用户名: 密码: 验证码:
苯和乙醇烷基化副产物二甲苯生成规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在小型固定床反应装置上对DRF型催化剂进行了苯与乙醇气相烷基化制乙苯反应性能的研究,研究了工艺条件、镧和磷改性等因素对主要副产物二甲苯的生成影响。基于性能评价和特征表征相结合的方式,对DRF型催化剂和工业参比催化剂进行了稳定性对比考察,同时对两种催化剂催化性能差异的原因及其再生后的催化性能进行了探讨。得到了以下主要结果:
     (1)DRF型催化剂对苯与乙醇气相烷基化合成乙苯具有良好的乙苯选择性、稳定性以及较低的二甲苯相对含量。乙苯合成适宜的反应条件为:温度360-400℃,苯醇摩尔比在5-7,苯醇混合质量空速为12 h-1左右;
     (2)适当降低反应温度及提高苯醇摩尔比可抑制副产物二甲苯的生成。提高原料中苯醇摩尔比,有利于提高乙苯选择性并降低副产物二乙苯的选择性;在相对较大的质量空速下操作,缩短了反应物的停留时间,降低了催化剂的结焦程度,减少了二甲苯的生成几率;
     (3)La和P改性后DRF催化剂的总酸量较未改性前高,但产物中杂质二甲苯的含量未降低,乙苯选择性有所提高,二乙苯相对含量降低;
     (4)在2000 h的长周期寿命考察中,在相同反应条件下,DRF型催化剂上二甲苯的相对含量低于参比催化剂,乙苯选择性也优于参比催化剂,其综合催化性能超过了参比催化剂的水平,DRF型催化剂是一种具有良好工业应用前景的催化剂。
Vapor-phase alkylation of benzene with ethanol was investigated in a small fixed-bed reactor over DRF catalyst. The influence of process conditions and catalyst modification was studied on the formation of main byproduct xylene. The paralleled stability test of DRF and referential catalysts was carried out and the catalystic performance differences among these catalysts were also investigated combining the catalytic reaction experiments and the characterization of the catalysts, and the performance of regeneration for two catalysts were studied via coke-burning regeneration methods. The results can be concluded as follow:
     (1) DRF catalyst has the good ethylbenzene selectivity, stability and the relative low content of xylene to the benzene alkylation with ethanol to form ethylbenzene. The results shows that the appropriate operating conditions are as follows:temperature,360~400℃; benzene/ethanol molar ratio,5~7; the weight hourly space velocity of benzene and ethanol, 12.
     (2) The decrease of reaction temperature and increase feed ratio can restrain the formation of xylene. The enhance of feed ratio of benzene to ethanol is beneficial to increase the ethylbenzene selectivity and reduce the diethylbenzene selectivity. Under the relatively big weight hourly space velocity, the retention time of the reactant is shortened, the coked degree of the catalyst is reduced and the probability of xylene generation is decreased.
     (3) The total acid quantity of modified DRF catalyst is larger than before, but the relative content of xylene is not reduced. Besides, the ethylbenzene selectivity is improved and the relative content of diethylbenzene is reduced over the modified catalyst.
     (4) The relative content of xylene is lower and selectivity of ethylbenzene is higher over DRF catalyst than referential catalyst in reaction for 2000 hours under the same conditions. The comprehensive performance has exceeded the level of referential catalyst. The results indicat that the DRF catalyst has good prospect of industrial application.
引文
[1]程志林,赵训志,邢淑建.乙苯生产技术及催化剂研究进展[J].工业催化,2007,15(7):4-9.
    [2]孙洪敏,杨为民,陈庆龄.合成乙苯工艺技术的发展与展望[J].工业催化,2001,9(4):14-17.
    [3]潘履让,李赫喧.碱土金属氧化物改性的HZSM-5表面酸性和苯、乙醇烷基化反应活性和选择性的研究[J].高等学校化学学报,1990,11(6):617-621.
    [4]赵国春,陆仁杰,施百先.苯与乙醇烷基化制乙苯的研究[J].化学反应工程与工艺,1992,8(2):119-223.
    [5]徐海升,陈广美.在ZSM-5分子筛催化剂上苯与乙醇合成乙苯的宏观动力学[J].石油化工,1992,21(8):516-519.
    [6]郑鑫源,傅吉全.苯与乙醇在β分子筛上烷基化的研究[J].化学反应工程与工艺,2006,22(2):172-175.
    [7]罗国华,焦峰,徐新,等.HZSM-5沸石上苯与乙醇烷基化合成乙苯[J].北京石油化工学院学报,2009,17(3):1-3.
    [8]曾昭槐.择形催化[M].北京:中国石化出版社,1991,79-80.
    [9]魏辉荣,王留成,徐海升.磷镁改性ZSM-5分子筛催化剂上苯与乙醇合成乙苯的研究[J].郑州工学院学报,1992,13(2):60-65.
    [10]Vijayaraghavan V R,Joseph Antony Raj K. Ethylation of benzene with ethanol over substituted large pore aluminophosphate-based molecular sieves[J]. Journal of Molecular Catalysis A:Chemical,2004,207(1):41-50.
    [11]Odedairo T, Al-Khattaf S. Ethylation of benzene:Effect of zeolite acidity and structure[J]. Applied Catalysis A:General,2010,385(1-2):31-45.
    [12]王玉庆.乙苯/苯乙烯的技术现状及发展[J].石油化工,2001,30(6):479-485.
    [13]李莉,陈梦,王伟.分子筛催化剂的性能及应用[J].中国科技信息,2008,13:32-33.
    [14]王桂茹,王安杰,刘靖,等.催化剂与催化作用[M].大连:大连理工大学出版社.2004,61-65.
    [15]高滋,何鸣元,戴逸云.沸石催化与分离技术[M].北京:中国石化出版社,1999,301-303.
    [16]陈连璋.沸石分子筛催化[M].大连:大连理工大学出版社,1990.
    [17]陈或,钟发春,宋宇明,等.ZSM-5的结构、形状选择性与改性[J].石油化工,1994,23(3):197-201.
    [18](日)催化学会编.C1化学—创造未来的化学[M].陆世雄译.北京:宇航出版社,1990,148.
    [19]杨建军.钾钡离子复合改性13X分子筛的交换规律研究[D].鞍山:鞍山科技大学,2005.
    [20]Vogel B, Schneider C, Klemm E. The synthesis of cresol from toluene and N2O on H[Al]ZSM-5:Minimizing the product diffusion limitation by the use of small crystals[J].Catalysis Letters,2002,79(1-4):107-113.
    [21]Campbell S M, Bibby D M, Coddington J M, et al. Dealumination of HZSM-5 zeolites: Ⅱ.methanol to gasoline conversion[J]. Journal of Catalysis,1996,161(1):350-358.
    [22]Dong X F, Song Y B, Lin W M. A new way to enhance the coke-resistance of Mo/HZSM-5 catalyst for methane dehydroaromatization[J]. Catalysis Communications,2007,8(3):539-542.
    [23]尉东光,周敬来,张碧江,等.HZSM-5分子筛的水热脱铝研究Ⅰ.氨-FTIR与吡啶-FTIR考察[J].燃料化学学报,1996,24(2):103-107.
    [24]Sharelle M C,David M B, Janm C, et al. Dealumination of HZSM-5 Zeolites:I. Calcination and hydrothermal treatment[J].Journal of Catalysis,1996,161(1):338-349.
    [25]Antonio de L, Canizares P, Duran A, et al. Dealumination of HZSM-5 zeolites: Effect of steaming on acidity and aromatization activity[J].Applied Catalysis A:General,1997,154(1-2):221-240.
    [26]徐虹,黄利华,刘晓燕.水热处理后HZSM-5沸石催化性能的研究[J].郑州大学学报,2002,34(4):85-87.
    [27]Butter S A, Kaeding W W. Phosphorus-containing zeolite catalyst: US,3972832[P],1976.
    [28]Guo X W, Shen J P, Sun L, et al. Effect of hydrothermal treatment conditions on the catalytic activity of HZSM-5 zeolites in the methylation of 4-methylbiphenyl with methanol[J]. Catalysis Letters,2003,87:159-166.
    [29]邹薇,杨德琴,朱志荣,等.金属氧化物改性的HZSM-5上甲苯与甲醇的烷基化反应[J].催化学报,2005,26(6):470-474.
    [30]贾文浩,徐瑞芳,李福芬,等.纳米HZSM-5沸石酸度的调节及对液化气裂解反应的影响[J].分子催化,2009,23(1):11-16.
    [31]张进,肖国民.ZSM-5型分子筛的表面酸性与催化活性[J].分子催化,2002,16(4):307-311.
    [32]周建宏,赵云,宋金富,等.改性纳米HZSM-5沸石催化剂上C5-C8混合烷烃的芳构化反应[J].催化学报,2008,29(7):665-670.
    [33]Yang G, Zhuang J Q, Wang Y, et al. Enhancement on the hydrothermal stability of ZSM-5 zeolites by the cooperation effect of exchanged lanthanum and phosphoric species[J]. Journal of Molecular Structure,2005,737 (2-3):271-276.
    [34]Inanow A V, Graham G W, Shelef M.. Adsorption of hydrocarbons by ZSM-5 zeolites with different SiO2/Al2O3 ratios:a combined FTIR and gravimetric study [J]. Applied Catalysis B:Environmental,1999,21(4):243-258.
    [35]金文清,滕加伟,赵国良,等.PZSM-5分子筛催化剂用于烯烃催化裂解的研究[J].工业催化,2004,12(10):5-7.
    [36]Yang G, Wang Y, Zhou D H, et al. On configuration of exchanged La3* on ZSM-5:A theoretical approach to the improvement in hydrothermal stability of La-modified ZSM-5 zeolite[J]. Journal of Chemical Physics,2003,119(18):9765-9770.
    [37]Miki Niwa, Carmela Hidalgo, Tadashi Hattori, et al.Germanium Methoxide:New Reagent for Controlling the Pore-Opening Size of Zeolite by CVD[J]. Studies in Surface Science and Catalysis,1986,28:297-304.
    [38]Das J, Halgeri A B. Seleetive synthesis of para-ethylphenol over pore size tailored zeolite[J]. Applied Catalysis A:General,2000,194-195:359-363.
    [39]Weber R W, Moller K P. The chemical vapour and liquid deposition of tetraethoxysilane on ZSM-5, mordenite and beta[J]. Microporous and mesoporous materials,2000,35-36(1):533-543.
    [40]Yue Y H, Tang Y, Liu Y, et al. Chemical liquid deposition zeolites with controlled pore-opening size and shape-selective separation of isomers[J]. Industrial & Engineering Chemistry Research,1996,35(2):430-433.
    [41]乐英红,唐颐,阐志勇,等.化学液相沉积法调变沸石孔径及异构体择形分离[J].化学学报,1996,54:591-597.
    [42]Dwyer F G. Catalysis of Organic Reactions in Chemical Industries, W. R. Moser (Ed.), Marcel Dekker,New York,1981,5:39.
    [43]Chen N Y, Garwood W A, Dwyer F G.Shape Selective Catalysis in Industrial Applications, Marcel Dekker, New York,1996,208.
    [44]Dwyer F G, Ram S, AIChE Spring National Meeting, Houston, TX,7-11 April 1991.
    [45]Maerz B R, Venkat C. R., Chen S. S.,et al.1996 Petrochemical Review, Houston, TX,3-21 March 1996.
    [46]Mazzone D N, Lewis P J, Venkat C R, et al.A new zeolite catalyst for ethylbenzene production [J]. Hydrocarbon Asia,1997,7(3):56.
    [47]Cheng J C, Degnan T F, Beck J S, et al. A Comparison of zeolites MCM-22, beta, and usy for liquid phase alkylation of benzene with ethylene[J]. Studies in Surface Science and Catalysis,1999,121:53-60.
    [48]Chemical Market Report,1994,27.
    [49]Chen J,in:Proceedings of the Worldwide Solid Acid Process Conference 1993, Houston, TX, Catalyst Consultants Inc., Spring House, PA,1993.
    [50]Horsley J A, Producing bulk and fine chemicals using solid acids[J].Chemtech,1997,27(10):45.
    [51]Yuan J J, Gevert B S. Alkylation of benzene with aqueous solution of ethanol over ZSM-5 catalysts[J]. Indian Journal of Chemical Teehnology,2006,13(4):334-340.
    [52]European Chemical News,1998,69:18.
    [53]Progue R F, World Patent 96/34843, Dow Chemical Company,1996.
    [54]Lukyanov D B, Vazhnova T. Highly seleetive and stable alkylation of benzene with ethane into ethylbenzene over bifunetional PtH-MFI catalysts[J]. Journal of Moleeular Catalysis A,2008,279(1):128-132.
    [55]Li Y X, Xue B, He X Y. Catalytic synthesis of ethylbenzene by alkylation of benzene with diethyl carbonate over HZSM-5[J]. Catalysis Communications,2009,10(5):702-707.
    [56]Li Y X, Xue B, He X Y. Synthesis of ethylbenzene by alkylation of benzene with diethyl carbonate parent MCM-22 and hydrothermally treated MCM-22[J]. Journal of Molecular Catalysis A,2009,301 (1-2):106-113.
    [57]Li Y X, Xue B, Yang Y T, Synthesis of ethylbenzene by alkylation of benzene with diethyl oxalate over HZSM-5[J]. Fuel Processing Technology,2009,90 (10):1220-1225.
    [58]Gao Junhua, Zhang Lidong, Hu Jinxian, et al.Effect of zinc salt on the synthesis of ZSM-5 for alkylation of benzene with ethanol[J]. Catalysis Communications,2009,10(12):1615-1619.
    [59]Yuan J J, Gevert B S. Alkylation of benzene with ethanol over ZSM-5 Catalyst with different SiO2/Al2O3 ratios[J]. Indian Journal of Chemical Technology,2004,11(3):337-345.
    [60]陈广炎.乙醇与苯直接烃化制乙苯合成研究[J].工业技术,2010,30.
    [61]高俊华,张立东,胡津仙,等.改性ZSM-5上苯与乙醇烷基化反应条件的考察及再生评价[J].化工进展,2008,27(11):1800-1804.
    [62]孙林平.纳米HZSM-5分子筛上焦化苯烷基化合成乙苯的研究[D].大连:大连理工大学,2010.
    [63]何奕工,舒兴田,龙军.正碳离子和相关的反应机理[J].石油学报,2007,23(4):1-7.
    [64]周建峰.运用等键反应能估算自由基和正碳离子的相对稳定性[J].化学研究与应用,2000,12(3):307-310.
    [65]焦峰.ZSM-5沸石催化焦化苯与乙醇烷基化合成乙苯的研究[D].北京:北京化工大学,2009.
    [66]张怀彬,潘履让,李赫暄.HZSM-5的表面B酸与催化活性[J].燃料化学学报,1991,19(1):8-13.
    [67]Ma J, Shen J P,Sun T, et al. Alkylation of benzene with propylene over Hβ zeolite-The effect of reaction conditions on the distribution of products [J]. Chemical Research in Chinese Universities,1995,11(1):39-44.
    [68]许艺,王志斌.改性分子筛的表面酸性与苯烷基化反应活性的关系研究[J].无机化学学报,1998,14(3):298-302.
    [69]谢在库.H沸石表面酸性质的研究[J].催化学报,2000,21(1):47-51.
    [70]高俊华,张立东,胡津仙,等.不同HZSM-5催化剂上苯与乙醇的烷基化反应[J].石油学报(石油加工),2009,25(1):59-65.
    [71]杨平,潘履让,李赫喧.β沸石的酸性和苯-丙烯烷基化反应的研究[J].燃料化学学报,1990,18(1):16-23.
    [72]王学勤,王祥生.苯-乙烯烷基化HZSM-5沸石催化剂积炭失活的研究:Ⅱ.沸石的SiO2/Al2O3比、酸性质与催化剂失活的关系[J].石油学报(石油加工),1994,10(2):14-17.
    [73]潘履让,郝玉芝,李赫喧.苯和乙醇烷基化制乙苯的研究—不同方法合成HZSM-5分子筛的吸附与催化性质[J].化学工业与工程,1988,5(1):52-56.
    [74]潘履让,郝玉芝,李赫喧.苯和乙醇烷基化制乙苯的研究——Ⅲ.HZSM-5及其改性后的酸性和催化性能[J].燃料化学学报,1988,16(3):199-204.
    [75]慕俊娟.沸石催化剂上苯与乙烯液相烷基化反应的研究[D].北京:北京化工大学,2004.
    [76]高俊华,胡津仙,张立东,等.苯与乙醇在HZSM-5分子筛上烷基化的研究[J].石油化工,2008,37,251-254.
    [77]沈东敏,王桂茹,徐振铨,等.在ZSM-5型沸石剂上苯与乙醇烃化制乙苯[J].石油化工,1988,17(11):685-691.
    [78]Sahib A J, Lee B L, et al. Catalytic with an inert binder for the production of ethylbenzene[P]. WO:01318,1995.
    [79]Selli E, Forni L. Comparison between the surface acidity of solid catalysts determined by TPD and FTIR analysis of pre-adsorbed pyridine[J]. Microporous and Mesoporous Materials,1999,31(1-2):129-140.
    [80]陆铭,郭炳,朱子彬,等.AB-97型分子筛催化剂上苯与乙烯烷基化Ⅱ.副产物二甲苯的生成规律[J].石油化工,2001,30(4):270-274.
    [81]王利,刘盛林,赵雪松,等.催化裂化干气制乙苯过程中二甲苯生成研究[J].天然气化工,2006,31(4):8-12.
    [82]Engelhardt G, Lohse U, Patzelova V, et al. High resolution 29Si NMR of dealuminated Y-zeolites Ⅰ. the dependence of the extent of dealumination on the degree of ammonium exchange and the temperature and water vapour pressure of the thermalchemical treatment[J]. Zeolites,1983,3(3):233-238.
    [83]王传明,王仰东,刘红星,等.SAPO-34分子筛中甲基萘催化甲醇制烯烃反应的第一性原理研究[J].化学学报,2010,12(68):2312-2318.
    [84]崔哲,韩明汉,陈卫,等.TH-06催化剂合成直链烷基苯Ⅰ.工艺条件的研究[J].石油化工,1999,28(10):657-660.
    [85]FLEGO C, PAZZUCONI G, PEREGO C. Influence of water adsorption on zeolite Beta [J]. Studies in Surface Science and Catalysis,2002,142:1603-1610.
    [86]金丹.分子筛催化剂上异丙苯与丙烯液相烷基化合成二异丙苯反应的研究[D].北京:北京化工大学,2009.
    [87]BASILA M R, KANTNER T R, RHEE K H. The nature of acid sites on a silica-alumina [J]. Journal of Physical Chemistry,1964,68:3197-3207.
    [88]Horniakova J, Mravee D, Joffre J, et al. Selective alkylation of biphenyl over H-MOR and H-BEA zeolites:analysis of experimental results by computational modeling[J]. Journal of Molecular Catalysis A:Chemical,2002,185(1-2):249-257.
    [89]Tawada S,Sugi Y, Kubota Y, et al. Ceria-modification of H-mordenites[J]. Catalysis Today,2000,60(3-4):243-253.
    [90]徐虹,黄利华.稀土改性对HZSM-5催化性能的影响[J].郑州牧业工程高等专科学校学报,2001,21(4):248-250.
    [91]蔡光宇,王清遐.苯乙烯烷基化制乙苯的沸石催化剂:中国,1074392A[P].1993-07-21.
    [92]高俊华,胡津仙,李文怀,等.分子筛结构及磷改性对催化苯与乙醇烷基化反应性能的影响[J].石油炼制与化工,2008,39(10):25-29.
    [93]柯明,汪燮卿,张凤美.高温水热处理后磷改性HZSM-5分子筛的结构变化[J].石油化工,2005,34(3):226-232.
    [94]陈连璋,孙多里,王静玉,等.用磷-稀土元素改性ZSM-5沸石催化剂的催化特性研究[J].大连工学院学报,1986,25(3):33-39.
    [95]高俊华,胡津仙,李文怀,等.改性HZSM-5催化剂上苯与乙醇烷基化反应的研究[J].燃料化学学报,2010,38(2):207-211.
    [96]孙洪敏,杨为民,廖宝星,等.AB-97型气相烷基化制乙苯催化剂的研制及工业应用[J].化学反应工程与工艺,2006,22(3):206-211.
    [97]孙琳,叶娜,王祥生,等.晶粒度对ZSM-5沸石上C4液化气低温芳构化反应的影响[J].化学通报,2007,(8):633-636.
    [98]刘中民,陈国权,王清遐,等.分子筛中的结炭及其氧化烧除[J].石油化工,1994,23(9):584-587.
    [99]孙兆林,程志林,李宏洋,等.液化石油气在ZnNi/HZSM-5催化剂上的芳构化[J].石油化工,2000,29:650-654.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700