国防工业出版社,1988.
    [61]张铁江.常见阻燃剂的阻燃机理[J].化学工程与装备,2009,(10):114-115.
    [62]欧育湘.阻燃剂[M].北京:国防工业出版社,2009.
    [63]周卫平,吕秉玲.硼阻燃剂的阻燃机理和应用开发[J].无机盐工业,1988,(03):16-18.
    [64]欧育湘,李建军.阻燃剂性能、制造及应用[M].北京:化学工业出版社,2006.
    [65]KESZEI S, ANNA P, MAROSI G, et al. Surface modified aluminium hydroxide in flame r etarded noise damping sheets [J].Macromolecular Symposia,2003,202:235-243.
    [66]ANNA P, ZIMONYI E, MARTON A, et al. Surface treated cellulose fibres in flame reta rded PP composites [J].Macromolecular Symposia,2003,202:245-254.
    [67]BERTALAN G, MAROSI G, ANNA P, et al. Role of interface modification in filled and flame-retarded polymer systems [J]. Solid State Ionics,2001,141:211-215.
    [68]CHEN J, HE T, WU W, et al. Adsorption of sodium salt of poly(acrylic) acid (PAANa) on nano-sized CaC03 and dispersion of nano-sized CaC03 in water [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2004,232(2-3):163-168.
    [69]ZEBARJAD S M, TAHANI M,SAJJADI S A. Influence of filler particles on deformation and fracture mechanism of isotactic polypropylene [J].Journal of Materials Process ing Technology,2004,155-156:1459-1464.
    [70]SHUI M. Polymer surface modification and characterization of particulate calcium c arbonate fillers[J]. Applied Surface Science,2003/220(1-4):359-366.
    [71]MARSH M E. Regulation of CaC03 formation in coccolithophores [J]. Comparative Bioch emistry and Physiology Part B:Biochemistry and Molecular Biology,2003,136(4):743-754.
    [72]LABOUR T, GAUTHIER C, SEGUELA R, et al. Influence of the [beta] crystalline phase on the mechanical properties of unfilled and CaC03-filled polypropylene [J]. I. St ructural and mechanical characterisation. Polymer,2001,42(16):7127-7135.
    [73]ZHOU B, JI X, SHENG Y, et al. Mechanical and thermal properties of poly-ether ethe r ketone reinforced with CaC03 [J].European Polymer Journal,2004,40(10):2357-2363.
    [74]郑水林.非金属矿物粉体表面改性技术进展[J].中国非金属矿工业导刊,2010,(01):3-10.
    [75]陈烨璞,刘俊康,李德军等.ADDP改性纳米碳酸钙的研究[J].化工矿物与加工,2001,(10):5-7.
    [76]HOANG V T, LAM D T, HOANG D V, et al. Facile surface modification of nanoprecipita ted calcium carbonate by adsorption of sodium stearate in aqueous solution [J].Col loids and Surfaces a-Physicochemical and Engineering Aspects,2010,366(1-3):95-103.
    [77]ZHAO L N, ZHAO X, REN S X, et al. In situ synthesis and surface modification of ca lcium carbonate [J].Acta Physico-Chimica Sinica,2009,25(1):47-52.
    [78]SHEN J, SONG Z Q, QIAN X R, et al. Modification of precipitated calcium carbonate filler using sodium silicate/zinc chloride based modifiers to improve acid-resista nce and use of the modified filler in papermaking [J].Bioresources,2009,4(4):1498-1519.
    [79]吴凤芹,姚超,张国庆等.月桂酸钠有机表面改性凹凸棒石[J].化工矿物与加工,2008,(12):7-10.
    [80]陈海群,徐义荣,赵银芝.蒙脱土的表面修饰[J].化工矿物与加工,2008,(08):35-38.
    [81]王锦成,杨科,郑晓昱.蒙脱土的有机化改性及其结构与性能研究[J].化工矿物与加工,2010,(07):11-13.
    [82]刘菁,汪灵,叶巧明等.微晶白云母的钛酸酯表面改性研究[J].矿物岩石,2006,26(01):13-16.
    [83]刘吉平,廖莉玲.无机纳米材料[M].北京:科学出版社,2003.
    [84]冯彩梅,王为民.粉体表面改性技术及其效果评估[J].现代技术陶瓷,2004,(02):23-26.
    [85]丁浩,卢寿慈,张克仁等.矿物表面改性研究的现状与前景展望(Ⅲ)——改性效果的预先评价[J].矿产保护与利用,1997,(01):21-25
    [86]程丽君.针状硅酸盐(FS)增强橡胶复合材料的界面设计与性能研究[D].北京化工大学,2005.
    [87]郑水林.无机矿物填料加工技术基础[M].北京:化学工业出版社,2010.
    [88]肖卫东,何本桥,何培新等.聚合物材料用化学助剂[M].北京:化学工业出版社,2003.
    [89]原沁波.超细煤矸石作天然橡胶补强填充剂的性能研究[D].太原:太原理工大学,2004
    [90]刘曌娲.铁粉填充的导电硅橡胶复合材料的制备与压阻性能研究[D].内蒙古:内蒙古科技大学,2010
    [91]田明原,施尔畏,仲维卓等.纳米陶瓷与纳米陶瓷粉末[J].无机材料学报,1998,02(13):129-136.
    [92]PERRAULT S D, CHAN W C W. Synthesis and surface modification of highly monodispers ed, spherical gold nanoparticles of 50-200 nm [J]. Journal of the American Chemical Society,2009,131(47):17042.
    [93]GAO C H, LI X G, FENG L J, et al. Surface modification and characterization of mag nesium hydroxide sulfate hydrate nanowhiskers [J]. Applied Surface Science,2010,256 (10):3234-3239.
    [94]刘国玉,刘曙光.膨润土的有机改性研究[J].硅酸盐通报,2009,28(02):285-288.
    [95]李桂金,白志民,黄卫俊等.蛇纹石粉体表面改性研究[J].硅酸盐通报,2008,27(06):1091-1095.
    [96]BEIER C W, CUEVAS M A, BRUTCHEY R L. Effect of surface modification on the dielect ric properties of BaTiO3 nanocrystals[J]. Langmuir,2010,26(7):5067-5071.
    [97]CELIK M S, HANCER M.MILLER J D.Flotation chemistry of boron minerals [J]. Journal of Colloid and Interface Science,2002,256(1):121-131.
    [98]张欣钊,古菊,罗远芳等.水相湿法改性纳米碳酸钙表面性质的研究[J].广州化学,2005,30(02):1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700