用户名: 密码: 验证码:
锌胁迫下苹果锌吸收运转分配与有机酸的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锌是植物必需的微量元素之一,在许多生化过程中起重要作用,苹果是世界四大水果之一,且是对缺锌敏感的作物之一,缺锌和高锌胁迫均可引起苹果树体碳素代谢的失调,进而影响苹果的产量和品质,有机酸作为碳代谢的中间产物,可以以能源物质、结构物质和配体结合物质的形式参与矿质元素的吸收运转和分配。然而果树具有多年生且连年贮藏营养的特性,因其碳素代谢机制复杂,目前关于锌胁迫下有机酸如何影响苹果锌的吸收运转分配的问题还不清楚。
     本文以大田盛果期富士、砂培两年生富士和水培平邑甜茶为试验材料,研究了锌胁迫对苹果有机酸及锌吸收运转分配的影响,探讨了锌胁迫下苹果锌吸收运转分配与有机酸的关系。主要结果如下:
     1.大田富士根中锌浓度和有机酸浓度萌芽期病树高于正常树,盛花期正常树高于病树。生理落果期病树根中锌浓度显著高于正常树,有机酸的浓度细根中正常树高于病树,而粗根中则病树高于正常树。各物候期根系锌浓度与有机酸浓度有显著相关性。
     2.盆栽试验进一步验证,缺锌显著提高了两年生富士吸收根中酒石酸、苹果酸、草酸和延长根中酒石酸的含量,而高锌则增加了苹果吸收根和延长根中酒石酸与苹果酸的含量,降低了延长根中草酸的含量。说明缺锌和高锌导致了苹果根系有机酸含量的变化。
     3.短时间缺锌胁迫减少了平邑甜茶根中的锌含量,提高了根和茎中酒石酸,苹果酸和草酸的浓度,锌在根原生质体中的浓度保持不变,相关性分析表明此时根系锌浓度与有机酸浓度呈显著负相关。同时缺锌促进了有机酸向地下部的分配,随着时间的延长,根长和根面积增加,根冠比提高,根系分泌的酒石酸和苹果酸含量增加,锌吸收速率提高。
     4.长时间缺锌胁迫,平邑甜茶根、茎、叶中锌浓度显著下降,净光合速率下降,体内的有机酸含量减少,根长、根面积、根直径和根尖数显著下降。
     5.短时间高锌胁迫增加了平邑甜茶根、茎、叶的锌含量,提高了根、茎、叶中酒石酸、苹果酸和根中草酸的浓度,锌向液泡和细胞壁的分配增加,相关性分析表明此时根系锌浓度与有机酸浓度呈显著正相关,而锌转运系数与有机酸浓度呈显著负相关。与此同时高锌促进了有机酸向地下部的分配,随着时间的延长,根长和根面积增加,根冠比提高,根系分泌的苹果酸含量增多,锌吸收速率提高,但锌转运系数降低。
     6.长时间高锌胁迫,平邑甜茶植株锌含量显著升高,根和叶中酒石酸、苹果酸和草酸的浓度下降,根直径和根尖数显著下降,锌转运系数降低。
     7.外源有机酸促进了缺锌胁迫下平邑甜茶植株对锌的吸收运转,降低了高锌胁迫下根系对锌的吸收。
Zinc (Zn) is an essential microelement in plants, playing an important role in many biochemical processes. Apple is one of the four major fruits in the world and is sensitive to Zn deficency. Zinc deficiency and Zn toxicity could disorder carbon metabolism of apple tree, which affected the yield and quality of apple. Organic acids are not only intermediate products of carbon metabolism, but also can participate in the absorption and distribution of mineral elements in the form of energy, structure and ligands substance. However, apple tree is characteristic of perennial growth and successive nutritional storage. As the carbon metabolism mechanism is complicated, the problem of how organic acids influence Zn uptake, translocation and distribution in apple tree under Zn stress is unclear currently.
     ‘Fuji’of full fruiting period in the field, two-year-old sand cultivar‘Fuji’and water cultivar Malus hupehensis (Pamp.) were selected as materials to explore the influence and relationship among Zn uptake, translocation, distribution and organic acids under Zn stress in apple tree. The main results were as follows:
     1. Zn and organic acids concentrations were mostly higher in root of rosette tree than that of normal tree at budding stage. However, at florescence stage, Zn and organic acids concentrations were mostly higher in root of normal tree than that of rosette tree. At physiological fruit dropping stage, Zn concentration of root was higher in rosette tree than that in normal tree. Organic acids concentrations in thin roots decreased in rosette tree while increased in normal tree, but in thick roots increased in rosette tree while decreased in normal tree. Zn concentrations were significantly correlated with organic acid concentrations at the three stages.
     2. According to further verification of pot experiment, Zn deficiency significantly increased the contents of oxalic acid, malic acid and tartaric acid in absorbing roots and tartaric acid in extensive roots in two-year-old‘Fuji’. High Zn stress increased the tartaric acid content in absorbing roots and decresed the tartaric acid and malic acid content in extensive roots. It illustrated that Zn deficiency and toxicity resulted in root organic acids contents changed in apple tree.
     3. Short-term Zn deficiency decreased the hydroponical Malus hupehensis (Pamp.) Zn contents of roots and increased tartaric acid, malic acid and oxalic acid concentrations in roots and stems. Zinc concentration in protoplasts of root was not changed. Correlation analysis showed that zinc and organic acid concentrations were significantly negatively related at this time. Zinc deficiency also resulted in organic acids distribution in root increase. With the prolong of growth time, root length and root area increased, root to shoot ratio, root secretion of tartaric acid and malic acid concentrations increased, Zn uptake rate elevated.
     4. Long-term Zn deficiency stress reduced Zn concentrations in roots, stems and leaves of hydroponical Malus hupehensis (Pamp.), net photosynthetic rate, and internal organic acids decreased. Root length, root area, root diameter and number of tips decreased significantly.
     5. Under the condition of short-term Zn toxicity stress, the hydroponical Malus hupehensis (Pamp.) roots, stems and leaves of Zn concentrations were significantly increased, tartaric acid and malic acid concentrations in roots, stems and leaves and oxalic acid concentration in roots increased, Zn concentrations in the vacuole and cell wall increased. Correlation analysis showed that organic acid levels were significantly positively correlated with Zn levels, while significantly negatively correlated with Zn transfer factor at this time. At the same time Zn toxicity promoted the organic acids allocation in root, with the prolong of growth time, root length, root area, root to shoot ratio increased, root secretion of malic acid content increased, Zn uptake rate increased, but Zn transfer factor decreased.
     6. Long-term Zn toxicity stress increased Zn concentrations of each organ in the hydroponical Malus hupehensis (Pamp.), tartaric acid, malic acid and oxalic acid concentrations of roots and leaves decreased, root diameter and number of tips significantly reduced, Zn transfer factor decreased.
     7. Exogenous organic acids promote the hydroponical Malus hupehensis (Pamp.) Zn absorption and translocation under Zn deficiency and reduced the root accumulation under Zn toxicity.
引文
1.丁疆华.土壤环境中锌形态转化的探讨.城市环境与城市生态, 2001, 4(2):47-49.
    2.董社琴,李小雯,周健等.超积累植物对重金属元素吸收机理的探讨.应用研究, 2004, (1): 64-66.
    3.胡学玉,李学垣,谢振翅.不同青菜品种吸锌能力差异及与根系分泌物的关系.植物营养与肥料学报, 2002, 8 (2):234-238.
    4.蒋廷惠等.环境科学学报, 1990, 10 (3):280.
    5.李春俭等.高等植物的矿质营养.北京:中国农业大学出版社, 2001.
    6.李惠英,陈素英,王豁.铜、锌对土壤-植物系统的生态效应及临界含量.农村生态环境, 1994, 10(2):22-24.
    7.李廷强.超积累植物东南景天(Sedum alfredii Hance)对锌的活化、吸收及转运机制研究, 2005,博士论文
    8.李文学,陈同斌.超富集植物吸收富集重金属的生理和分子生物学机制.应用生态学报, 2003, 14 (4): 627-631.
    9.梁东,马锋旺,管清美,张军科,徐凌飞.蔷薇科植物中山梨醇代谢酶的研究进展.西北植物学报, 2004, 24(7):1362-1366.
    10.刘福来.土壤–植物系统中锌的研究概况.土壤肥料, 1998(5):10-13.
    11.刘铮.我国土壤中锌含量的分布规律.中国农业出版社, 1994, 27(l):30-37.
    12.龙新宪,倪吾钟,叶正钱,杨肖娥.外源有机酸对两种生态型东南景天吸收和积累锌的影响.植物营养与肥料学报, 2002, 8 (4):467-472.
    13.龙新宪,杨肖娥,叶正钱.超积累植物的金属配位体及其在植物修复中的应用.植物生理学通讯, 2003, 39(1): 71-77.
    14.曲桂敏,黄天栋,顾曼如.苹果树Zn含量的年变化及与根系活力的关系.山东农业大学学报, 1993, 24(1): 88-91.
    15.全先庆.植物螯合肽及其功能.生命的化学, 2007, 27(3):213-215.
    16.邵孝侯等.土壤学进展, 1994, 22 (3):40.
    17.沈振国,刘友良,陈怀满.鳌合剂对重金属超积累植物T. carulescens对Zn, Cu, Mn的吸收的影响.植物生理学报, 1998, 24: 340-346.
    18.束怀瑞.苹果根系生物学研究进展.山东农业大学苹果根系研究论文集,1992-2002, pp1-12.
    19.束怀瑞,罗新书,黄镇,张若抒,韦兴笃,杨兰芝.苹果14C同化物运输分配特性研究.山东农学院学报, 1980, 1:39-53.
    20.束怀瑞等.苹果学.北京:中国农业出版社, 1999,第一版.
    21.宋玉芳,许华夏,任丽萍等.土壤重金属污染对蔬菜生长的抑制作用及其生态毒害.农业环境科学学报, 2003, 22(l):13-15.
    22.孙琴,倪吾钟,杨肖娥.超积累植物体内的小分子螯合物质及其生理作用.广东微量元素科学, 2001, 8(5):1-8.
    23.孙瑞莲,周启星.高等植物金属抗性中有机酸的作用及其机理.生态学杂志, 2006, 25 (10):1275-1279.
    24.孙瑞莲,周启星.高等植物重金属耐性与超积累特性及其分子机理研究.植物生态学报, 2005, 29 (3): 497-504.
    25.汪洪,金继运,周卫.不同水分状况下施锌对玉米水分代谢的影响.植物营养与肥料学报, 2004, 10(4):367-373.
    26.汪洪,金继运.植物对锌吸收运输及积累的生理与分子机制.植物营养与肥料学报, 2009, 15(1):225-235.
    27.王人民,杨肖娥,杨玉爱.不同Zn2+活度对水稻根和叶生长生理特性的影响.作物学报, 1999, 25(4):466-473.
    28.王人民,张永鑫,杨肖娥,何慈信.水稻锌高效营养特性的遗传分析.植物营养与肥料学报, 2003, 9 (2):196-202.
    29.王祥,李鹏,印莉萍.酵母和植物的锌转运系统及其调控.植物学通报, 2007, 24 (6): 799-806.
    30.王衍安,范伟国,李玲,李德全,张方爱.落叶前根外喷锌防治苹果小叶病研究.果树学报, 2001, 18(4): 246-247.
    31.王衍安.苹果树锌运转分配及缺锌对其生理特性影响的研究. 2007,博士论文
    32.武泰存,房蓓,王景安.锌转运蛋白基因研究进展.西北植物学报, 2005,
    25 (10): 2139-2144.
    33.夏国海,宋尚伟,张大鹏,罗新书.苹果幼树休眠前后可溶性糖和氨基酸的变化.园艺学报, 1998, 25(2):129-132.
    34.谢正苗.土壤中锌的化学平衡.环境科学进展, 1996, 4(5):13-30.
    35.熊愈辉,杨肖娥,叶正钱.两种生态型东南景天锌吸收与分布特性的研究.浙江大学报(农业与生命科学版), 2003, 29(6):614-620.
    36.徐卫红,刘吉振,黄河,熊治廷.高锌胁迫下不同大白菜品种生长、Zn吸收及根系分泌物的研究.中国农学通报, 2006, 22(8):458-463.
    37.徐晓燕,杨肖娥,杨玉爱等.锌从农业土壤向人类食物链的迁移.广东微量元素科学, 1996 (7):21-29.
    38.严小龙,张福锁.植物营养遗传学[M].北京:中国农业出版社, 1995.
    39.杨居荣,鲍子平,张素芹.锡在植物细胞内的分布及其可溶性.中国环境科学, 1993, 13(4):263-268.
    40.应蓉蓉,杜锁军,胡鹏杰,赵芝灏,周小勇,汤叶涛,仇荣亮.长柔毛委陵菜对锌的吸收动力学特性.应用生态学报, 2008, 19(6).
    41.张福锁.根分泌物及其在植物营养中的作用:Ⅰ.缺锌对双子叶植物根系分泌物的影响.北京农业大学学报, 1991a, 17(2): 63-67.
    42.张福锁.根分泌物及其在植物营养中的作用:Ⅱ.缺锌对禾本科植物根系分泌物的影响.北京农业大学学报, 1991b, 17(4): 67-70.
    43.张晓钰,茹炳根.植物类MT与植物络合肽.生命科学, 2000, 12(4):170-173.
    44.赵军营,王利军,牛铁泉等.苹果幼苗部分根系水分胁迫对光合作用主要参数的影响.果树学报, 2005, 22(5):446-449.
    45.赵文君,陈志诚.华南热带地区土壤与母质间微量元素丰度的相互关系.北京:科学出版社, 1985, pp151.
    46.周厚基,仝月澳,刁凤贵,杨儒林,王富贵.国光苹果树缺锌的临界指标与不同锌肥新品种的肥效.中国农业科学,1981, 6:65-70.
    47.朱艳霞,魏幼璋,叶正钱,杨肖娥.有机酸在超积累植物重金属解毒机制中的作用.西北农林科技大学学报, 2006, 34(7):121-126.
    48. Lindsay WL.土壤和植物营养中的锌.见:土壤微量元素译文集(刘铮等译).南京:江苏科学技术出版社, 1981.
    49. Abadía J, López-Millán AF, RombolàA, Abadía A. Organic acids and Fe deficiency: a review. Plant and Soil, 2002, 241:75-86.
    50. Alloway BJ. Zinc in Soil and Crop Nutrition. International Zinc Association, 2003.
    51. Aravind P, Prasad MNV. Cadmium-induced toxicity reversal by zinc in Ceratophyllum demersum L. (a free floating aquatic macrophyte) together with exogenous supplements of amino- and organic acids. Chemosphere, 2005, 61:1720-1733.
    52. Arrivault S, Senger T, Kramer U. The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. Plant J, 2006, 46:861-879.
    53. Assuncao AGL, Martins PD, Folter R. Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ, 200, 24:217-226.
    54. Auld DS. Zinc coordination sphere in biochemical zinc sites. Biometals, 2001, 14:271-313.
    55. Barber SA. Soil nutrient bioavailability. New York John Wiley and Sons, 1984, pp346-365.
    56. Bell PF, Chaney RL, Angle JS. Free metal activity and total metal concentrations as indices of micronutrient availability to barley Hord eumvu lgare (L.)‘Klages’. Plant Soil, 1991, 130:51-62.
    57. Blaylock MJ, Salt DE, Dushenkov S. Enhanced accumulation of Pb in India Mustard by soil-applied chelating agents. Environ Sci Technol, 1997,
    31:860-865.
    58. Broadley MR, White PJ. Zinc in plants. New Phytologist, 2007, 173:677-702.
    59. Cabrera D, Young SD, Rowell DL. The toxicity of cadmium to barley plants as affected by complex formation with humic acid. Plant soil, 1988, 105:195-204.
    60. Callahan DL, Baker AJM, Kolev SP, Wedd AG. Metal ion ligands in hyperaccumulating plants.J.Biol.Inorg.Chem, 2006, 11:2-12.
    61. Chandler WH. Zinc as a nutrient for plants. Bot Gaz, 1937, 98:625-646.
    62. Chaney RL. Metal speciation and interaction among elements affect trace element transfer in agricultural and environmental food-chains//Kramer J R, Allen H E. Metal speciation, theory, analysis, and application. Chelsa: Lew is Publishers, 1998, pp219-260.
    63. Checkai RT, Corey RB, Helmake PA. Effects of ionic and complexed metal concentrations on plant uptake of cadmium and micronutrient metals from solution. Plant soil, 1987, 99:335-345.
    64. Cieslinski G, Van Rees KCJ, Szmigielska AM. Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant and Soil, 1998, 203:109-117.
    65. Claassen N et al. A Method for Charatering the Reaction between nutuient concentrition and flux into roots of intact. Plant Physiol, 1974, 54:564-568.
    66. Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 2001, 212:475-486.
    67. Collins JC. Zinc in effect of heavy metal pollution on plants (ed. Lepp NVV). London: Applied Science Publishers, 1981.
    68. Cumbus IP. Development of wheat roots under zinc deficiency. Plant and Soil, 1985, 83: 313-316.
    69. Dell B,Wilson SA. Zinc nutrition and leaf carbonic anhydrase activity of Euealyptus maculate seedlings and Trifolium subterraneun. Plant and Soil, 1989, 113:287-290.
    70. Ebbs SD, Kochian LV. Phytoextraction of zinc oat(Avena,sotiva), barley(Hordeum vugae), and Indian mustard(Brassiajuncea). Environmental Science&Technology, 1998, 32(6):802-806.
    71. Emmerlich V, Linka N, Reinhold T et al. The plant homolog to the human sodium/dicarboxylic cotransporter is the vaculolar malate carrier.Proc.Natl.Acad.Sci.USA, 2003, 100:11122-11126.
    72. Erenoglu B, R?mheld V, Cakmak. Retranslocation of zinc from older leaves to yonger leaves and roots in wheat cultivars differing in zinc efficiency. Plant nutrition- Food security and substainability of agro-ecosystem, 2001, pp224-225.
    73. Ernst W. Physiology of heavy metal resistance in plants. In: Hutchinson TC, Epstein S, Page AL, Van Loon J, Davey T, eds. Proceedings of an
    international conference on heavy metals in the environment, 1975, pp121-136.
    74. Foy, CD. The physiology of metal toxicity in plants. Ann.Rev. Physiol, 1978, 29:511-516.
    75. Freeman JL, Persans MW, Nieman K. Increased glutathione biosynthesis plays a role in nickel tolerance in Thlasp inickel hyperaccumulators. Plant Cell, 2004, pp2176 -2191.
    76. Gaume A, M?chler F, León CD, Narro L, Frossard E. Low-P tolerance by maize (Zea mays L.) genotypes: Significance of root growth, and organic acids and acid phosphatase root exudation. Plant and Soil, 2001, 228:253-264.
    77. Grotz N, Fox T, Connoll YEL, Park W, Guerinot ML, Eide DJ. Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proceedings of the National Academy of Sciences, USA, 1998, 95:7220- 7224.
    78. Guerinot ML, Eide DJ. Zeroing in on zinc up take in yeast and plants. Current Opinion in Plant Biology, 1999, 2:244-249.
    79. Haag-Kerwer A et al. J Exp Bot, 1999, 50:1827-1835.
    80. Hacisalihoglu G, Hart J. Two pieces of the zinc efficiency puzzle: Root-Zn influx and Zn compartmentation in the shoot. Plant nutrition– Food security and sustainability of agro-ecosystems.2001, pp192-193.
    81. Hacisalihoglu G, Hart JJ, Vallejos CE, Kochian LV. The role of shoot-localized processes in the mechanism of Zn efficiency in common bean. Planta, 2004, 218:704–711.
    82. Hacisalihoglu G, Hart JJ, Wang YH, Cakmak I, and Kochian LV. Zinc Efficiency Is Correlated with Enhanced Expression and Activity of Zinc-Requiring Enzymes in Wheat. Plant Physiology, 2003, 131:595–602.
    83. Hacisalihoglu G, Kochian LV. How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants. New Phytologist, 2003, 159:341-350.
    84. Han ZH, Wang Q, Shen T. A comprison of some physiological and biochemical characteristics between iron-efficient and inefficient species in genus Malus. J.Plant Nutri, 1994, 17:230-241.
    85. Harmens H, Koevoets PLM, Verklejj JAC, Ernst WHO. The role of low molecular weight organic acids in the mechanism of increased zinc tolerance in Silene vulgaris (Moench) Garcke. New Phytol, 1994, 126:615-621.
    86. Harmens H. Physiology of zinc tolerance in Silene vulgaris, Febodruk, Enschede, Amsterdam.1993, pp61-76.
    87. Haydon MJ, Cobbett CS. Transporters of ligands for essential metal ions in plants. New Phytologist, 2007, 174:499-506.
    88. Hofflan E, Wei CZ, Wissuwa M. Organic anion exudation by lowland rice (Oryza sativa L.) at zinc and phosphorus deficiency. Plant and Soil, 2006:283:155-162.
    89. Huang JW, Chen JJ, Berti WR. Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol, 1997, 31:800-805.
    90. Hurth MA, Suh SJ, Kretaschmar T et al.Impaired pH homeostasis in Arabidopsis lacking the wacuolar dicarboxylate transporter and analysis of carboxylic acid transport across the tonoplast.Plant Physiol, 2005, 137:901-910.
    91. Jiang LJ, Maret W, Vallee BL. The glutathione redox couple modulates zinc transfer from metallothionein to zinc-depleted sorbitol dehydrogenase. Proc. Natl. Acad. Sci. USA, 1998, 95:3483-3488.
    92. Jiang XJ, Luo YM , Zhao QG. Soil Cd availability to Indian Mustard and environmental risk following EDTA addition to Cd-contaminated soil. Chemisphere, 2003, 50:813-818.
    93. Jones DL. Organic acids in the rhizosphere– a critical review. Plant and Soil, 1998, 205:25-44.
    94. Kabata AP, Pendias H. Trace elements in soils and plants. CRC Press Inc. 1992, pp58-96.
    95. Karlsson C, Hoog JO. Zinc coordination in mammalian sorbitol dehydrogenase replacement of putative zinc ligands by site-directed mutagenesis. Eururopean Journal Biochemistry, 1993, 216:103-107.
    96. Kawachi M, Kobae Y, Mori H, Tomioka R, Lee Y, Maeshima M. A Mutant Strain Arabidopsis thaliana that Lacks Vacuolar Membrane ZincTransporter MTP1 Revealed the Latent Tolerance to Excessive Zinc. Plant and Cell Physiology, 2009, 50:1156-1170.
    97. Kochian LV. Mechanism of micronutrient uptake and translocation in plants. In‘Micronutrients in Agriculture (J.J. Mortvedt ed.) Soil Sci Soc Am Book Series No.4 Madison, WI, 1991, pp229-296.
    98. Kumar M, Prasad B. Effect of natural zinc complexes on diffusion of sewage sludge disposal. Nuclear Agri. Biol, 1988, 17:144-150.
    99. Küpper H, Zhao FJ, McGrath SP. Cellular compartmentation of Zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol, 1999, 119:305-311.
    100.Lasat MM, Baker AJM, Kochian LV. Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi. Plant Physiol, 1996, 112:1715-1722.
    101.Lesage E, Meer E, Vervaeke P. Enhanced phytoextration:Ⅱ. Effect of EDTA and citric acid on heavy metal up take by Hylianthus annuus from a calcareous soil. International Journal of Phytoremedition, 2005, 7:143-152.
    102.Li TQ, Yang XE, He ZL. Root morphology and Zn2+ up take kinetics of the Zn hyperaccumulator of Sedum alfredii Hance. Journal of Integrative Plant Biology, 2005, 47 (8):927- 934.
    103.Liao M, Huang CY. Effects of organic acids on the toxicity of cadmium during ryegrass growth. Chinese Journal of Applied Ecology, 2002, 13:109-112 (in Chinese).
    104.Lnognecker NE, Robson AD. Distribution and transport of zinc in plants. In: Zinc in Soils and Plants (A.D. Robson, ed.), 1993, pp79-91.
    105.Lundstrom US. The role of organic acids in the soil solution chemistry of a podsolized soil. J. Soil Sci, 1993, 44:121-133.
    106.Ma JF, Ueno D, Zhao FJ, McGrath SP. Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta, 2005, 220:731-736.
    107.Macdiarmid CW, Gaither LA, Eide DJ. Zinc transporters that regulate vacuolar zinc storage in Saccharomy cescerevisiae.Embo J., 2000, 19:2845- 2855.
    108.Marschner H. Mineral nutrition of higher plants. 2ed. Academic Press. San Diego. CA. USA. 1995.
    109.Mathys W. The role of malate, oxalate, and mustard oil glucosides in the evolution of zinc-resistance in herbage plants. Physiologia plantarum, 1977, 40:130-136.
    110.Mirave JP, Orioli GA. Zinc absorption and transport from complete humate and high and medium molecular weigh fractions. Sci. of the Total Environ, 1989, 81/82:679-682.
    111.Mullins GL, Sommers LE, Housley TL. Metal speciation in xylem and phloem exudates. Plant Soil, 1986, 96:377-391.
    112.Outten CE, O’Halloran TV. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science, 2001, 292:2488–2492.
    113.Pearson JN et al. Transport of zinc and manganese to developing wheat grains. Physiol. Plant, 1995, 95:449 - 455.
    114.Pearson JN. Manipulation of xylem transport affects Zn and Mn transport into developing wheat grains of cultured ears. Physiologia Plantarum, 1996, 98:229-234.
    115.Raghothama KG. Phosphorus acquisition; plant in the driver’s seat! Trends Plant Sci, 2000, 5:412-413.
    116.Reav PF, Waugh C. Mineral-element composition of Lupinus angustifolius in relation to manganese accumulation. Plant Soil, 1981, 60:435-444.
    117.Rengel Z, Graham RD. Wheat genotypes differ in Zn efficiency when grown in chelate-buffered nutrition solutionⅠ. Growth. Plant and Soil, 1995, 176:307-316.
    118.Riceman DS, Jones GB. Distribution of zinc in subterrancan clover (Trifolium subterraneum L.) grown to maturity in a culture solution containing zinc labelled with the radioactive isotope Zn-65. Aust.J.Agric.Res, 1958, 9:730-744.
    119.R?er W, Keller H. Exudation of organic acids by spinach and the mobilization of Cu, Zn and Cd in soil. Plant nutrition– Food security and sustainability of agro-ecosystems, 2001, pp556-557.
    120.Ryan CA, Walker-Simmons M. Plant vacuoles. Methods Enzymol, 1983, 96:580–589.
    121.Salt DE, Prince RC, Baker AJM, Raskin I, Pickering IJ. Zinc Ligands in the Metal Hyperaccumulator Thlaspi caerulescens As Determined Using X-ray Absorption Spectroscopy. Environ. Sci. Technol, 1999, 33:713-717.
    122.Santa-María GE, Cogliatti DH. The regulation of zinc uptake in wheat plants. Plant Science, 1998, 137:1-12.
    123.Sarret G, Saumitou-Laprade P, Bert V, Proux O, Hazemann JL, Traverse A, Marcus MA., Manceau A. Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiology, 2002, 130:1815-1826.
    124.Sasaki H, Hirose T, Watanabe Y, Ohsugi R. Carbonic anhydrase activity and CO2-transfer resistance in Zn-deficient rice leaves. Plant Physiology, 1998, 118:929-934.
    125.Schat H, Van Hoof NALM, Tervahauta A, Hakvoort HWJ, Chardonnens AN, Koevoets PLM, Verkleij JAC, Ernst WHO. Evolutionary responses to zinc and copper stress in Bladder Campion, Silene vulgaris (Moench) Garcke. In: Cherry JH, LocyRD, Richter A, eds. Plant tolerance to abiotic stresses: role of genetic engineering. Dordrecht, The Netherlands: Kluwer Academic Publishers, 2000, pp343-360.
    126.Shen RF, Ma JF. Compartmentation of aluminium in leaves of an Al-accumulator, Fagopyrum esculentum Moench. Planta, 2002, 215:394-398.
    127.Sommer AL, Lipman CB. Evidence on the indispensible nature of zinc and boron for higher green plant. Plant Physiol, 1926, 1:231-249.
    128.Straczek A, Sarret G, Manceaub A, Hinsinger P, Geoffroy N, Jaillard B . Zinc distribution and speciation in roots of various genotypes of tobacco exposed to Zn. Environmental and Experimental Botany, 2008, 63:80-90.
    129.Sun RL, Zhou QX, Jin CX. Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. Plant Soil, 2006, 285:125-134.
    130.Tennstedt P, Peisker D, B?ttcher C, Trampczynska A, Clemens S. Phytochelatin Synthesis Is Essential for the Detoxification of Excess Zinc and Contributes Significantly to the Accumulation of Zinc. Plant Physiology, 2009, 149:938–948.
    131.Tessler A et al. A nal. Chem , 1979, 51 (7):844.
    132.Vasak M, Hasler DW. Metallothioneins: new functional and structural insights. Curr Opin Chem Biol, 2000, 4:177-183.
    133.Vázquez MD, Barcelo J, Poschenrieder C. Localization of Zinc and cadmium in Thlaspi caerulescens (Brassicacease), a metallophyte that can hyperaccumulat both metals. J Plant Physiology, 1992, 140:350-355.
    134.Vázquez MD, Poschenrieder C, Barcelo J, Baker AJM,Hatton P, Cope GH. Compartment of zinc in roots and leaves of the zinc hyperaccumultor Thlaspi caerulescens, J & C Presl. Bot Acta, 1994, 107:243-250.
    135.Veltrup W. Characteristics of zinc uptake by barely roots. Physiol Plant, 1978, 42:190-194.
    136.Wang H, Jin JY. Photosynthetic rate, chlorophyll fluorescence parameters, and lipid peroxidation of maize leaves as affected by zinc deficiency. Photosynthetica, 2005, 43:591-596.
    137.Wang J, Evangelou BP, Nielsen MT , Wagner GJ. Computer-simulated evaluation of possible mechanisms for sequestering metal ion activity in plant vacuoles. ??. Zinc. Plant Physiol, 1992, 99:621-626.
    138.Wang J, Evangelou BP, Nielsen MT, Wagner GJ. Computer-simulated evaluation of possible mechanisms for sequestering metal ion activity in plant vacuoles. ?. Cadmium. Plant Physiol, 1991, 97:1154-1160.
    139.Welch RM. Micronutrient nutrition of plants. Critical Re-views in Plant Science, 1995, 14:49 - 82.
    140.White CW, Baker FD, Chaney RL, Decker AM. Metal complexation in xylem fluid II. Theoretical equilibrium model and computational computer program. Plant Physiol, 1981, 67:301-310.
    141.White M, Decker A, Chaney R. Metal complexation in xylem fluid.?: Chemical composition of tomato and soybean stem exudates. Plant Physiol, 1981, 67:292-300.
    142.Wójcik M, Skórzyńska-Polit E, Tukiendorf A. Organic acids accumulation and antioxidant enzyme activities in Thlaspi caerulescens under Zn and Cd stress. Plant Growth Regulation, 2006, 48:145-155.
    143.Xu WH, Liu H, Ma QF, Xiong ZT. Root Exudates, Rhizosphere Zn Fractions, and Zn Accumulation of Ryegrass at Different Soil Zn Levels. Pedosphere, 2007, 17:389-396.
    144.Yan XL, Zhang FS. Plant nutrition genetics. Beijing: Chinese Agriculture Science Press, 1995. (in Chinese)
    145.Yang XE, R?mheld V, Marschner H, Chaney R L. Application of chelator buffered nutrient solution technique in studies on zinc nutrition in rice plant (Oryza Sativa L.). Plant and soil, 1994, 163:85-94.
    146.Yasrebi J et al. Commun. Soil Sci. Plant Anal, 1994, 25 (11 & 12):2133.
    147.Zenk MH. Heavy metal detoxification in higher plants. Gene, 1996, 179:21-30.
    148.Zhao FJ, Lombi E, Breedon T, McGrath SP. Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant, Cell and Environment, 2000, 23:507-514.
    149.Zhao H, Eide DJ. The yeast ZRT1 gene encodes the zinc transporter of a high affinity up take system induced by zinc limitation. Proceedings of the National Academy of Sciences, USA, 1996a, 93, pp2454-2458.
    150.Zhao H, Eide DJ. The ZRT2 gene encodes the low affinity zinc transporter in Saccharomy cescerevisiae. Journal of Biological Chemistry, 1996b, 27:23203-23210.
    151.Zhao H, Eide DJ. Zap1p, a metallo regulatory protein involved in zinc responsive transcri ptional regulation in Saccharomy cescerevisiae. Molecular and Cellular Biology, 1997, 17:5044-5052.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700